
The International Arab Journal of Information Technology, Vol. 3, No. 2, April 2006 111

Evolution of Agent-Oriented Distributed Model for
Software Testing: A Layered Approach

Dhavachelvan Ponnurangam1 and Uma Anbarasan2
1 Department of Information Technology, Sri Manakula Vinayagar Engineering College, India

2Department of Computer Science and Engineering, Anna University, India

Abstract: As new requirements arise, on one hand, from the increasing complexity of modern software systems and, on the
other hand, from the distribution of today’s information economies, it has been recognized that the modularity and reusability
provided by existing techniques and approaches are insufficient. Although, each paradigm has its own contribution in the
software engineering field on the support of their proficiencies, due to the exceptional growth of the software industry,
researchers continue to strive for more efficient and powerful techniques. Agents are being advocated as a next generation
model for engineering complex and distributed systems. They facilitate the automated software testing by virtue of their high-
level decomposition, independency and parallel activation. Here, we address a set of more specific characteristics of agent-
based approach (modularity, independency and parallel activation) and its efficacy in software testing. In this paper, we did
not only describe the claims for agent-based approach in software testing, but also developed a multi-agent system for
software testing with agent qualities. The multi-agent system illustrated here is on the basis of few basic operational real-
world testing techniques, as an attempt to describe how to practice Agent-Oriented Software Testing (AOST) which has not
previously done.

Keywords: Software testing agent, distributed testing framework, AOST, multi-agents.

Received October 4, 2004; accepted April 30, 2005

1. Introduction
Delivering high quality software for real-world
applications is difficult. A wide range of software
engineering paradigms have been recently devised (e.
g., object-orientation [5, 25], component ware [20],
design patterns [3, 10] and software architectures [3,
11]) either to make the engineering process easier or to
extend the complexity of applications that can feasibly
be built [19]. As new requirements arise, on the one
hand, from the increasing complexity of modern
software systems, and on the other hand, from the
distribution of today’s information economies, it has
been recognized that the modularity and reusability
provided by other techniques and approaches are
insufficient. Although each paradigm has its own
contribution in the software engineering field on the
support of their proficiencies, due to the exceptional
growth of the software industry, researchers continue
to strive for more efficient and powerful techniques [5,
19, 20]. Agents are being advocated as a next
generation model for engineering complex and
distributed systems [14, 19, 20, 21].
Several approaches to agent-oriented software

engineering have been developed, ranging from
structured, informal methodologies, to formal ones [3].
The explanations of Agent-Oriented Software
Engineering (AOSE) [5, 7, 13, 14, 19, 20] are lacking
in details that would allow a software tester to decide

easily how to ship to agent-based software testing. Due
to the above claim, there has been comparatively little
work on agent-based testing as a serious software
engineering paradigm that can significantly enhance
development in wide range of applications. These
shortcomings can be rectified by recasting the essential
components of agent systems into more traditional
software engineering concepts [4, 7, 19]. Here we
address a set of more specific characteristics of agent-
based approach (modularity, independency and parallel
activation) and its efficacy in software testing.
Effective test automation can be achieved by

dividing the testing components to a maximum
possible limit and maintaining by different units with
higher degree of independency [8, 12, 15, 29]. Agent
technologies facilitate the automated software testing
by virtue of their high-level decomposition,
independency and parallel activation. In this paper, we
did not only describe the agent-based approach in
software testing, but also developed a multi-agent
system for software testing with agent qualities. The
multi-agent system illustrated here is on the basis of
few basic operational real-world testing techniques, as
an attempt to describe how to practice agent-based
software testing, which has not previously done. The
advantages of multi-agent systems are that they can
compartmentalize specialized task knowledge, organize
them to avoid processing bottlenecks, and can be built

112 The International Arab Journal of Information Technology, Vol. 3, No. 2, April 2006

expressly to deal with dynamic changes in the agent
environment [6].
Defining and classifying a relatively new

phenomenon is always a difficult task to face the
objections of basic definitions, arguments that
important points have been overlooked, or claims that
are not really new anyway [1, 7, 16, 19, 22, 23].
Bringing together agents and other fields of software
engineeering might be difficult as the advantages of
agent technology are still not widely recognized. The
method discussed here is to offer a definition for
encompassing to cover the software testing
phenomena, based on agents, at the preliminary level,
yet sufficiently tight that it can rule out complex
systems that are clearly not agent-based. This paper
therefore provides a timely summary and enhancement
of agent theory in software testing, which motivates
recent efforts in adapting concepts and methodologies
for Agent-Oriented Software Testing (AOST) to
complex systems.
This paper is organized as follows. Section 2

describes the Multi-Agent System (MAS) for software
testing. In section 3, experimental results are discussed.
Finally, in section 4, conclusion and future
perspectives are presented.

