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Abstract: According to Voas et al. testability is defined as the ease with in which faults may manifest themselves as failures 
when the software undergoes the testing process [39]. They also went further by introducing an approach for measuring 
sensitivity in terms of estimates from Propagation, Infection, and Execution (PIE) analyses of software and calculating the 
testability of a program through sensitivity estimate. Their testability calculations ‘by hand’ to determine the stability of the 
PIE analysis technique had drawbacks such as more time-consuming, high cost and less precision in the overall results [4]. 
Particularly the infection analysis part is one of the most expensive, sophisticated and time-consuming component of the PIE 
analysis technique. In order to solve this problem an investigation has been carried out by the author for establishing the 
feasibility of automating (or partially automating) the PIE analysis technique by means of a fast, and computationally less 
expensive Mutant Schemata Generation (MSG) approach [2]. An MSG-Infection tool has been developed to automate PIE 
analyses partially. This paper explains the use of MSG-Infection tool in automating the sensitivity analysis of C-programs and 
presents the results demonstrating the performance improvements achieved due to the MSG-Approach. 
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1. Introduction
Due to rapidly growing sophistication in software 
products the reliability aspect of coded programs 
becomes an important issue. One aspect of reliability is 
the level of testability embedded in a program. 
Testability is defined as the ease with which faults, if 
present, may be exposed by test data as introduced by 
Voas et al. [39]. It has been proposed that reliability can 
be combined with testability analysis to give a better 
measurement for software quality [28]. Programs with 
high testability reveal their faults easily; those with low 
testability may contain faults that are very difficult to 
expose. The significance of the concept is twofold. 
First, if it is possible to measure or estimate testability, 
it can guide the tester in deciding where to focus testing 
effort. Secondly, knowledge about what makes some 
programs more testable than others can guide the 
designer to build their software with built-in ‘design-
for-test’ feature. 

In defining testability Voas et al. went further by 
introducing an approach for measuring sensitivity in 
terms of estimates from Propagation, Infection, and 
Execution (PIE) analyses of software. Through 
sensitivity estimate, the testability of a program can be 
calculated. Using the Voas’s approach, the testability of 
a program can be defined as the minimum sensitivity 
among all sensitivities of all locations of that program. 

The sensitivity is defined as the prediction of the 
minimum probability that a fault will cause a failure in 

the software at a particular location under a specified 
input distribution. For instance, if a location has a 
sensitivity of 1.0 under a particular input distribution 
D, then it is predicted that every input in D that 
executes location L will result in a software failure if L 
were to contain a fault. In the other extreme case, if a 
location has shown a sensitivity of 0.0, then it is 
predicted that no matter what fault is present in L, no 
input in D that executes L will cause a failure. 
Sensitivity gives a rough estimate of how frequently a 
fault will be revealed if one exists. This means that 
sensitivity is simply the probability of failure. There is 
a continuum of sensitivity in the region <0, 1>. The 
greater the likelihood that a fault in location L will be 
revealed during testing implies the greater the 
sensitivity that is assigned to L. In other words, a 
location with low sensitivity is termed insensitive, and 
a location with a high sensitivity is termed sensitive. 
Sensitivity analysis is the process of determining the 
sensitivity of a location in a program. It quantifies 
behavioral information about the likelihood that faults 
are hiding. Also, it can add another dimension to 
software quality assurance. 

The sensitivity measurement at a location requires 
the estimation of probabilities of execution occurring, 
infection occurring and propagation occurring. This 
involves a repeated execution of the original program 
and corresponding mutants and observing the 
corresponding results. These three probability 
calculations are handled by the corresponding types of 
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analysis namely Execution (or E) analysis, Infection 
(or I) analysis and Propagation (or P) analysis. These 
three types of analysis form the basis for the PIE-
sensitivity analysis or simply sensitivity analysis 
model.

The main aim of this research is to investigate the 
testability concept and its measurement using MSG-
Infection tool. To accomplish this aim this 
experimental study has been divided into two major 
parts. In the first part, a number of ‘manual’ 
calculations of testability have been carried out to 
determine the stability of the PIE analysis technique. In 
the second part, a testability procedure to automate (or 
semi-automate) the PIE analysis technique has been 
developed. Since mutation analysis is found to be 
having limited scope, it became necessary to develop a 
tool based on the mutant schemata approach. It has 
been argued that the Mutant Schemata approach build 
mutants of any program faster than other existing 
systems for mutation analysis such as ‘Mothra’ [23,
24]. Another important aspect of this approach is its 
ability to encode all mutants of the source code into 
one program called a metamutant (MM) program. 
Accordingly the author took an initiative to develop the
MSG-Infection tool by modifying the existing MSG 
tool [8]. The tool uses MSG approach to generate the 
required classes of mutants. The MSG-Infection tool 
can be used to perform execution and infection 
analyses on C programs automatically. The application 
of this modified MSG tool in sensitivity analysis is a 
novel approach. In this approach the infection analysis 
of the PIE technique can be simplified and its 
performance can be improved significantly. This paper 
is presenting the work involved with the development 
of the modified MSG tool called MSG-Infection tool 
and the findings about performance improvement of 
PIE analysis due to the use of this tool.

