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on Chan-Vese Algorithm

Nassir Salman
Computer Science Department, Zarqa Private University, Jordan

Abstract: The main idea in this paper is to detect regions (objects) and their boundaries, and to isolate and extract individual 
components from a medical image. This can be done using K-means firstly to detect regions in a given image. Then based on 
techniques of curve evolution, Chan-Vese for segmentation and level sets approaches to detect the edges around each selected 
region. Once we classified our images into different intensity regions based on K-means method, to facilitate separating each 
region with its boundary and its area individually in the next steps. Then we detect regions whose boundaries are not 
necessarily defined by gradient using Chan-Vese algorithm for segmentation. In the level set formulation, the problem 
becomes a mean-curvature flow like evolving the active contour, which will stop on the desired boundary of our selected 
region which results from K-means step. The final image segmentation results are one closed boundary per actual region  in 
the image and a segmented map.
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1. Introduction
The shape of an object can be described either in terms 
of its boundary or in terms of the region it occupies. 
The shape representation based on boundary 
information requires image edge detection and edge 
following. On the region – based approach, shape 
representation requires image segmentation in several 
homogeneous regions.

The basic idea in active contour models or snakes is 
to evolve a curve, subject to constraints from a given 
image, in order to detect objects in that image. For 
instance, starting with a curve around the object to be 
detected, the curve moves toward its interior normal 
and has to stop on the boundary of the object.

In the classical snakes and active contour models 
(see [2, 3, 4, 6]), an edge-detector is used, depending 
on the gradient of the image u0, to stop the evolving 
curve on the boundary of the desired object. A general 
edge-detector can be defined by a positive and 
decreasing function:

g: [0, + ∞] → R

Depending on the gradient of the image u0, such that

[g (0) = 1 and g (z) → 0 as z → ∞],  or as:

lim
z ∞→

 g (z) = 0

 For instance: 
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Where Gσ (x, y) * u0 (x, y), a smoother version of u0, is 
the convolution of the image u0 with the Gaussian Gσ
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e +−−= . The function g (|∇ u0|) is 
positive inhomogeneous regions, and zero at the edges.
That is composed of edge points (maxima values of 
|∇u0| give minima values for g (.)) [9]. 

In problems of curve evolution, the level set method 
and in particular the motion by mean curvature of 
Osher and Sethian [8] have been used extensively, 
because it allows for cusps, corners, and automatic 
topological changes. Moreover, the discretization of 
the problem is made on a fixed rectangular grid. The 
curve C is represented implicitly via a Lipschitz 
function φ, by C = {(x, y)| φ (x, y) = 0}, and the 
evolution of the curve is given by the zero-level curve 
at time t of the function φ (t, x, y).  Evolving the curve 
C in normal direction with speed F amounts to solve 
the following differential equation [8]: 

=
∂
∂
t
φ |∇φ | F, φ (0, x, y) = φ0 (x, y) (2)

Where the set {(x, y)| φ0 (x, y) = 0} defines the initial 
contour. A particular case is the motion by mean 
curvature, when F = div (∇φ (x, y) / |∇φ (x, y|) is the 
curvature of the level-curve of φ passing through (x, y).  
The equation becomes:
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1.1. Geometric Active Contour Models
A geometric active contour model based on the mean 
curvature motion is given by the following evolution 
equation [2]:
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Where:
g (|∇u0|): Edge-function with p = 2; (see equation (1)).
v≥ 0: Is constant.
φ0: Initial level set function.

Its zero level curve moves in the normal direction with 
speed g (|∇u0|) (curv (φ)(x, y) + µ) and therefore stops 
on the desired boundary, where g vanishes [1]. Since
all these classical snakes and active contour models 
above rely on the edge-function g, depending on the
image gradient |∇u0|, to stop the curve evolution, these 
models can detect only objects with edges defined by 
gradient.  In practice, the discrete gradients are 
bounded and then the stopping function is never zero 
on the edges, and the curve may pass through the 
boundary, especially for the models in [2, 6]. If the 
image u0 is very noisy, then the isotropic smoothing 
Gaussian has to be strong, which will smooth the edges 
too. In this paper, we used a different active contour 
model based on Chan-Vese and K-means algorithms, 
i.e. a model which is not based on the gradient of the 
image u0 for the stopping process. 

