
82 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

Partial Automation of Sensitivity Analysis
by Mutant Schemata Approach

Zuhoor Al-Khanjari
Department of Computer Science, Sultan Qaboos University, Oman

Abstract: According to Voas et al. testability is defined as the ease with in which faults may manifest themselves as failures
when the software undergoes the testing process [39]. They also went further by introducing an approach for measuring
sensitivity in terms of estimates from Propagation, Infection, and Execution (PIE) analyses of software and calculating the
testability of a program through sensitivity estimate. Their testability calculations ‘by hand’ to determine the stability of the
PIE analysis technique had drawbacks such as more time-consuming, high cost and less precision in the overall results [4].
Particularly the infection analysis part is one of the most expensive, sophisticated and time-consuming component of the PIE
analysis technique. In order to solve this problem an investigation has been carried out by the author for establishing the
feasibility of automating (or partially automating) the PIE analysis technique by means of a fast, and computationally less
expensive Mutant Schemata Generation (MSG) approach [2]. An MSG-Infection tool has been developed to automate PIE
analyses partially. This paper explains the use of MSG-Infection tool in automating the sensitivity analysis of C-programs and
presents the results demonstrating the performance improvements achieved due to the MSG-Approach.

Keywords: Testability analysis, PIE technique, mutation testing, mutant schemata approach, Mothra mutation system,
PiSCES, MSG-Infection tool.

Received June 20, 2004; accepted February 2, 2005

1. Introduction
Due to rapidly growing sophistication in software
products the reliability aspect of coded programs
becomes an important issue. One aspect of reliability is
the level of testability embedded in a program.
Testability is defined as the ease with which faults, if
present, may be exposed by test data as introduced by
Voas et al. [39]. It has been proposed that reliability can
be combined with testability analysis to give a better
measurement for software quality [28]. Programs with
high testability reveal their faults easily; those with low
testability may contain faults that are very difficult to
expose. The significance of the concept is twofold.
First, if it is possible to measure or estimate testability,
it can guide the tester in deciding where to focus testing
effort. Secondly, knowledge about what makes some
programs more testable than others can guide the
designer to build their software with built-in ‘design-
for-test’ feature.

In defining testability Voas et al. went further by
introducing an approach for measuring sensitivity in
terms of estimates from Propagation, Infection, and
Execution (PIE) analyses of software. Through
sensitivity estimate, the testability of a program can be
calculated. Using the Voas’s approach, the testability of
a program can be defined as the minimum sensitivity
among all sensitivities of all locations of that program.

The sensitivity is defined as the prediction of the
minimum probability that a fault will cause a failure in

the software at a particular location under a specified
input distribution. For instance, if a location has a
sensitivity of 1.0 under a particular input distribution
D, then it is predicted that every input in D that
executes location L will result in a software failure if L
were to contain a fault. In the other extreme case, if a
location has shown a sensitivity of 0.0, then it is
predicted that no matter what fault is present in L, no
input in D that executes L will cause a failure.
Sensitivity gives a rough estimate of how frequently a
fault will be revealed if one exists. This means that
sensitivity is simply the probability of failure. There is
a continuum of sensitivity in the region <0, 1>. The
greater the likelihood that a fault in location L will be
revealed during testing implies the greater the
sensitivity that is assigned to L. In other words, a
location with low sensitivity is termed insensitive, and
a location with a high sensitivity is termed sensitive.
Sensitivity analysis is the process of determining the
sensitivity of a location in a program. It quantifies
behavioral information about the likelihood that faults
are hiding. Also, it can add another dimension to
software quality assurance.

The sensitivity measurement at a location requires
the estimation of probabilities of execution occurring,
infection occurring and propagation occurring. This
involves a repeated execution of the original program
and corresponding mutants and observing the
corresponding results. These three probability
calculations are handled by the corresponding types of

Partial Automation of Sensitivity Analysis by Mutant Schemata Approach 83

analysis namely Execution (or E) analysis, Infection
(or I) analysis and Propagation (or P) analysis. These
three types of analysis form the basis for the PIE-
sensitivity analysis or simply sensitivity analysis
model.

The main aim of this research is to investigate the
testability concept and its measurement using MSG-
Infection tool. To accomplish this aim this
experimental study has been divided into two major
parts. In the first part, a number of ‘manual’
calculations of testability have been carried out to
determine the stability of the PIE analysis technique. In
the second part, a testability procedure to automate (or
semi-automate) the PIE analysis technique has been
developed. Since mutation analysis is found to be
having limited scope, it became necessary to develop a
tool based on the mutant schemata approach. It has
been argued that the Mutant Schemata approach build
mutants of any program faster than other existing
systems for mutation analysis such as ‘Mothra’ [23,
24]. Another important aspect of this approach is its
ability to encode all mutants of the source code into
one program called a metamutant (MM) program.
Accordingly the author took an initiative to develop the
MSG-Infection tool by modifying the existing MSG
tool [8]. The tool uses MSG approach to generate the
required classes of mutants. The MSG-Infection tool
can be used to perform execution and infection
analyses on C programs automatically. The application
of this modified MSG tool in sensitivity analysis is a
novel approach. In this approach the infection analysis
of the PIE technique can be simplified and its
performance can be improved significantly. This paper
is presenting the work involved with the development
of the modified MSG tool called MSG-Infection tool
and the findings about performance improvement of
PIE analysis due to the use of this tool.

The structure of the remaining part of this paper is
as follows. Section 2 explains PIE analysis model used
to estimate the testability procedure of a program.
Section 3 explains sensitivity estimation model used
for the testability experiments using the MSG-Infection
tool. Section 4 explores the scope and limitations of
some mutation based testing tools in perspective of
automating the PIE analysis. Section 5 explains the
concept of MSG-Infection approach and general
structure of the MSG-Infection tool. Section 6 explains
the design and implementation aspect of the MSG-
Infection tool. Section 7 presents the results of the
evaluation of the new tool. The last section discusses
pros and cons of the MSG-Infection approach and
some future directions required to improve the
automation aspect of the PIE analysis.

2. Sensitivity Analysis PIE Model
This section summarizes the PIE model for measuring
the sensitivity of the locations and the testability of the

program. PIE is a white-box analysis technique based
on the syntax and semantics of the code under test [26].
It makes predictions concerning future program
behavior by estimating the effect that input distribution
has, syntactic mutants and changed data values in data
states have on current program behavior [28].