The structure of the remaining part of this paper is 
as follows. Section 2 explains PIE analysis model used 
to estimate the testability procedure of a program. 
Section 3 explains sensitivity estimation model used 
for the testability experiments using the MSG-Infection
tool. Section 4 explores the scope and limitations of 
some mutation based testing tools in perspective of 
automating the PIE analysis. Section 5 explains the 
concept of MSG-Infection approach and general 
structure of the MSG-Infection tool. Section 6 explains 
the design and implementation aspect of the MSG-
Infection tool. Section 7 presents the results of the 
evaluation of the new tool. The last section discusses 
pros and cons of the MSG-Infection approach and 
some future directions required to improve the
automation aspect of the PIE analysis.

2. Sensitivity Analysis PIE Model
This section summarizes the PIE model for measuring 
the sensitivity of the locations and the testability of the 

program. PIE is a white-box analysis technique based 
on the syntax and semantics of the code under test [26]. 
It makes predictions concerning future program 
behavior by estimating the effect that input distribution 
has, syntactic mutants and changed data values in data 
states have on current program behavior [28].

The PIE assessment model implements the 
definition of testability promoted by Voas and 
colleagues [29, 30, 39] by performing three 
independent dynamic analyses: Execution, infection,
and propagation, which produce a set of estimates for 
each location of the given program. The three 
probability estimates can then be integrated to derive 
the sensitivity of each location and the overall 
testability of the program. The sequence of the three 
analyses is sometimes called the ‘fault/failure model’, 
because it relates faults, data state errors and failures 
[32]. The method is dynamic in the sense that it needs 
to execute the code in estimating the testability of a 
program. A location in PIE analysis can be an 
assignment statement, an input statement, an output 
statement, or the <condition> part of an if- (or a while-) 
statement. This definition for a location is based on 
Korel’s definition [15] for a single instruction. 

Before conducting the PIE analysis technique, 
several properties of the state of the program and
knowledge of its environment must be assumed: the 
program is close to being correct semantically and 
syntactically, test cases should be available from an 
infinite sampling distribution. Hamlet and Voas have 
pointed out that the “PIE model is very simplistic, 
because it assumes that faults occur at single locations” 
[10]. Voas suggested that before conducting the PIE 
technique one should know if a program is likely to 
propagate data state errors if any have been created 
[27]. The three independent processes of PIE are
discussed below. 

Execution analysis is the process for predicting the 
probability that a location is executed when inputs are 
selected according to a particular input distribution D. 
It is concerned with the possibility that a particular 
location will have an opportunity to affect the output. 
The execution estimate of a particular location L, 
denoted by εL, can be determined by dividing the 
number of inputs (selected according to D) that execute 
location L, by the total number of test cases (expected 
to be large).

Infection analysis is the process for evaluating the 
probability that the succeeding data state of location L
is different from the succeeding data state that a 
specific mutant creates, given that the original location 
and the mutant execute on a data state that would 
normally precede L. A data state is a collection of all 
variables and their associated values at some point 
during program execution. It may contain Boolean 
variables that represent the condition part of an if- or 
while-statement. Infection analysis involves three 
stages: recording the data state immediately before a 
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location in the code, mutating the location, executing 
the original location and the corresponding mutant on 
the data state and observing whether the resulting data 
states are different [37]. In other words, if a fault exists 
in a location and it is executed, then the fault may 
produce an incorrect data state for that input. The 
incorrect data state is referred to as containing a data 
state error. Infection analysis is similar to fault-based 
testing in that both involve changing the location 
syntactically. Fault-based testing aims at demonstrating 
that certain faults are not in a program [16, 17, 18, 19, 
20, 22, 40]. Also infection analysis is similar to weak 
mutation testing [11, 12] in that data states are 
compared immediately after executing a location in its 
original and mutant forms. When the data states differ, 
a variable count should be incremented. The procedure 
should be repeated depending on the total number of 
inputs n (selected according to D). The count should be 
divided by n to give λL,m, the infection estimate of the 
specified mutant m at location L. 

Propagation analysis is the process concerned with 
the evaluation of the probability that a forced change in 
an internal computational state causes a change in the 
program’s output. Computing the propagation estimate 
of a selected variable v at location L involves several 
steps [37]. At first selecting an input randomly from 
the input distribution of the program and saving the 
data state immediately after location L are done. In the 
second step, a new data state is generated through 
changing the value of a live variable v selected from 
the data state. In the third step, the rest of the program 
should be executed using both the original data state 
and the new data state including the changed value of 
variable v. In the fourth step, the count variable is 
incremented, when the resulting outputs differ. This 
procedure is repeated for the total number of inputs n
(selected according to D). The count value should be 
divided by n to give, ΨL,v, the propagation estimate of 
the live variable v at location L. 

3. PIE Results and Sensitivity Estimation
As mentioned previously, the sensitivity analysis can 
be thought of as determining the probability of failure 
at each program location. Based on the ‘fault/failure 
model’ of Byers and Kamkar [5], this failure 
probability, Pf  is expressed as the product of the three 
separate probabilities, but necessary, conditions: fault 
execution, data state infection and infected state 
propagation, i. e.,

P f  = P exe x P exe|inf x P inf|prop  (1)

From this formula, one can see that the sensitivity 
analysis involves performing execution analysis, 
infection analysis and propagation analysis. Using the 
estimates collected from the Execution, Infection and 
Propagation analyses, sensitivity of all individual 

locations of the given program can be calculated. Since 
the lower bound on the associated confidence interval 
of each estimate is considered, it is assured that if bias 
occurs when determining a sensitivity value, the bias 
causes underestimation of the sensitivity rather than 
overestimation.