1.2. Our Procedures
• First step: We used K-means algorithm [12] to 

classify our image into different intensity regions. 
The basic idea of K-means clustering method is to 
find a partition (Sj) of the data points that minimizes 
the sum of squared distance to the center of the 
cluster. This can be achieved as follows:

1. Points are assigned at random into K sets Sj. 
2. Each point is assigned to the set whose mean 

center is the closest.  This is repeated until no 
point changes of set Sj.

The initial mean intensity value of each region in 
the image was defined according to the image 
histogram, where the locations of peaks and valleys 
of a histogram indicate the clusters of similar-
spectral pixels in our image. For more details see 
our previous work in [10].

• Second step: Initial curves are drawn (more than one 
curve) in the image and then seed point is put inside 
each curve to be ready initialized by level set in the 
next step.

• Third step: Level set is initialized which can be 
anywhere in the image.

• Fourth step: Chan-Vese approach is used for 
segmentation.

Our segmentation procedures presented here can be 
run on Pentium I (300 MHz). But we used – Pentium 4 
(2.4 GHz) and VC++ programming under Windows
(Xp-2000) to display our results in this paper.

2. Level Curve Example
It is possible graphically to depict a function f (x, y) of 
two variables using a family of curves called level 
curves. Let C be any number. Then the graph of the 
equation f (x, y) = C is a curve in the xy-plane called 
the level curve of a height C. This curve describes all 
points of height C on the graph of the function f (x, y). 
As C varies, we have a family of level curves 
indicating the sets of points on which f (x, y) assumes 
various values C. in Figure 1-(a, b), we drawn the 
graph and various level curves for the function f (x, y)
= x2 + y2 [5]. 

Level curves often have increasing physical 
interpretations. For example, let (x, y) specifies the 
coordinates of a point on the earth (x = latitude, y = 
longitude) and f (x, y) the current temperature at 
location (x, y). Then the level curves of the function f 
(x, y) indicate the locations having equal temperatures, 
see Figure 1-c. Such curves are called isotherms. In the 
same way the evolving curve moves toward its interior 
normal and has to stop on the boundary (edges) of the 
selected region.

(a) (b)

(c)

Figure 1. Isotherm and function f (x, y) = x2 + y2  level curves.

in (0, ∞) x R2
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3. Chan-Vese Algorithm
This is closely related to the classical Mumford-Shah 
algorithm [7], but uses a simple level set framework 
for its implementation. We present the original Chan-
Vese segmentation algorithm [7] which is presented in 
details in [12]. Therefore for discussing various aspects
and details of this algorithm, we refer the reader to 
References [7, 12].

3.1. Basic Formulation
The minimization problem is:

),0u;2c,1c,(E
R2c,1c),(BV

min φ
Ωφ +∈∈

Where the energy is defined as:

E (φ, c1, c2; u0) = µ ∫ Ω δ (φ) |∇φ| dx +
λ1 ∫ Ω |u0 – c1|2 H (φ) dx +
λ2 ∫ Ω |u0 – c2|2 (1 - H (φ)) dx

(5)

Intuitively, one can interpret from this energy that 
each segment is defined as the subregions of the 
images over which the average of the given image is 
closest to the image value itself in L2-norm. The first 
term in the energy measures the arc length of the 
segment boundaries. Thus, minimizing this quantity 
provides stability of the algorithm as well as 
preventing fractal like boundaries from appearing. If 
one regularizes the d function and the Heaviside 
function by two suitable smooth functions δε and Hε,
then formally, the Euler-Lagrange equations can be 
written as:
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3.2. Discretization
A common approach to solve the minimization 
problem is to perform gradient descent on the 
regularized Euler-Lagrange equation (6); i. e., solving 
the following time dependent equation to steady state:
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Here, we remind the readers that c1 (φ) and c2 (φ) are 
defined in equations (7) and (8). In Chan-Vese 
algorithm, the authors regularized the Heaviside 
function used in equations (7) and (8) as follows:
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And define the delta function as the derivative of it:
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Equation (9) is then discretized by a semi-implicit 
scheme; i. e., to advance from n