The PIE assessment model implements the
definition of testability promoted by Voas and
colleagues [29, 30, 39] by performing three
independent dynamic analyses: Execution, infection,
and propagation, which produce a set of estimates for
each location of the given program. The three
probability estimates can then be integrated to derive
the sensitivity of each location and the overall
testability of the program. The sequence of the three
analyses is sometimes called the ‘fault/failure model’,
because it relates faults, data state errors and failures
[32]. The method is dynamic in the sense that it needs
to execute the code in estimating the testability of a
program. A location in PIE analysis can be an
assignment statement, an input statement, an output
statement, or the <condition> part of an if- (or a while-)
statement. This definition for a location is based on
Korel’s definition [15] for a single instruction.

Before conducting the PIE analysis technique,
several properties of the state of the program and
knowledge of its environment must be assumed: the
program is close to being correct semantically and
syntactically, test cases should be available from an
infinite sampling distribution. Hamlet and Voas have
pointed out that the “PIE model is very simplistic,
because it assumes that faults occur at single locations”
[10]. Voas suggested that before conducting the PIE
technique one should know if a program is likely to
propagate data state errors if any have been created
[27]. The three independent processes of PIE are
discussed below.

Execution analysis is the process for predicting the
probability that a location is executed when inputs are
selected according to a particular input distribution D.
It is concerned with the possibility that a particular
location will have an opportunity to affect the output.
The execution estimate of a particular location L,
denoted by εL, can be determined by dividing the
number of inputs (selected according to D) that execute
location L, by the total number of test cases (expected
to be large).

Infection analysis is the process for evaluating the
probability that the succeeding data state of location L
is different from the succeeding data state that a
specific mutant creates, given that the original location
and the mutant execute on a data state that would
normally precede L. A data state is a collection of all
variables and their associated values at some point
during program execution. It may contain Boolean
variables that represent the condition part of an if- or
while-statement. Infection analysis involves three
stages: recording the data state immediately before a

84 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

location in the code, mutating the location, executing
the original location and the corresponding mutant on
the data state and observing whether the resulting data
states are different [37]. In other words, if a fault exists
in a location and it is executed, then the fault may
produce an incorrect data state for that input. The
incorrect data state is referred to as containing a data
state error. Infection analysis is similar to fault-based
testing in that both involve changing the location
syntactically. Fault-based testing aims at demonstrating
that certain faults are not in a program [16, 17, 18, 19,
20, 22, 40]. Also infection analysis is similar to weak
mutation testing [11, 12] in that data states are
compared immediately after executing a location in its
original and mutant forms. When the data states differ,
a variable count should be incremented. The procedure
should be repeated depending on the total number of
inputs n (selected according to D). The count should be
divided by n to give λL,m, the infection estimate of the
specified mutant m at location L.

Propagation analysis is the process concerned with
the evaluation of the probability that a forced change in
an internal computational state causes a change in the
program’s output. Computing the propagation estimate
of a selected variable v at location L involves several
steps [37]. At first selecting an input randomly from
the input distribution of the program and saving the
data state immediately after location L are done. In the
second step, a new data state is generated through
changing the value of a live variable v selected from
the data state. In the third step, the rest of the program
should be executed using both the original data state
and the new data state including the changed value of
variable v. In the fourth step, the count variable is
incremented, when the resulting outputs differ. This
procedure is repeated for the total number of inputs n
(selected according to D). The count value should be
divided by n to give, ΨL,v, the propagation estimate of
the live variable v at location L.

3. PIE Results and Sensitivity Estimation
As mentioned previously, the sensitivity analysis can
be thought of as determining the probability of failure
at each program location. Based on the ‘fault/failure
model’ of Byers and Kamkar [5], this failure
probability, Pf is expressed as the product of the three
separate probabilities, but necessary, conditions: fault
execution, data state infection and infected state
propagation, i. e.,

P f = P exe x P exe|inf x P inf|prop (1)

From this formula, one can see that the sensitivity
analysis involves performing execution analysis,
infection analysis and propagation analysis. Using the
estimates collected from the Execution, Infection and
Propagation analyses, sensitivity of all individual

locations of the given program can be calculated. Since
the lower bound on the associated confidence interval
of each estimate is considered, it is assured that if bias
occurs when determining a sensitivity value, the bias
causes underestimation of the sensitivity rather than
overestimation.

Voas and colleagues [28, 33, 39] have introduced a
more sophisticated way of calculating sensitivity (βL)
of a location. They introduced the following equations:

1. Multiplication of the three estimates for execution,
infection and propagation:

L
β = () () () 



 Ψ



 ∗∗

min
min

min
min

min vL,mL,L λε

Where
εL: Execution estimate of location L.
λL,m: Infection estimate of location L, mutant m.
ΨL,v: Propagation estimate of location L, variable v.
(•)min: Lower bound of the confidence interval for an

estimate.
min[(λL,m)min]: Smallest estimate for the set of mutants

(m) considered at L.
 min[(ΨL,v)min]: Smallest estimate for the set of live

variables considered at L.
2. The formula (2) can be modified to take account of

the possible but unlikely occurrence that the
proportion of data state errors that do not propagate,
when created by the mutant that produces the
minimum infection estimate, is exactly the
proportion of data state errors that do not propagate
when the minimum propagation estimate is
produced. The sensitivity of location L, denoted βL,
is now given by the formula:

() () ()β σ λεL L L,m L,v= ∗ 





















min

min
min

,min
min

Ψ

where

σ(,)
() ()

a b
a b a b

=
− − − − >








1 1 0
0

if
otherwise

After calculating sensitivities of the locations, it is
possible to recognize insensitive locations. With these
locations alternative techniques should be applied such
as testing under a new distribution, proofs of
correctness, code review, symbolic testing or
exhaustive testing [28, 33, 39].

As mentioned before, sensitivity is calculated for all
specified locations of a tested program. From the
collected set of sensitivity estimates, testability can be
measured by taking the minimum non-zero sensitivity
over all the locations. This can be represented by the
following equation:

testability = min(βL) (5)

Where:

(2)

(3)

(4)

Partial Automation of Sensitivity Analysis by Mutant Schemata Approach 85

1 ≤ L ≤ Total number of locations
βL: Sensitivity of location L.

Sensitivity is clearly related to testability, but the
terms are not equivalent. Sensitivity focuses on a
single location in a program and a fault at that location
can have effects on the program’s inputs/output
behavior. Testability encompasses the whole program
and the collection of sensitivities under a given input
distribution. Testability depends on faults, code and
test data distribution. It can be determined by applying
the minimum function on the sensitivities of all
locations of the given program.