Voas and colleagues [28, 33, 39] have introduced a 
more sophisticated way of calculating sensitivity (βL) 
of a location. They introduced the following equations:

1. Multiplication of the three estimates for execution, 
infection and propagation:
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Where
εL: Execution estimate of location L.
λL,m: Infection estimate of location L, mutant m.
ΨL,v: Propagation estimate of location L, variable v.
(•)min: Lower bound of the confidence interval for an 

estimate.
min[(λL,m)min]: Smallest estimate for the set of mutants 

(m)  considered at L.
 min[(ΨL,v)min]: Smallest estimate for the set of live

variables considered at L.
2. The formula (2) can be modified to take account of 

the possible but unlikely occurrence that the 
proportion of data state errors that do not propagate, 
when created by the mutant that produces the 
minimum infection estimate, is exactly the 
proportion of data state errors that do not propagate 
when the minimum propagation estimate is 
produced. The sensitivity of location L, denoted  βL, 
is now given by the formula: 
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After calculating sensitivities of the locations, it is 
possible to recognize insensitive locations. With these 
locations alternative techniques should be applied such 
as testing under a new distribution, proofs of 
correctness, code review, symbolic testing or 
exhaustive testing [28, 33, 39].

As mentioned before, sensitivity is calculated for all 
specified locations of a tested program. From the 
collected set of sensitivity estimates, testability can be 
measured by taking the minimum non-zero sensitivity 
over all the locations. This can be represented by the 
following equation:

testability = min(βL)  (5)

Where:

(2)

(3)

(4)
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1 ≤ L ≤ Total number of locations
βL: Sensitivity of location L.

Sensitivity is clearly related to testability, but the 
terms are not equivalent. Sensitivity focuses on a 
single location in a program and a fault at that location 
can have effects on the program’s inputs/output 
behavior. Testability encompasses the whole program 
and the collection of sensitivities under a given input 
distribution. Testability depends on faults, code and 
test data distribution. It can be determined by applying 
the minimum function on the sensitivities of all 
locations of the given program.

4. Automating the Estimation of Testability
As shown before, estimating the testability of a 
program requires conducting the sensitivity analysis 
with these tasks:

1. Locations should be executed to calculate the 
execution estimate.

2. Mutants of the tested program should be created to 
calculate the infection estimate. 

3. Live variables of the specified locations should be 
perturbed to calculate the propagation estimate.

4. Sensitivity of each location of the program in hand 
should be calculated. The second task can be 
achieved by using either the Mothra Mutation 
System [7, 14] or the MSG approach [23, 24], while 
the last task can be achieved by conducting the PIE 
technique. However, both the first and the third 
tasks need some extra work to be done.

Meanwhile, testability estimation cannot automatically 
be performed using only one approach such as MSG 
approach. It needs a combination of techniques to be 
used. Thus to automate testability, one should be able 
to automate/semi-automate all techniques to get the 
best results. Some attempts have been made to 
automate/semi-automate the calculations of the PIE 
technique. An overview of some approaches and tools 
used with these approaches is given below.

4.1. Mothra Mutation System
Mothra is a flexible, complete and interactive testing 
environment, established on mutation testing of 
software systems. It provides a powerful user interface 
that facilitates software testing by performing mutation 
analysis on a given program. It can be viewed as a 
collection of ‘plug-compatible’ tools such as Godzilla 
[6] and Equivalencer [21]. Godzilla is a test data 
generator tool, while Equivalencer is equivalent mutant 
detector. Each major function of Mothra is 
implemented as a separate program that executes 
independently of other tools. The core of this 
collection of tools is a language system that contains a 
set of objects and programs that enable Mothra to 
translate, execute and modify the given programs. 

Mothra was developed in 1986 by a team of 
researchers in the Software Engineering Research 
Center of Georgia Institute of Technology. A 
comprehensive and detailed manual for the 
functionality of the Mothra system is given in [3].

4.2. PiSCES Software Testability Analysis 
Toolkit

As stated previously, automating the measurement of 
testability involves automating the three individual 
processes of sensitivity analysis: Execution, Infection 
and Propagation analyses. A commercial tool called 
the PiSCES Software Testability Analysis ToolkitTM of 
the Reliable Software Technologies Corporation of 
Sterling, Virginia [9] implements the PIE algorithms. It 
evolved from various proof-of-concept prototypes [34]. 
It is the only commercial software for testability 
determination. It generates testability estimates by 
developing an instrumented copy of the original 
program. PiSCES is written in C++ for performing 
analysis on C programs. 

PiSCES ToolkitTM is a combination of several 
individual tools or packages. One of the tools is the 
SafetyNet tool that incorporates extended propagation 
analysis to get an estimate for the fault tolerance of a 
program or indeed, for individual modules, functions, 
or even lines [9, 34].

4.2.1. Limitations and Evaluations of the PiSCES 
System

PiSCES is one of the automated tools for performing 
sensitivity analysis on C programs. It produces 
testability predictions based on the PIE analysis 
technique. It creates an instrumented copy of the 
program in question, which is then compiled and 
executed. Voas et al. [38] approximated the size of the 
instrumented version in comparison with the original 
program to be “10 times as large as the original source 
code” [38]. To execute the instrumented copy of the 
program, an input file is needed, which can be either 
supplied together with the original source code or 
generated using the PiSCES tool.