ji ,φ  to 1
,
+n
jiφ , the 

curvature term right hand side of (9) is discretized 
using the value of n

ji ±± ,
φ , except for the diagonal term 

ji ,φ ,which uses the implicitly defined 1
,
+n
jiφ . The 

integrals defining c1 (φ) and c2 (φ) are approximated by 
simple Riemann sum with the regularized Heaviside 
function defined above. φt is discretized by the forward 
Euler method: n
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n
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, φφ ∆t. Therefore, the final 
update formula can be conceptually written as:
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Where 0≥kα  comes from the discretization of the 
curvature term. If the scheme is fully explicit, kα = 0 

and G would depend on n
ji ,φ . In the paper, the author 

used ∆x = ∆y = 1, ε = 1, and ∆t = 0.1. This implies that 
the delta function is really a regular bump function that 
puts more weight on the evolution of the zero level set 
of φ. See some results of this algorithm applied to brain 
segmentation as in [1]. Finally, it is also possible but 
not advisable in this (unusual) case because new zero 
level sets are likely to develop spontaneously. On other 
hand, two distinct approximations and regularizations 
of the functions H and δ0  presented in [13] can be used 
as follows:
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4. Level Sets 
The level sets equation given by Osher and Sethian [8] 
as:

).0,(,0 ==∇+ txgivenFt φφφ (10)

This equation describes the time evolution of the level 
set function (φ) in such a way that the zero level set of 
this evolving function is always identified with the 
propagating see Figure 2-b.

(a)

(b)
Figure 2. Transformation of front motion: (a) Into boundary value 
problem, (b) Into initial value problem.

Also in the level set method [8], C ⊂ Ω is 
represented by the zero level set of a Lipschitz function
φ: Ω→R, such that:
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Where ω ⊂ Ω is open, and C = ∂ω. We illustrate in 
Figure 3 the above assumptions and notations on the 
level set function φ, defining the evolving curve C. 
For more details, we refer the readers to Refs.[8, 7, 
11].
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Figure 3. Curve C = {(x, y): φ (x, y) =} propagating in normal 
direction.

5. Results
In our work, we used an  approach derived from 
initializing a small curve(s) inside the region(s) of 
interest, see Figure 4-b, and allowing it to grow 
outwards until it reaches the desired boundary as in 
Figure 4-d. In this step we can initialize more than one 
closed curve according to the different intensity 
regions in our image based on K-means model [12], 
and then we set seed points inside every closed curve 
represent an intensity value of that region. 

After that we start initialized level set curve to 
propagate the initial seed point outwards, followed by 
Chan-Vese method to represent the curve in order to 
fine tune the result. Finally, we obtain a segmented 
image with closed boundary per one actual region as in 
Figure 4-c.  We can use one closed curve, but in this 
case the evolving time and the number of iteration of 
our algorithm are large. On other hand these 
procedures can be used with gradient and without 
gradient images.

Also during our process, we used initial segmented 
images (different intensity regions) based on K-means 
to superimpose the region boundary and to extract the 
bounded region (segmented map) in our image as in 
Figure 4-d as an example. We can use different kind of 
images to extract different features (roads, rivers, 
agricultural areas …etc) as in remote sensing images.

So, our results accuracy for edge position depend on
the fact that if the results of K-means are accurate then 
the regions boundaries are in correct position as shown 
from the figures above. Also, in this method, if we 
want to choose any region in the image and to define 
its edge, we can do all that.  Then we can calculate 

Initial Curve T

Φ (x, y, t = 2)

Φ (x, y, t = 1)

Φ (x, y, t = 0)

Φ = 0

Φ = 0

Φ = 0
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some region information such as the area of that 
region, region map as in Figure 4-d and contour length 
clearly.

(a) Origin image after K-means &  
smoothing.

(b) Begin curve drawing with seed 
point and initial level set.

(c) Segmented image by C-Vese 
approach to get regions with 
their edges.

(d) Map of segmented regions 
only, of the previous step (c). 

 

Figure 4. Segmented regions with edge detection of abdomen 
medical image.

The results in Figure 4 are given as an example to 
test our work in this paper, where we can segment and 
superimpose accurate edges for other different images 
with good results of image segmentation and edge 
detection. Also it is easy to calculate the region area 
and the boundary length. Our results accuracy for edge 
position and region segmentation has been compared 
with the results in [1, 10].We found our image has 
better region segmentation and edge detection results.