4. Automating the Estimation of Testability
As shown before, estimating the testability of a
program requires conducting the sensitivity analysis
with these tasks:

1. Locations should be executed to calculate the
execution estimate.

2. Mutants of the tested program should be created to
calculate the infection estimate.

3. Live variables of the specified locations should be
perturbed to calculate the propagation estimate.

4. Sensitivity of each location of the program in hand
should be calculated. The second task can be
achieved by using either the Mothra Mutation
System [7, 14] or the MSG approach [23, 24], while
the last task can be achieved by conducting the PIE
technique. However, both the first and the third
tasks need some extra work to be done.

Meanwhile, testability estimation cannot automatically
be performed using only one approach such as MSG
approach. It needs a combination of techniques to be
used. Thus to automate testability, one should be able
to automate/semi-automate all techniques to get the
best results. Some attempts have been made to
automate/semi-automate the calculations of the PIE
technique. An overview of some approaches and tools
used with these approaches is given below.

4.1. Mothra Mutation System
Mothra is a flexible, complete and interactive testing
environment, established on mutation testing of
software systems. It provides a powerful user interface
that facilitates software testing by performing mutation
analysis on a given program. It can be viewed as a
collection of ‘plug-compatible’ tools such as Godzilla
[6] and Equivalencer [21]. Godzilla is a test data
generator tool, while Equivalencer is equivalent mutant
detector. Each major function of Mothra is
implemented as a separate program that executes
independently of other tools. The core of this
collection of tools is a language system that contains a
set of objects and programs that enable Mothra to
translate, execute and modify the given programs.

Mothra was developed in 1986 by a team of
researchers in the Software Engineering Research
Center of Georgia Institute of Technology. A
comprehensive and detailed manual for the
functionality of the Mothra system is given in [3].

4.2. PiSCES Software Testability Analysis
Toolkit

As stated previously, automating the measurement of
testability involves automating the three individual
processes of sensitivity analysis: Execution, Infection
and Propagation analyses. A commercial tool called
the PiSCES Software Testability Analysis ToolkitTM of
the Reliable Software Technologies Corporation of
Sterling, Virginia [9] implements the PIE algorithms. It
evolved from various proof-of-concept prototypes [34].
It is the only commercial software for testability
determination. It generates testability estimates by
developing an instrumented copy of the original
program. PiSCES is written in C++ for performing
analysis on C programs.

PiSCES ToolkitTM is a combination of several
individual tools or packages. One of the tools is the
SafetyNet tool that incorporates extended propagation
analysis to get an estimate for the fault tolerance of a
program or indeed, for individual modules, functions,
or even lines [9, 34].

4.2.1. Limitations and Evaluations of the PiSCES
System

PiSCES is one of the automated tools for performing
sensitivity analysis on C programs. It produces
testability predictions based on the PIE analysis
technique. It creates an instrumented copy of the
program in question, which is then compiled and
executed. Voas et al. [38] approximated the size of the
instrumented version in comparison with the original
program to be “10 times as large as the original source
code” [38]. To execute the instrumented copy of the
program, an input file is needed, which can be either
supplied together with the original source code or
generated using the PiSCES tool.

As a limitation of PiSCES, it can run “around 3000-
4000 lines of source code at a time” [36]. Since the
amount of the memory that PiSCES requires increases
with the size of the source code, larger systems or
applications must be divided into modules. In such
situation each module should be tested individually.
Once all modules have received dynamic testability
analysis, the results for the whole application can be
deduced [13, 31, 35, 36].

The PiSCES system uses normal mutation testing
that involves creating copies of the original version of
the code with the required changes. In other words,
PiSCES does not use the Mutant Schemata approach to
create the required mutants [25]. PiSCES divides

86 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

complex expressions into simpler expressions. Figure 1
shows an example derived from Voas [25].

Figure 1. Representing a complex expression by simple
expressions.

The above expression can be mutated using MSG-
Infection tool as one expression. The details are found
in the following section.

5. MSG-Infection Tool
Each tool explained in the previous section is able to
perform their subtasks by manually running the
programs that constitute the tool. This warrants a tool
that can perform the tasks of PIE analysis with
complete automation. The MSG approach has been
proposed to automate PIE analysis. MSG-Infection
tool has been developed for automating the PIE
analysis partially. The MSG-Infection system retains
the spirit of the MSG approach by encoding a number
of mutants of each location in one single modified
version of the original program. This tool has been
given this name because its main focus was to use the
MSG approach for calculating the infection analysis.
An overview of the MSG approach is explained below.

5.1. MSG Approach
The MSG technique is used to represent program
neighborhood. The program neighborhood is a
collection of the original program plus the mutant
programs called metaprogram. The purpose of MSG
approach is to improve the performance of mutation
analysis systems by generating a metaprogram [23,
24]. A mutant schema has two components, a MM and
a metaprocedure set, both of which are represented by
syntactically valid constructs. All mutations produced
from conducting standard mutagens (also called
variously as mutation operators, mutation
transformations and mutation rules) can be represented
by metamutations.

Metaprocedures are syntactically valid
representations of the abstract entities found in mutant
schemata. They can be categorized as either
metaoperators or metaoperands. Metaoperator
procedures perform one of a class of alternate
mathematical operations. Each metaoperator is
implemented using a case structure. Metaoperand

procedures reference one of a set of program variables.
Metaoperand procedures are unique to each program
and must be generated a fresh for each program.

The MSG method has the ability to encode all
mutants into one source-level program. This program
is then compiled (once) with the same compiler used
during development and is executed in the same
operational environment at compiled-program speed. If
Mutant Schemata can be combined with the PIE
technique, then the sensitivities and testability of a
given program can be estimated automatically.

5.2. MSG-Infection Tool
The MSG-Infection tool has been designed and
developed as a prototype using C-language. The tool
is designed to be flexible and maintainable. As the
system is expected to be quite large, it is broken down
into smaller modules to manage the complexity of the
code. The modules are designed with the principles of
low coupling and high cohesion.

The MSG tool parses a given C-program to generate
automatically the corresponding MM program. While
performing sensitive analysis the tool inputs several
arguments from the user: the original program that is to
be tested, input variables of the program, test cases,
total number of test cases and termination identifier
that identifies the end of the test cases. At the end of
the analysis, the tool outputs execution and infection
estimates of all selected locations of the tested
program, the parse tree and the MM program. The tool
will also provide the user with a file that contains the
locations of the tested program and their corresponding
line numbers in the original program. In addition, it
will provide the user with a sorted list of individual test
cases, locations and all corresponding mutants’ count.