As a limitation of PiSCES, it can run “around 3000-
4000 lines of source code at a time” [36]. Since the 
amount of the memory that PiSCES requires increases 
with the size of the source code, larger systems or 
applications must be divided into modules. In such 
situation each module should be tested individually. 
Once all modules have received dynamic testability 
analysis, the results for the whole application can be 
deduced [13, 31, 35, 36]. 

The PiSCES system uses normal mutation testing 
that involves creating copies of the original version of 
the code with the required changes. In other words, 
PiSCES does not use the Mutant Schemata approach to 
create the required mutants [25]. PiSCES divides 
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complex expressions into simpler expressions. Figure 1 
shows an example derived from Voas [25].

Figure 1. Representing a complex expression by simple 
expressions.

The above expression can be mutated using MSG-
Infection tool as one expression. The details are found 
in the following section.

5. MSG-Infection Tool
Each tool explained in the previous section is able to 
perform their subtasks by manually running the 
programs that constitute the tool. This warrants a tool 
that can perform the tasks of PIE analysis with 
complete automation. The MSG approach has been 
proposed to automate PIE analysis. MSG-Infection 
tool has been developed for automating the PIE 
analysis partially. The MSG-Infection system retains 
the spirit of the MSG approach by encoding a number 
of mutants of each location in one single modified 
version of the original program. This tool has been 
given this name because its main focus was to use the 
MSG approach for calculating the infection analysis. 
An overview of the MSG approach is explained below.

5.1. MSG Approach
The MSG technique is used to represent program 
neighborhood. The program neighborhood is a 
collection of the original program plus the mutant 
programs called metaprogram. The purpose of MSG 
approach is to improve the performance of mutation 
analysis systems by generating a metaprogram [23,
24]. A mutant schema has two components, a MM and 
a metaprocedure set, both of which are represented by 
syntactically valid constructs. All mutations produced 
from conducting standard mutagens (also called 
variously as mutation operators, mutation 
transformations and mutation rules) can be represented 
by metamutations.

Metaprocedures are syntactically valid 
representations of the abstract entities found in mutant 
schemata. They can be categorized as either 
metaoperators or metaoperands. Metaoperator 
procedures perform one of a class of alternate 
mathematical operations. Each metaoperator is 
implemented using a case structure. Metaoperand 

procedures reference one of a set of program variables. 
Metaoperand procedures are unique to each program 
and must be generated a fresh for each program.

The MSG method has the ability to encode all 
mutants into one source-level program. This program 
is then compiled (once) with the same compiler used 
during development and is executed in the same 
operational environment at compiled-program speed. If 
Mutant Schemata can be combined with the PIE 
technique, then the sensitivities and testability of a 
given program can be estimated automatically.

5.2. MSG-Infection Tool
The MSG-Infection tool has been designed and 
developed as a prototype using C-language.  The tool 
is designed to be flexible and maintainable. As the 
system is expected to be quite large, it is broken down 
into smaller modules to manage the complexity of the 
code. The modules are designed with the principles of 
low coupling and high cohesion. 

The MSG tool parses a given C-program to generate 
automatically the corresponding MM program. While 
performing sensitive analysis the tool inputs several 
arguments from the user: the original program that is to 
be tested, input variables of the program, test cases, 
total number of test cases and termination identifier 
that identifies the end of the test cases. At the end of 
the analysis, the tool outputs execution and infection 
estimates of all selected locations of the tested 
program, the parse tree and the MM program. The tool 
will also provide the user with a file that contains the 
locations of the tested program and their corresponding 
line numbers in the original program. In addition, it 
will provide the user with a sorted list of individual test 
cases, locations and all corresponding mutants’ count.

Since mutation testing is a computationally 
expensive process, efficiency is an important issue in 
the design and implementation of the tool. To 
accomplish this criterion, the MSG-Infection tool uses 
the Mutant Schemata approach with its efficient MM 
concept.  Every effort has been taken to ensure that the 
tool is designed and implemented with good software 
engineering principles. It has been designed in a 
modular fashion so that it can be expanded or adapted 
easily for future development or maintenance. A 
context diagram, which represents an overview of the 
entire MSG-Infection tool, is given in Figure 2.

5.3. Components of the MSG-Infection Tool
The MSG-Infection tool consists of two subsystems: 
Execution and Infection (EI) subsystem and Testability 
Management (TM) subsystem. The EI subsystem does 
the major and the most difficult part of the work. It 
takes the original C program as an input, parses it and 
creates a meta-mutant program. The TM subsystem 
runs the MM program generated by EI subsystem to 

Complex expression
 t := 0.9 * (1.0 + sqr (1.0 + y)) * exp (em * glalxm-ga

mmln (em + 1.0) - glg);

 Simple expressions
 aa := sqr (y + 1.0);
 bb := aa + 1.0;
 cc := em + 1.0;
 dd := gammln (cc);
 ee := em * glalxm – dd - glg;
 ff := bb * exp (ee);
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produce the execution and infection estimates of the 
given C program. 

Figure 2. Context diagram of MSG-Infection tool.