6. Conclusion
Using an active contours based on techniques of curve 
evolution, Chan-Vese algorithm for segmentation and 
level sets is a good and accurate method to detect 
object (region) boundaries, to isolate and extract 
individual components from our digital image. It is 
possible to detect objects whose boundaries are not 
necessarily defined by gradient by, where the stopping 
term does not depend on the gradient of the image, as 
in the classical active contour. 

The initial curve of level set can be anywhere in the 
image. This help us obtain the final image 
segmentation is one closed boundary per actual region 
in the image where the segmentation problem involves 
finding the closed curve C that lies along the boundary 
of the object of interest in the image. Then it is easy to 
calculate the region area and the boundary length, for 
example. The level set approach allows the evolving 

front which can extract the boundaries of particularly 
intricate contours. 

References 
[1] Can T. and Vese L., “Active Contours with out 

Edges,” IEEE Transactions on Image 
Processing , vol. 10, no. 2, pp. 266-277, 2001.

[2] Caselles V., Catté F., Coll T., and Dibos F., “A 
Geometric Model for Active Contours in Image 
Processing,” Numerische Mathematik, vol. 66, 
pp. 1-31, 1993.

[3] Caselles V., Kimmel R., and Sapiro G., “On 
Geodesic Active Contours,” International 
Journal of Computer Vision, vol. 22, no. 1, pp. 
61-79, 1997.

[4] Kass M., Witkin A., and Terzopoulos D., 
“Snakes: Active Contourmodels,” International
Journal of Computer Vision, vol. 1, no. 4, pp. 
321-331, 1988.

[5] Larry J. G., David C. L., and David I. S., 
Calculus and its Applications, 4th Edition,
Printice-Hall Inc., USA, pp. 343-345, 1987.

[6] Malladi R., Sethian J. A., and Vemuri B. C., “A 
Topology Independent Shape Modeling 
Scheme,” in Proceedings of SPIE Conference 
Geometric Methods Computer Vision II, vol. 
2031, San Diego, CA, pp. 246-258, 1993.

[7] Mumford D. and Shah J., “Optimal 
Approximations by Piecewise Smooth Functions 
and Associated Variational Problems,” 
Communications on Pure and Applied 
Mathematics, vol. 42, no. 5, 1989.

[8] Osher S. and Sethian J. A., “Fronts Propagating 
with Curvature-Dependent Speed: Algorithms 
Based on Hamilton–Jacobi Formulation,”
Journal of Computational Physics, vol. 79, pp. 
12-49, 1988.

[9] Paragios N. K., “Geodesic Active Regions and 
Level Set Methods: Contributions and 
Applications in Artificial Vision,” PhD Thesis, 
University of Nice Sophia Antipolis, France,
January 2000.

[10] Salman N. and Liu C. Q., “Image Segmentation 
and Edge Detection Based on Watershed 
Technique,” International Journal of Computer 
and Applications,” Canada, vol. 25, no. 4, 2003.

[11] Sethian J. A., Level Set Methods and Fast 
Marching Methods Evolving Interfaces in   
Computational Geometry, Fluid Mechanics, 
Computer Vision, and Materials Science, 
Cambridge University press, 1999.

[12] Tou J. T., Gonzalez R C., Pattern Recognition 
Principles, USA, Reading MA, Addison –
Wesley, 1974.

[13] Tsai R and Osher S., Level Set Methods and their 
Applications in Image Science, http://www.
math.princeton.du/~ytsai, 2004.



74 The International Arab Journal of Information Technology,   Vol. 3,   No. 1,   January 2006

[14] Zhao H. K., Chan T., Merriman B., and Osher S., 
“A Varitional Level Set Approach to Multiphase 
Motion,” Journal of Computational Physics, vol.
127, pp. 179-195, 1996.

Nassir Salman received his BSc,
MSc degrees from Mustansyriah 
University, Iraq, in 1983 and 1989 
respectively, and his PhD degree in 
pattern recognition and intelligence 
systems image processing 
engineering from Shanghai Jiao 

Tong University, China. Currently, he is a member of
Faculty of Science and Information Technology,
Computer Science Department, Zarqa Private 
University, Jordan. His research interests include 
remote sensing, image processing and image analysis 
based on image segmentation and edge detection 
techniques. 