Since mutation testing is a computationally
expensive process, efficiency is an important issue in
the design and implementation of the tool. To
accomplish this criterion, the MSG-Infection tool uses
the Mutant Schemata approach with its efficient MM
concept. Every effort has been taken to ensure that the
tool is designed and implemented with good software
engineering principles. It has been designed in a
modular fashion so that it can be expanded or adapted
easily for future development or maintenance. A
context diagram, which represents an overview of the
entire MSG-Infection tool, is given in Figure 2.

5.3. Components of the MSG-Infection Tool
The MSG-Infection tool consists of two subsystems:
Execution and Infection (EI) subsystem and Testability
Management (TM) subsystem. The EI subsystem does
the major and the most difficult part of the work. It
takes the original C program as an input, parses it and
creates a meta-mutant program. The TM subsystem
runs the MM program generated by EI subsystem to

Complex expression
 t := 0.9 * (1.0 + sqr (1.0 + y)) * exp (em * glalxm-ga

mmln (em + 1.0) - glg);

 Simple expressions
 aa := sqr (y + 1.0);
 bb := aa + 1.0;
 cc := em + 1.0;
 dd := gammln (cc);
 ee := em * glalxm – dd - glg;
 ff := bb * exp (ee);

Partial Automation of Sensitivity Analysis by Mutant Schemata Approach 87

produce the execution and infection estimates of the
given C program.

Figure 2. Context diagram of MSG-Infection tool.

5.3.1. Role of EI Subsystem
The EI subsystem is a modification of the existing
MSG tool, which develops a parse tree corresponding
to the given C program and modifies it to encode a
variety of mutants at each location. This will be the
largest and the most complicated part of the tool as it
will need to analyze the C program, and produce a
syntactically valid MM program which when executed
can function as any mutant that was applied to the
original program. The parse tree, which constructs the
MM version of the given C program, will further be
altered by EI subsystem so that each location L in the
program now becomes as:

store pre-L;
execute L;
store post-L;

for each mutant Lm of L
loop

restore pre-L;
execute Lm;
compare post-Lm with post-L;

end loop;
restore post-L;

In the above, ‘pre-L’ and ‘post-L’ correspond to the
data state immediately before and after location L. The
result of each comparison of the post-Lm state with the
post-L state is saved and used to determine the
infection estimate of location L. The storing of the data
state prior to a location is achieved by instrumenting
with assignments to a special array storage that
remains undisturbed during execution of the location
or any of its mutants. The restore operation after the
location can then use this array to recover the values
that the variables had before the location.

As the EI subsystem applies mutants to the original
C program, it will give the mutants identification labels

and will put total number of each mutant in the
specified loops in the MM program. The tool will
determine where the mutations can be applied in the
programs by studying the syntax, context, scope and
semantics (meaning) of elements in the program.
Elements can be looping and conditional constructs,
expressions and constants. Simple search and replace
or tokenizing methods do not provide the
sophistication necessary for this level of program
analysis, only compilation process of program parsing
could do this. The tool by traversing the program’s
syntax tree, determines where mutations can be applied
and rewrite it to implement the syntactically valid MM.

5.3.2. Role of TM Subsystem
The Testability Management subsystem manages the
process of running the test cases against the original
locations of the program and the corresponding
mutants. It generates two files, one of which contains
all required execution and infection estimates of the
locations of the given program. The other file contains
information about the test cases, location number and
the state of the corresponding mutants whether they are
killed or still alive. The TM subsystem compiles the
generated MM program with the provided test cases,
the available functions and macros to generate both
execution and infection estimates. This subsystem will
perform all tasks needed for conducting part of the
sensitivity analysis: execution and infection analyses.

As mentioned before the subsystem keeps track of
all mutants’ count and saves them into a file with the
corresponding test cases and location number. The file
will be sorted according to location number and test
case number before the saved information can be used
to perform the tasks of sensitivity analysis of the
corresponding mutants.

Several important macros have been encoded in the
TM subsystem to facilitate the compilation and the
execution processes. Further macros can easily be
added to the subsystem.

6. Development of the MSG-Infection Tool
The EI and TM subsystems are completely
independent of each other. The only interfacing
requirement between them is that the input to TM is a
MM program that is the output of the EI subsystem.
The coupling between them is very low. Either
subsystem can be modified without affecting the other
as long as the interface between them is maintained
consistent. The schematic view of the MSG-Infection
tool particularly displaying the roles of EI and TM is
shown in Figure 3.

Locations
InformationDecorated

Execution
& Infection
Syntax Tree

Parser and
Compiler
Messages

Execution
and Infection
Estimates

Original C Program
C Metamutant

Program

Test Cases

Mutants List
Locations ListParse Tree Information

Test Cases
MSG-Infection

Tool

C Metamutant Program
C Program

Execution and Infection Estimates

Mutants
Information

Sorted
Mutants

Information

USER Parser and
Compiler
Selections

88 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

Figure 3. Schematic view of MSG-infection tool.

6.1. Implementation of EI Subsystem
The Execution and Infection subsystem will need to
perform the three phases (lexical analysis, syntax
analysis and semantic analysis) in order to generate the
C MM program. At the beginning of the project, a
skeleton C parser program was available. The skeleton
parser reads a text file, parses it and outputs whether it
is a valid C program. It uses the UNIX tools lex and
yacc. On the other hand the MSG tool, from which
some modules for constructing the parse tree with
metafunctions have been taken, was available. These
modules have been slightly changed to meet the needs
of the MSG-Infection tool.

6.1.1. Mutating the Syntax Tree
After completing the construction of the syntax tree for
the given program, the EI subsystem sets about
generating the MM of the program by transforming
and modifying the syntax tree. This involves the
construction of the mutants. The subsystem encoded
four mutant classes: Arithmetic operator replacement,
constant replacement, statement deletion and variable
replacement. These mutant classes have been used
according to the recommended standard mutation types
of the C language and naming conventions in [1].

Special care needs to be taken here, as many
mutants can be applied to the single program construct
such as an expression. In such cases, it is vital that the
mutants are applied in a structured way so that they do
not interfere with each other. Any such interference
would cause the generated MM to be wrong and would
probably produce a non-compiling version of MM. To
prevent mutations interfering with each other, EI
implements each mutant in such a way that the added
mutant code encases the original statement in a neat
way so that the whole structure becomes a single
statement, allowing further mutants to be applied.
Figure 4 demonstrates how the mutants are constructed
for a single statement or expression.