5.3.1. Role of EI Subsystem
The EI subsystem is a modification of the existing 
MSG tool, which develops a parse tree corresponding 
to the given C program and modifies it to encode a 
variety of mutants at each location. This will be the 
largest and the most complicated part of the tool as it 
will need to analyze the C program, and produce a 
syntactically valid MM program which when executed 
can function as any mutant that was applied to the 
original program. The parse tree, which constructs the 
MM version of the given C program, will further be 
altered by EI subsystem so that each location L in the 
program now becomes as: 

store pre-L; 
execute L; 
store post-L;

for each mutant Lm of L
loop

restore pre-L; 
execute Lm;
compare post-Lm with post-L;

end loop;
restore post-L;

In the above, ‘pre-L’ and ‘post-L’ correspond to the 
data state immediately before and after location L. The 
result of each comparison of the post-Lm state with the 
post-L state is saved and used to determine the 
infection estimate of location L. The storing of the data 
state prior to a location is achieved by instrumenting 
with assignments to a special array storage that 
remains undisturbed during execution of the location 
or any of its mutants. The restore operation after the 
location can then use this array to recover the values 
that the variables had before the location. 

As the EI subsystem applies mutants to the original 
C program, it will give the mutants identification labels 

and will put total number of each mutant in the 
specified loops in the MM program. The tool will 
determine where the mutations can be applied in the 
programs by studying the syntax, context, scope and 
semantics (meaning) of elements in the program. 
Elements can be looping and conditional constructs, 
expressions and constants. Simple search and replace 
or tokenizing methods do not provide the 
sophistication necessary for this level of program 
analysis, only compilation process of program parsing 
could do this. The tool by traversing the program’s 
syntax tree, determines where mutations can be applied 
and rewrite it to implement the syntactically valid MM. 

5.3.2. Role of TM Subsystem
The Testability Management subsystem manages the 
process of running the test cases against the original 
locations of the program and the corresponding 
mutants. It generates two files, one of which contains 
all required execution and infection estimates of the 
locations of the given program. The other file contains 
information about the test cases, location number and 
the state of the corresponding mutants whether they are 
killed or still alive. The TM subsystem compiles the 
generated MM program with the provided test cases, 
the available functions and macros to generate both 
execution and infection estimates. This subsystem will 
perform all tasks needed for conducting part of the 
sensitivity analysis: execution and infection analyses. 

As mentioned before the subsystem keeps track of 
all mutants’ count and saves them into a file with the 
corresponding test cases and location number. The file 
will be sorted according to location number and test 
case number before the saved information can be used 
to perform the tasks of sensitivity analysis of the 
corresponding mutants.

Several important macros have been encoded in the 
TM subsystem to facilitate the compilation and the 
execution processes. Further macros can easily be 
added to the subsystem.

6. Development of the MSG-Infection Tool
The EI and TM subsystems are completely 
independent of each other. The only interfacing 
requirement between them is that the input to TM is a 
MM program that is the output of the EI subsystem.  
The coupling between them is very low. Either 
subsystem can be modified without affecting the other 
as long as the interface between them is maintained 
consistent. The schematic view of the MSG-Infection 
tool particularly displaying the roles of EI and TM is 
shown in Figure 3.

Locations 
InformationDecorated

Execution
& Infection
Syntax Tree

Parser and
Compiler
Messages

Execution
and Infection
Estimates

Original C Program
C Metamutant

Program

Test Cases

Mutants List
Locations ListParse Tree Information

Test Cases
MSG-Infection

Tool

C Metamutant Program
C   Program

Execution and Infection Estimates

Mutants
Information

Sorted
Mutants

Information

USER Parser and
Compiler
Selections



88 The International Arab Journal of Information Technology,   Vol. 3,   No. 1,   January 2006

Figure 3. Schematic view of MSG-infection tool.

6.1. Implementation of EI Subsystem
The Execution and Infection subsystem will need to 
perform the three phases (lexical analysis, syntax 
analysis and semantic analysis) in order to generate the 
C MM program. At the beginning of the project, a 
skeleton C parser program was available. The skeleton 
parser reads a text file, parses it and outputs whether it 
is a valid C program. It uses the UNIX tools lex and 
yacc. On the other hand the MSG tool, from which 
some modules for constructing the parse tree with 
metafunctions have been taken, was available. These 
modules have been slightly changed to meet the needs 
of the MSG-Infection tool. 

6.1.1. Mutating the Syntax Tree
After completing the construction of the syntax tree for 
the given program, the EI subsystem sets about 
generating the MM of the program by transforming 
and modifying the syntax tree. This involves the 
construction of the mutants. The subsystem encoded
four mutant classes: Arithmetic operator replacement, 
constant replacement, statement deletion and variable 
replacement. These mutant classes have been used 
according to the recommended standard mutation types 
of the C language and naming conventions in [1].

Special care needs to be taken here, as many 
mutants can be applied to the single program construct 
such as an expression. In such cases, it is vital that the 
mutants are applied in a structured way so that they do 
not interfere with each other. Any such interference 
would cause the generated MM to be wrong and would 
probably produce a non-compiling version of MM. To 
prevent mutations interfering with each other, EI 
implements each mutant in such a way that the added 
mutant code encases the original statement in a neat 
way so that the whole structure becomes a single 
statement, allowing further mutants to be applied. 
Figure 4 demonstrates how the mutants are constructed 
for a single statement or expression.

Figure 4. Multiple (or nested) mutants.

It is equally important that no mutations are applied 
to any code that has been generated by a previous 
mutant: Such an event would firstly produce mutants 
that should not exist, and secondly would most 
probably cause an infinite loop, as the code being 
mutated would produce yet more code that would be 
mutated, which would in turn produce yet more code, 
and so on.