Figure 4. Multiple (or nested) mutants.

It is equally important that no mutations are applied
to any code that has been generated by a previous
mutant: Such an event would firstly produce mutants
that should not exist, and secondly would most
probably cause an infinite loop, as the code being
mutated would produce yet more code that would be
mutated, which would in turn produce yet more code,
and so on.

EI prevents this problem by applying the mutations
to the node in an in-order traversal. As each node is
encountered, its production name, production identity,
context and scope are analyzed to determine whether a
mutation is to be applied. EI restricts itself to only
being able to modify the immediate child nodes of the
current node being examined. No other nodes in the
subsystem may be changed. This contains the
modifications to a local area in the syntax tree so that
the code added by the mutation can be controlled and
protected from mutation.

As the nodes are traversed and mutated in an in-fix
pattern it will always be the case that, for each node
that is visited, all of the ancestors of the node will
already have been analyzed and probably modified by
mutations. It will also be true that none of the
descendants of the node will have been visited yet.
This means that EI is free to examine the descendants
of the current node, with the knowledge that all of
them are in their original state. EI may therefore look
at the descendants of the current node to determine its
context. The ancestors of the node may not be looked
at as they have been already mutated, and will
therefore contain code that is not true to the original
program.

The scope of a node is determined with the help of
its ancestors, but this is now a problem as the order in
which the mutants are applied has caused the ancestors
of the current node to be mutated, altering their
contents significantly. EI solves this problem by
maintaining a stack throughout the MM generation
process. When each node of the tree is first
encountered, its production type is pushed on to the
stack before any mutations are applied to it. The

C
MMP

TestabilityMakefile

C MM Program

Make

Cmsg<program.cMake

Makefile

Execution
and

infection estimate
TMS

Testability
(executable

file)

Test
Cases

EIS CMSG

P

(c)After applying mutant 2.

(a) Original statement. (b) After applying mutant 1.

PP

Partial Automation of Sensitivity Analysis by Mutant Schemata Approach 89

element is popped off the stack when all of the
descendants of that particular node have been
traversed. The stack therefore keeps a record of the
productions that are in scope, and their order of scope.
EI searches through this stack structure to ascertain the
exact scope of the node.

6.2. Implementation of TM Subsystem
The Testability Management (TM) subsystem manages
the process of running the test cases against the
original locations of the program and the
corresponding mutants. It generates two files as
mentioned before one of which contains all the
required infection and execution estimates for each
location of the given program. The other file contains
mutants list information that has been discussed
previously. This subsystem performs tasks that are
easier than the tasks performed by the EI subsystem. It
contains all macros, mutation functions and execution
and infection algorithms along with other functions
used for checking and comparison purposes of the data
used by the MM program. This means that the TM
subsystem includes the built-in libraries that controls
and facilitates the execution of the MM program.

6.3. Limitations and Evaluations of the MSG-
Infection System

The MSG-Infection system uses an existing system
called MSG [8]. The purpose of developing this tool
was originally to improve the performance of infection
analysis. However, the tool is found to have some
limitations. The program under test should have at least
one location, one input variable and any conditional
statement that should use braces ‘{‘and‘}’. Secondly
the program should not have ‘include’ statement and
any variable initialization. Thirdly, the tool has no
scope to handle arrays, pointers, matrix and also other
data types such as character and Boolean type in the test
programs. Finally the tool requires the user to specify a
set of input and output variables. Reading of the input
variables will be performed by a proper sequence of
read statements of the generated metaprograms.

7. Evaluation Results of MSG-Infection
Tool

Table 1 gives the list of programs that were selected
for testing the capability of the MSG-Infection tool.
The table also describes the test features of each
program.

Table 2 provides some information about the tested
programs and their corresponding MM program. It
shows program name, number of locations, total
number of test cases used and total number of lines of
both the original C program and the corresponding
MM program. Also it shows the size of the compiled

versions of both the original C program and the
corresponding MM program.

Table 1. Test programs and their testing features .

ID Program
Name Description (Features Included)

P1 Quadratic.c

- one declaration statement of integer.
- one or more operator.
- more than one location.
- more than one input variable.

P2 Absolute.c

- one declaration statement of type float.
- one location.
- one operator.
- only one input variable.

P3 Sum.c

- two declaration statements of integer type.
- more than two locations.
- only one operator.
- only one input variable of type integer.

P4 Product.c

- two or more declaration statements of the same type
float.

- two declaration statements of different types (i.e.,
integer and float).

- more than two locations.
- one operator.
- one input variable of type integer.

P5 Average.c

- two declaration statements of different type (i. e.,
integer and float).

- more than two locations.
- only one operator.
- only one input variable of type integer.

P6 Macros.c

- two locations.
- one operator.
- two or more input variables of the same type integer.
- built-in functions which are called macros.

P7 Example.c - two or more input variables of the same or different
type (i. e., integer and float).

P8 Cast.c

- casting some variables.
- casting a variable is to force that variable to be of
certain type as required.

- built-in functions which are called macros.
P9 Try.c - two or more assignment statements.
P10 Loc_10.c - two or more assignment statements.
P11 Loc_50.c - 50 assignment statements.
P11 Loc_100.c - 100 assignment statements.
P11 Loc_150.c - 150 assignment statements.

Table 2. Original C and MM programs sizes.

Program L Test
Cases

Ori.
Lines

MM
Lines

Orig.
Size

MM
Size

Absolute.c 1 100 20 589 20531 80400
Example.c 1 1000 22 625 20531 84784
Macros.c 2 1000 33 981 24630 86048
Sum.c 2 100 26 946 20531 85776
Cast.c 3 1000 30 1351 41109 91496
Try.c 3 100 22 1272 24630 90840
Average.c 4 100 47 1654 20532 96480
Product.c 4 100 29 1646 20531 96360
Quadratic.c 4 10000 64 1720 45207 97088
Loc_10.c 10 1000 38 3879 41109 129016
Loc_50.c 50 1000 93 18987 45206 361416
Loc_100.c 100 1000 164 40532 45206 706952
Loc_150.c 150 1000 252 62772 49304 811189

90 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

Actually all programs have been constructed to
check some properties of the tool such as declaration
part, total number of locations, total number of
variables, etc. The last four programs have been used
to check the total number of locations that can be
considered by the MSG-Infection tool. From Table 2 it
can be deduced that ≈ 400 lines are added to the MM
program for each location of the original C program.
Therefore the sizes of the compiled MM files are larger
than the sizes of the compiled original files.