EI prevents this problem by applying the mutations 
to the node in an in-order traversal. As each node is 
encountered, its production name, production identity, 
context and scope are analyzed to determine whether a 
mutation is to be applied. EI restricts itself to only 
being able to modify the immediate child nodes of the 
current node being examined. No other nodes in the 
subsystem may be changed. This contains the 
modifications to a local area in the syntax tree so that 
the code added by the mutation can be controlled and 
protected from mutation.

As the nodes are traversed and mutated in an in-fix 
pattern it will always be the case that, for each node 
that is visited, all of the ancestors of the node will 
already have been analyzed and probably modified by 
mutations. It will also be true that none of the 
descendants of the node will have been visited yet. 
This means that EI is free to examine the descendants 
of the current node, with the knowledge that all of 
them are in their original state. EI may therefore look 
at the descendants of the current node to determine its 
context. The ancestors of the node may not be looked 
at as they have been already mutated, and will 
therefore contain code that is not true to the original 
program.

The scope of a node is determined with the help of 
its ancestors, but this is now a problem as the order in 
which the mutants are applied has caused the ancestors 
of the current node to be mutated, altering their 
contents significantly. EI solves this problem by
maintaining a stack throughout the MM generation 
process. When each node of the tree is first 
encountered, its production type is pushed on to the 
stack before any mutations are applied to it. The 
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element is popped off the stack when all of the 
descendants of that particular node have been 
traversed. The stack therefore keeps a record of the 
productions that are in scope, and their order of scope. 
EI searches through this stack structure to ascertain the 
exact scope of the node.

6.2. Implementation of TM Subsystem
The Testability Management (TM) subsystem manages 
the process of running the test cases against the 
original locations of the program and the 
corresponding mutants. It generates two files as 
mentioned before one of which contains all the 
required infection and execution estimates for each 
location of the given program. The other file contains 
mutants list information that has been discussed 
previously. This subsystem performs tasks that are 
easier than the tasks performed by the EI subsystem. It 
contains all macros, mutation functions and execution 
and infection algorithms along with other functions 
used for checking and comparison purposes of the data 
used by the MM program. This means that the TM 
subsystem includes the built-in libraries that controls
and facilitates the execution of the MM program.

6.3. Limitations and Evaluations of the MSG-
Infection System

The MSG-Infection system uses an existing system 
called MSG [8]. The purpose of developing this tool 
was originally to improve the performance of infection 
analysis. However, the tool is found to have some 
limitations. The program under test should have at least 
one location, one input variable and any conditional 
statement that should use braces ‘{‘and‘}’. Secondly 
the program should not have ‘include’ statement and 
any variable initialization. Thirdly, the tool has no 
scope to handle arrays, pointers, matrix and also other 
data types such as character and Boolean type in the test 
programs. Finally the tool requires the user to specify a 
set of input and output variables. Reading of the input 
variables will be performed by a proper sequence of 
read statements of the generated metaprograms.  

7. Evaluation Results of MSG-Infection 
Tool

Table 1 gives the list of programs that were selected 
for testing the capability of the MSG-Infection tool. 
The table also describes the test features of each 
program. 

Table 2 provides some information about the tested 
programs and their corresponding MM program. It 
shows program name, number of locations, total 
number of test cases used and total number of lines of 
both the original C program and the corresponding 
MM program. Also it shows the size of the compiled 

versions of both the original C program and the 
corresponding MM program.

Table 1. Test programs and their testing features .

ID Program
Name Description (Features Included)

P1 Quadratic.c

- one declaration statement of integer.
- one or more operator.
- more than one location.
- more than one input variable.

P2 Absolute.c

- one declaration statement of type float.
- one location.
- one operator.
- only one input variable.

P3 Sum.c

- two declaration statements of integer type.
- more than two locations.
- only one operator.
- only one input variable of type integer.

P4 Product.c

- two or more declaration statements of the same type 
float.

- two declaration statements of different types (i.e., 
integer and float).

- more than two locations.
- one operator.
- one input variable of type integer.

P5 Average.c

- two declaration statements of different type (i. e., 
integer and float).

- more than two locations.
- only one operator.
- only one input variable of type integer.

P6 Macros.c

- two locations.
- one operator.
- two or more input variables of the same type integer.
- built-in functions which are called macros.

P7 Example.c - two or more input variables of the same or different 
type (i. e., integer and float).

P8 Cast.c

- casting some variables.
- casting a variable is to force that variable to be of 
certain type as required.

- built-in functions which are called macros. 
P9 Try.c - two or more assignment statements.
P10 Loc_10.c - two or more assignment statements.
P11 Loc_50.c - 50 assignment statements.
P11 Loc_100.c - 100 assignment statements.
P11 Loc_150.c - 150 assignment statements.

Table 2. Original C and MM programs sizes.