To get a rough idea concerning the amount of time
used for constructing, compiling and executing the
MM programs, the following tables (Table 3 to Table
7) are provided. These tables show three types of time:
real time, user time and system time. Real time can be
defined as the amount of time spent in executing the
command, user time can be defined as the amount of
time spent in executing the user’s process and system
time can be defined as the amount of time spent in the
system on behalf of the user’s process. Since the main
memory is simultaneously shared among several users,
the times provided might be changed slightly every
time the programs are used.

Table 3. Time for executing MM programs.

Command RT UT ST
Absolute.c 0m4.14s 0m0.25s 0m0.12s
Example.c 0m8.57s 0m0.30s 0m0.12s
Macros.c 0m7.83s 0m0.45s 0m0.13s
Sum.c 0m6.82s 0m0.36s 0m0.12s
Cast.c 0m7.67s 0m0.61s 0m0.14s
Try.c 0m8.14s 0m0.18s 0m0.15s

Average.c 0m7.25s 0m0.67s 0m0.14s
Product.c 0m6.38s 0m0.65s 0m0.15s
Quadratic.c 0m9.12s 0m0.81s 0m0.16s
Loc_10.c 0m8.84s 0m1.71s 0m0.21s
Loc_50.c 0m20.12s 0m9.78s 0m0.57s
Loc_100.c 0m38.78s 0m26.79s 0m1.25s
Loc_150.c 1m25.88s 0m49.59s 0m1.94s

Table 4. Compilation time of original C programs.

Command Real Time User Time System
Time

Absolute.c 0m1.06s 0m0.76s 0m0.17s
Example.c 0m1.03s 0m0.75s 0m0.19s
Macros.c 0m2.20s 0m0.72s 0m0.25s
Sum.c 0m1.08s 0m0.75s 0m0.19s
Cast.c 0m1.19s 0m0.84s 0m0.23s
Try.c 0m1.19s 0m0.70s 0m0.25s

Average.c 0m1.27s 0m0.71s 0m0.24s
Product.c 0m1.04s 0m0.74s 0m0.19s
Quadratic.c 0m1.72s 0m0.82s 0m0.30s
Loc_10.c 0m1.22s 0m0.86s 0m0.23s
Loc_50.c 0m1.34s 0m0.92s 0m0.27s
Loc_100.c 0m1.48s 0m1.06s 0m0.23s
Loc_150.c 0m7.38s 0m1.06s 0m0.62s

Table 5. Time for executing MM programs.
Command
(Make)

Real Time User Time System Time

Absolute.c 0m4.76s 0m3.32s 0m0.76s
Example.c 0m5.20s 0m3.36s 0m0.82s
Macros.c 0m5.71s 0m3.57s 0m0.81s
Sum.c 0m4.99s 0m3.51s 0m0.77s
Cast.c 0m5.55s 0m3.83s 0m0.80s
Try.c 0m6.33s 0m3.65s 0m0.94s

Average.c 0m5.39s 0m3.80s 0m0.88s
Product.c 0m6.09s 0m3.89s 0m0.78s
Quadratic.c 0m5.50s 0m4.03s 0m0.79s
Loc_10.c 0m7.20s 0m5.25s 0m1.00s
Loc_50.c 0m18.64s 0m15.00s 0m1.30s
Loc_100.c 0m39.22s 0m30.65s 0m2.17s
Loc_150.c 1m9.48s 0m46.68s 0m3.27s

Table 6. Execution time of original C programs.
Command
(a.out) Real Ti me User Time System Time

Absolute.c 0m0.36s 0m0.04s 0m0.09s
Example.c 0m0.21s 0m0.03s 0m0.08s
Macros.c 0m0.28s 0m0.12s 0m0.06s
Sum.c 0m0.18s 0m0.03s 0m0.07s
Cast.c 0m0.53s 0m0.04s 0m0.08s
Try.c 0m0.89s 0m0.04s 0m0.09s

Average.c 0m0.51s 0m0.07s 0m0.12s
Product.c 0m1.01s 0m0.10s 0m0.14s
Quadratic.c 0m13.64s 0m1.83s 0m1.79s
Loc_10.c 0m0.30s 0m0.09s 0m0.08s
Loc_50.c 0m0.23s 0m0.10s 0m0.07s
Loc_100.c 0m0.50s 0m0.15s 0m0.09s
Loc_150.c 0m2.46s 0m0.41s 0m0.45s

Table 7. Time for executing MM programs.
Command
(Testability)

Real T ime User Time System Time

Absolute.c 0m10.23s 0m0.09s 0m0.10s
Example.c 0m8.04s 0m1.86s 0m0.22s
Macros.c 0m6.28s 0m0.94s 0m0.15s
Sum.c 0m6.52s 0m0.08s 0m0.07s
Cast.c 0m7.71s 0m1.23s 0m0.15s
Try.c 0m6.81s 0m0.16s 0m0.09s

Average.c 0m8.29s 0m0.09s 0m0.08s
Product.c 0m5.32s 0m0.10s 0m0.08s
Quadratic.c 2m10.67s 0m30.84s 0m2.21s
Loc_10.c 0m15.92s 0m8.70s 0m0.22s
Loc_50.c 0m49.31s 0m42.07s 0m0.79s
Loc_100.c 1m4.71s 0m22.90s 0m5.79s
Loc_150.c 2m53.35s 2m28.20s 0m2.69s

Viewing the above tables, it is obvious that the
execution time increases. That is, the execution time of
the MM programs is roughly 60 times the execution
time of the original C programs. Determining the
sensitivity estimate of locations is an expensive and
time-consuming process. Getting the estimates of the
analyses more directly might help in solving the
problem or part of it. This motivates researchers to find
easier and more direct methods to estimate the
testability of programs or at least to get an indication of
the testability estimate of the program without

Partial Automation of Sensitivity Analysis by Mutant Schemata Approach 91

conducting the actual analyses. Table 8 provides
information that could be deduced from the original
programs.

Table 8. Direct infection determination.

Function Infec.
Est. Comment

f (a) = a; high a ∈]-∞, ∞[
f (a) = a - 50; high a ∈]-∞, ∞[
f (a) = a mod 2; high a ∈]-∞, ∞[
f (a) = SQUARE (a); high a ∈]-∞, ∞[
f (a) = sqrt (a); high a ∈]-∞, ∞[
f (a) = SQUARE (a) div 2; high a ∈]-∞, ∞[
f (a) = (a * 2) div 3; high a ∈]-∞, ∞[
f (a) = 2 * a – 3 + a; high a ∈]-∞, ∞[
f (a) = a – 5 * a + a; high a ∈]-∞, ∞[
f (a, b, c) = b * b- 4 * a * c; high a, b, c ∈]-∞, ∞[
f (a) = sqrt (a) * 2 + 3 - a; high a ∈]-∞, ∞[
f (a) = 3 + SQUARE (a) – 2 * a - a; high a ∈]-∞, ∞[
f (a) = 2 * sqrt (ABS (a * 2)) – 2 * a; high a ∈]-∞, ∞[
f (a) = (2 * a + SQUARE (9)) div (2 *
SQUARE (25)); high a ∈]-∞, ∞[

f (a) = sqrt (a) – SQUARE (a); high a ∈]-∞, ∞[
f (a) = not (a); high a = 0 or a = 1
f (a) = sin (a); high a ∈]-∞, ∞[(degrees)
f (a) = cos (a); high a ∈]-∞, ∞[(degrees)
f (a) = sin (a) + cos (a); high a ∈]-∞, ∞[(degrees)
f (a) = SQUARE (sin (a))+ SQUARE
(cos (a)); high a ∈]-∞, ∞[(degrees)

f (a) = tan (a); high a ∈]-∞, ∞[(degrees)
f (a, b, c) = (-b + isqrt (b * b – 4 * a *
c)) div (2 * a); low a, c ∈ [0, 10], b ∈ [1, 1000]

f (a) = a div b; low
a ∈]-∞, ∞[
infection decreases as b
increases

f (a) = a mod b; low
a ∈]-∞, ∞[
infection decreases as b
decreases

This section discusses the generalization of the
estimation of the infection analysis. By viewing the
source code, one can say whether the assignment
statements can produce a high or a low infection
estimate. It has been seen that some operators or macros
might hide faults and produce low infection estimate.
Table 8 provides the infection estimate of some
functions. The table shows the results for the functions
that usually produce high infection estimate, 1.0 or
close to 1.0 and the functions that might produce low
infection estimate, close to 0.0. It helps the software
engineers to detect the infection estimate of the
locations directly from the macros used in those
locations.

The MSG-Infection tool deals with the simple
statements or locations. However, the arrays and other
complex statements including arrays could be
incorporated in the future investigations.

8. Conclusion
The existing tools seem to have some limitations such
as time factor and unreasonable requirement of

memory resources in evaluating the testability of
programs. In order to tackle these limitations this paper
has first reviewed the PIE analysis technique as the
basis for developing an efficient tool with the support
of MSG approach. Then it has presented the
development of the MSG-Infection tool. Also, it
showed the timing results of the MSG-Infection tool in
determining the execution and infection analyses of
various locations of the tested programs. A significant
improvement in its performance over PiSCES is due to
its ability to perform the tests based on weak mutation.

The MSG-Infection tool is not only better tool
performance-wise, but also its requirement on memory
resources is within the reasonable limit. The tool is
interactive and made for carrying out testing on only
C-programs. It is easy to maintain, adapt and expand
scalable to a complete system. However there is some
overhead due to extra code in MMs.

The sensitivity analysis technique used to evaluate
the testability of programs has several advantages
including assessment and quantification of software
reliability. Development of MSG-Infection software
promises for further research leading to ultra-reliable
software.

Acknowledgement
Author thanks Steven Flanagan for permission to use
his MSG system.

References
[1] Agrawal H., DeMillo R. A., Hathaway B., Hsu

W., Krauser E. W., Martin R. J., Mathur A. P.,
and Spafford E., “Design of Mutant Operators for
the C Programming Language,” SERC-TR-41-P
Software Engineering Research Center,
Department of Computer Science, Purdue
University, West Lafayette, Indiana, 1989.

[2] Al-Khanjari Z. and Woodward M. R.,
“Investigating the Relationship Between
Testability and the Dynamic Range-to-Domain
Ratio,” The Australian Journal of Information
Systems (AJIS), vol. 11, no. 1, pp. 55-74,
September 2003.

[3] Al-Khanjari Z., “Mutation Testing Using
Mothra,” Dissertation for Master of Science,
Supervised by Woodward M., The University of
Liverpool, 1995.

[4] Al-Khanjari Z., Woodward M. R., and Ramadhan
H., “Critical Analysis of the PIE Testability
Technique,” Software Quality Journal (SQJ),
Kluwer Academic Publishers, The Netherlands,
vol. 10, no. 4, pp.331-353, December 2002.

[5] Byers D. and Kamkar M., “A Hybrid Approach
to Propagation Analysis,” in Proceedings of the
3rd International Workshop on Automatic

92 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

Debugging (AADEBUG’97), Linkoping, Sweden,
May 1997.

[6] DeMillo R. A. and Offutt A. J., “Constraint-
Based Automatic Test Data Generation,” IEEE
Transactions on Software Engineering, vol. 17,
no. 9, pp. 900-910, 1991.

[7] DeMillo R. A., Guindi D. S., McCracken W. M.,
Offut A. J., and King K. N. “An Extended
Overview of the Mothra Software Testing
Environment,” in Proceedings of the 2nd

Workshop on Software Testing, Verification and
Analysis, IEEE Computer Society, Banff,
Canada, pp. 142-151, 1988.

[8] Flanagan S. J., “Mutation Testing Using Mutant
Schemata,” BSc Dissertation, Computer Science
Department, University of Liverpool, UK, 1997.

[9] Friedman M. A. and Voas J. M., Software
Assessment: Reliability, Safety, Testability,
Wiley, New York, USA, 1995.

[10] Hamlet D. and Voas J., “Faults on its Sleeve:
Amplifying Software Reliability Testing,” in
Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA’93),
Cambridge, Mass, ACM SIGSOFT SE Notes,
USA, vol. 18, no. 3, pp. 89-98, 1993.

[11] Howden, W. E., “Completeness Criteria for
Testing Elementary Program Functions,” in
Proceedings of the 5th International Conference
Software Engineering, pp. 235-243, 1981.

[12] Howden W. E., “Weak Mutation Testing and
Completeness of Program Test Sets,” IEEE
Transactions on Software Engineering, vol. 8,
no. 4, pp. 371-379, 1982.

[13] Khoshgoftaar T., Szabo R., and Voas J.,
“Detecting Program Modules with Low
Testability,” in Proceedings of International
Conference on Software Maintenance
(ICSM’95), Nice, France, 1995.

[14] King K. N. and Offut A. J., “A FORTRAN
Language System for Mutation-Based Software
Testing,” Software Practice and Experience, vol.
21, no. 7, pp. 685-718, 1998.