Program L Test
Cases

Ori.
Lines

MM
Lines

Orig.
Size

MM
Size

Absolute.c 1 100 20 589 20531 80400
Example.c 1 1000 22 625 20531 84784
Macros.c 2 1000 33 981 24630 86048
Sum.c 2 100 26 946 20531 85776
Cast.c 3 1000 30 1351 41109 91496
Try.c 3 100 22 1272 24630 90840
Average.c 4 100 47 1654 20532 96480
Product.c 4 100 29 1646 20531 96360
Quadratic.c 4 10000 64 1720 45207 97088
Loc_10.c 10 1000 38 3879 41109 129016
Loc_50.c 50 1000 93 18987 45206 361416
Loc_100.c 100 1000 164 40532 45206 706952
Loc_150.c 150 1000 252 62772 49304 811189
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Actually all programs have been constructed to 
check some properties of the tool such as declaration 
part, total number of locations, total number of 
variables, etc. The last four programs have been used 
to check the total number of locations that can be 
considered by the MSG-Infection tool. From Table 2 it 
can be deduced that ≈ 400 lines are added to the MM 
program for each location of the original C program. 
Therefore the sizes of the compiled MM files are larger 
than the sizes of the compiled original files.

To get a rough idea concerning the amount of time 
used for constructing, compiling and executing the 
MM programs, the following tables (Table 3 to Table 
7) are provided. These tables show three types of time: 
real time, user time and system time. Real time can be 
defined as the amount of time spent in executing the 
command, user time can be defined as the amount of 
time spent in executing the user’s process and system 
time can be defined as the amount of time spent in the 
system on behalf of the user’s process. Since the main 
memory is simultaneously shared among several users, 
the times provided might be changed slightly every 
time the programs are used.

Table 3. Time for executing MM programs.

Command RT UT ST
Absolute.c 0m4.14s 0m0.25s 0m0.12s
Example.c 0m8.57s 0m0.30s 0m0.12s
Macros.c 0m7.83s 0m0.45s 0m0.13s
Sum.c 0m6.82s 0m0.36s 0m0.12s
Cast.c 0m7.67s 0m0.61s 0m0.14s
Try.c 0m8.14s 0m0.18s 0m0.15s

Average.c 0m7.25s 0m0.67s 0m0.14s
Product.c 0m6.38s 0m0.65s 0m0.15s
Quadratic.c 0m9.12s 0m0.81s 0m0.16s
Loc_10.c 0m8.84s 0m1.71s 0m0.21s
Loc_50.c 0m20.12s 0m9.78s 0m0.57s
Loc_100.c 0m38.78s 0m26.79s 0m1.25s
Loc_150.c 1m25.88s 0m49.59s 0m1.94s

Table 4. Compilation time of original C programs.

Command Real Time User Time System
Time

Absolute.c 0m1.06s 0m0.76s 0m0.17s
Example.c 0m1.03s 0m0.75s 0m0.19s
Macros.c 0m2.20s 0m0.72s 0m0.25s
Sum.c 0m1.08s 0m0.75s 0m0.19s
Cast.c 0m1.19s 0m0.84s 0m0.23s
Try.c 0m1.19s 0m0.70s 0m0.25s

Average.c 0m1.27s 0m0.71s 0m0.24s
Product.c 0m1.04s 0m0.74s 0m0.19s
Quadratic.c 0m1.72s 0m0.82s 0m0.30s
Loc_10.c 0m1.22s 0m0.86s 0m0.23s
Loc_50.c 0m1.34s 0m0.92s 0m0.27s
Loc_100.c 0m1.48s 0m1.06s 0m0.23s
Loc_150.c 0m7.38s 0m1.06s 0m0.62s

Table 5. Time for executing MM programs.
Command
(Make)

Real Time User Time System Time

Absolute.c 0m4.76s 0m3.32s 0m0.76s
Example.c 0m5.20s 0m3.36s 0m0.82s
Macros.c 0m5.71s 0m3.57s 0m0.81s
Sum.c 0m4.99s 0m3.51s 0m0.77s
Cast.c 0m5.55s 0m3.83s 0m0.80s
Try.c 0m6.33s 0m3.65s 0m0.94s

Average.c 0m5.39s 0m3.80s 0m0.88s
Product.c 0m6.09s 0m3.89s 0m0.78s
Quadratic.c 0m5.50s 0m4.03s 0m0.79s
Loc_10.c 0m7.20s 0m5.25s 0m1.00s
Loc_50.c 0m18.64s 0m15.00s 0m1.30s
Loc_100.c 0m39.22s 0m30.65s 0m2.17s
Loc_150.c 1m9.48s 0m46.68s 0m3.27s

Table 6. Execution time of original C programs.
Command
(a.out) Real Ti me User Time System Time

Absolute.c 0m0.36s 0m0.04s 0m0.09s
Example.c 0m0.21s 0m0.03s 0m0.08s
Macros.c 0m0.28s 0m0.12s 0m0.06s
Sum.c 0m0.18s 0m0.03s 0m0.07s
Cast.c 0m0.53s 0m0.04s 0m0.08s
Try.c 0m0.89s 0m0.04s 0m0.09s

Average.c 0m0.51s 0m0.07s 0m0.12s
Product.c 0m1.01s 0m0.10s 0m0.14s
Quadratic.c 0m13.64s 0m1.83s 0m1.79s
Loc_10.c 0m0.30s 0m0.09s 0m0.08s
Loc_50.c 0m0.23s 0m0.10s 0m0.07s
Loc_100.c 0m0.50s 0m0.15s 0m0.09s
Loc_150.c 0m2.46s 0m0.41s 0m0.45s

Table 7. Time for executing MM programs.
Command  
(Testability)