[15] Korel B., “PELAS-Program Error-Locating
Assistant System,” IEEE Transactions on
Software Engineering, vol. 14, no. 9, pp. 1253-
1260, 1998.

[16] Morell L. J. and Hamlet R. G., “Error
Propagation and Elimination in Computer
Programs,” Technical Report 1065, University of
Maryland, USA, 1981.

[17] Morell L. J., “A Model for Code-Based Testing
Schemes,” in Proceedings of the 5th Annual
Pacific Northwest Software Quality Conference,
1987.

[18] Morell L. J., “A Theory of Error-Based Testing,”
PhD Thesis, Technical Report TR-1395,
University of Maryland, USA, 1984.

[19] Morell L. J., “A Theory of Fault-Based Testing,”
IEEE Transactions on Software Engineering, vol.
16, no. 8, pp. 844-857, 1990.

[20] Morell L. J., “Theoretical Insights into Fault-
Based Testing,” in Proceedings of the 2nd ACM
SIGSOFT, IEEE Workshop on Software Testing,
Analysis and Verification, Banff, Canada, 1988.

[21] Offutt A. J. and Pan J., “Automatically Detecting
Equivalent Mutants and Infeasible Paths,”
Software Testing, Verification and Reliability,
vol. 7, no. 3, pp. 165-192, 1997.

[22] Richardson D. J. and Thompson M. C., “The
RELAY Model of Error Detection and its
Application,” in Proceedings of the 2ndWorkshop
on Software Testing, Verification, and Analysis,
Banff, Canada, pp. 223-230, 1998.

[23] Untch R. H., “Schema-Based Mutation Analysis:
A New Test Data Adequacy Assessment
Method,” PhD Thesis, Dep artment of Computer
Scie nce, Clemson University, South Carolina,
USA, 1995.

[24] Untch R. H., Offutt A. J., and Harrold M. J.,
“Mutation Analysis Using Mutant Schemata,” in
Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA’93),
Cambridge, Mass, ACM SIGSOFT SE Notes,
vol. 18, no. 3, 139-148, 1993.

[25] Voas J. M., “A Dynamic Failure Model for
Performing Propagation and Infection Analysis
on Computer Programs,” PhD Thesis, College of
William and Mary, Virginia, US, 1990.

[26] Voas J. M., “Dynamic Testing Complexity
Metric,” Software Quality Journal, vol. 1, no. 2,
pp. 101-114, 1992.

[27] Voas J. M., “Factors that Affect Software
Testability,” in Proceedings of the 9th Pacific
Northwest Software Quality Conference,
Portland, Oregon, USA, pp. 235-247, 1991.

[28] Voas J. M., “PIE: A Dynamic Failure-Based
Technique,” IEEE Transactions on Software
Engineering, vol. 18, no. 8, pp. 717-727, 1992.

[29] Voas J. M., “Software Testability Measurement
for Intelligent Assertion Placement,” Software
Quality Journal, vol. 6, no. 4, pp. 327-335, 1997.

[30] Voas J. M. and McGraw G., Software Fault
Injection: Inoculating Programs Against Errors,
Wiley, New York, USA, 1998.

[31] Voas J. M. and Miller K. W., “Dynamic
Testability Analysis for Assessing Faults
Tolerance,” High Integrity Systems Journal, vol.
1, no. 2, pp. 171-178, 1994.

[32] Voas J. M. and Miller K. W., “Software
Testability: The New Verification,” IEEE
Software, vol. 12, no. 3, pp. 17-28, 1995.

[33] Voas J. M. and Miller K. W., “The Revealing
Power of a Test Case,” Software Testing,
Verification, and Reliability, vol. 2, no. 1, pp. 25-
42, 1992.

Partial Automation of Sensitivity Analysis by Mutant Schemata Approach 93

[34] Voas, J. M., Miller K. W., and Payne J. E., “A
Software Analysis Technique for Quantifying
Reliability in High-Risk Medical Devices,” in
Proceedings of the 6th IEEE Symposium on
Computer-Based Medical Systems, Ann Arbor,
MI, 1993.

[35] Voas J. M., Miller K. W., and Payne J. E., “An
Empirical Comparison of a Dynamic Software
Testability Metric to Static Cyclomatic
Complexity,” in Proceedings of the 18th Annual
SE Workshop, NASA-Goddard SE Laboratory
Series Report 93-003, 1993.

[36] Voas J. M., Miller K. W., and Payne, J. E.,
“Automating Test Case Generation for
Coverages Required by FAA Standard Do-
178B,” in Proceedings of Computers in
Aerospace 9, CA Publisher: AIAA, San Diego,
USA, 1993.

[37] Voas J. M., Miller K. W., and Payne J. E.,
“PiSCES: A Tool for Predicting Software
Testability,” in Proceedings of the Symposium on
Assessment of Quality Software Development
Tools, IEEE Computer Society, New Orleans,
USA, pp. 297-309, 1992.

[38] Voas J. M., Miller K. W., and Payne J. E.,
“Software Testing and its Application to Avionic
Software,” in Proceedings of Computers in
Aerospace 9, CA Publisher: AIAA, San Diego,
USA, 1993.

[39] Voas J. M., Morell L. J., and Miller K. W.,
“Predicting Where Faults Can Hide from
Testing,” IEEE Software, vol. 8, no. 2, pp. 41-48,
1999.

[40] Zeil S. J., “Testing for Perturbations of Program
Statements,” IEEE Transactions on Software
Engineering, vol. 9, no. 3, pp. 335-346, 1993.

Zuhoor Al-Khanjari is the assistant
dean for Postgraduate Studies and
Research, College of Science, Sultan
Qaboos University. She is an
assistant professor in software
engineering, Department of
Computer Science at Sultan Qaboos

University, Sultanate of Oman. She received her BSc
in mathematics and computing from Sultan Qaboos
University, Sultanate of Oman, MSc and PhD in
computer science from the University of Liverpool,
UK. Her research interests include software
engineering, database management, e-learning, human-
computer interaction, intelligent search engines, and
web data mining and development. Currently, she is
the coordinator of the software engineering group in
the Department of Computer Science, Sultan Qaboos
University, Sultanate of Oman. Also she is
coordinating e-learning facilities in the same
department. She is a member in the editorial board of
the International Arab Journal of Information
Technology (IAJIT) and a member in the steering
committee of the International Arab Conference on
Information Technology (ACIT).

.

94 The International Arab Journal of Information Technology, Vol. 3, No. 1, January 2006