Real T ime User Time System Time

Absolute.c 0m10.23s 0m0.09s 0m0.10s
Example.c 0m8.04s 0m1.86s 0m0.22s
Macros.c 0m6.28s 0m0.94s 0m0.15s
Sum.c 0m6.52s 0m0.08s 0m0.07s
Cast.c 0m7.71s 0m1.23s 0m0.15s
Try.c 0m6.81s 0m0.16s 0m0.09s

Average.c 0m8.29s 0m0.09s 0m0.08s
Product.c 0m5.32s 0m0.10s 0m0.08s
Quadratic.c 2m10.67s 0m30.84s 0m2.21s
Loc_10.c 0m15.92s 0m8.70s 0m0.22s
Loc_50.c 0m49.31s 0m42.07s 0m0.79s
Loc_100.c 1m4.71s 0m22.90s 0m5.79s
Loc_150.c 2m53.35s 2m28.20s 0m2.69s

Viewing the above tables, it is obvious that the 
execution time increases. That is, the execution time of 
the MM programs is roughly 60 times the execution 
time of the original C programs. Determining the 
sensitivity estimate of locations is an expensive and 
time-consuming process. Getting the estimates of the 
analyses more directly might help in solving the 
problem or part of it. This motivates researchers to find 
easier and more direct methods to estimate the 
testability of programs or at least to get an indication of 
the testability estimate of the program without 
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conducting the actual analyses. Table 8 provides 
information that could be deduced from the original 
programs.

Table 8. Direct infection determination.

Function Infec.
Est. Comment

f (a)  = a; high a ∈ ]-∞, ∞[
f (a) = a - 50; high a ∈ ]-∞, ∞[
f (a) = a mod 2; high a ∈ ]-∞, ∞[
f (a) = SQUARE (a); high a ∈ ]-∞, ∞[
f (a) = sqrt (a); high a ∈ ]-∞, ∞[
f (a) = SQUARE (a) div 2; high a ∈ ]-∞, ∞[
f (a) = (a * 2) div 3; high a ∈ ]-∞, ∞[
f (a) = 2 * a – 3 + a; high a ∈ ]-∞, ∞[
f (a) = a – 5 * a + a; high a ∈ ]-∞, ∞[
f (a, b, c) = b * b- 4 * a * c; high a, b, c ∈ ]-∞, ∞[
f (a) = sqrt (a) * 2 + 3 - a; high a ∈ ]-∞, ∞[
f (a) = 3 + SQUARE (a) – 2 * a - a; high a ∈ ]-∞, ∞[
f (a) = 2 * sqrt (ABS (a * 2)) – 2 * a; high a ∈ ]-∞, ∞[
f (a) = (2 * a + SQUARE (9)) div (2 *
SQUARE (25)); high a ∈ ]-∞, ∞[

f (a) = sqrt (a) – SQUARE (a); high a ∈ ]-∞, ∞[
f (a) = not (a); high a = 0   or   a = 1
f (a) = sin (a); high a ∈ ]-∞, ∞[   (degrees)
f (a) = cos (a); high a ∈ ]-∞, ∞[   (degrees)
f (a) = sin (a) + cos (a); high a ∈ ]-∞, ∞[   (degrees)
f (a) = SQUARE (sin (a))+ SQUARE
(cos (a)); high a ∈ ]-∞, ∞[   (degrees)

f (a) = tan (a); high a ∈ ]-∞, ∞[   (degrees)
f (a, b, c) = (-b + isqrt (b * b – 4 * a *
c)) div (2 * a); low a, c ∈ [0, 10], b ∈ [1, 1000]

f (a) = a div b; low
a ∈ ]-∞, ∞[
infection decreases as b
increases

f (a) = a mod b; low
a ∈ ]-∞, ∞[
infection decreases as b
decreases

This section discusses the generalization of the 
estimation of the infection analysis. By viewing the 
source code, one can say whether the assignment 
statements can produce a high or a low infection 
estimate. It has been seen that some operators or macros 
might hide faults and produce low infection estimate. 
Table 8 provides the infection estimate of some 
functions. The table shows the results for the functions 
that usually produce high infection estimate, 1.0 or 
close to 1.0 and the functions that might produce low
infection estimate, close to 0.0. It helps the software 
engineers to detect the infection estimate of the 
locations directly from the macros used in those 
locations.

The MSG-Infection tool deals with the simple 
statements or locations. However, the arrays and other 
complex statements including arrays could be 
incorporated in the future investigations.   

8. Conclusion
The existing tools seem to have some limitations such 
as time factor and unreasonable requirement of 

memory resources in evaluating the testability of 
programs. In order to tackle these limitations this paper 
has first reviewed the PIE analysis technique as the 
basis for developing an efficient tool with the support 
of MSG approach. Then it has presented the 
development of the MSG-Infection tool. Also, it 
showed the timing results of the MSG-Infection tool in 
determining the execution and infection analyses of 
various locations of the tested programs. A significant 
improvement in its performance over PiSCES is due to 
its ability to perform the tests based on weak mutation. 

The MSG-Infection tool is not only better tool 
performance-wise, but also its requirement on memory 
resources is within the reasonable limit. The tool is 
interactive and made for carrying out testing on only 
C-programs. It is easy to maintain, adapt and expand 
scalable to a complete system. However there is some 
overhead due to extra code in MMs.

The sensitivity analysis technique used to evaluate 
the testability of programs has several advantages 
including assessment and quantification of software 
reliability. Development of MSG-Infection software 
promises for further research leading to ultra-reliable 
software.
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