2. Construction of Multi-Agent System
2.1. Background Information Needed
Definition 1: Let S be the MAS constructed for
providing variety of testing environments and it
can be defined as, S = {D1, D2,…, DZ, S1, S2,…, SX..},
where D is the distributor agent, S is the testing agent
and X is the number of testing agents and also the
number of testing techniques available in the system.
Let A be the set of agents needed for the product P and
it can be defined as, A{DP, a1, a2, ..., ay}where y is the
number of testing agents and also the number of testing
techniques needed by the product P.
If there are multiple products to be tested

simultaneously, then P and A can be extended as {A1,
A2, …AH} and {P1, P2, …PH} respectively, where, H is
the number of products to be tested simultaneously. In
such cases, Aq ∩ Ar, where, 0< q, r ≤ H and q ≠ r. i. e.,
at any specific service duration, there is no single agent
(distributor) or agent set (testing agent + clones) that
can be shared by more thanone product simultaneously.
This improves the autonomous property and fault
tolerance of the agents.
Sometimes the input to the distributor agent may

also consist of time specification. i. e., Tp is the
permitted time to complete the testing processes. In the
testing agents in A, there will be the predicted values
about the number of test cases to be formed and
executed, and the average time for single test case
execution (based on the program attributes such as data
variables, statements, functions, independent paths,
etc). Let Cj be the total number of test cases for aj, 0 < j

≤ y. Let
jg

t be the average test case generation time,
je

t
be the average test case execution in aj and Tj is the
total time to be spent in aj.

2.2. Multi-Agent System for Software Testing
2.2.1. Defining Agents’ Behavior
•••• Distributor Agent: Distributor agent D depends on
the testing agents and their clones for the testing to
be performed, or the testing resource to be made
available. D can get the input as the combination of
P, specification about A and an optional piece as Tp.
Based on the specification about A, D can select the
components of A from S and distribute the service
based assignment to all of them. This decomposition
and distributions allows one to apply alternative
coordination mechanisms (such as cloning by testing
agents, direct supervision of testing agents over their
corresponding clones) and generating the decision
parameters (such as Cj, Kj for clones generation and
load scheduling) in order to achieve a literal MAS.
The message from D to aj is a set of {P, Tp,
specification about aj}. The response from aj to D,
will consist of {environmental integrated reports
(number of test cases, number of faults detected),
specification about aj (type of testing technique)}.
The output of D consists of {specification about A
(suchas types of testing techniques)+ environmental
integrated reports (number of test cases for each
technique, number of faults detected, techniques
based performance) + integrated test reports (total
number of test cases, effort spent, total number of
faults detected)}. The primary components and the
information flow within and around the distributor
agent are illustrated in the Figure 1.

•••• Testing Agent: The testing agents depend on the
distributor agent to get the assignment with
specifications. Also, they depend on their clones for
the task to be performed within a precise time period
that depends on the type of the task. Clones
generation and load sharing are based on the time
specification Tp supplied by D. So, the agents must
estimate how long it would take them to complete
the job that is assigned to them. For this, we can
build a ‘predictor’ to make these estimates. There is
still the issue of how the originating agent makes an
estimate of the jobs completion time. The predictor
can estimate number of different paths to be tested
(basis path testing), number of data variables to be
assessed (data flow testing), number of loops to be
exercised (loop testing), number of conditions to be
verified (control flow testing) [26]. Based on the
above factors, the predictor can predict the number
of test cases to be generated and executed and the
time duration required forit [17, 18].The components
and working principle of testing agent is explained
in Figure 2.

Evolution of Agent-Oriented Distributed Model for Software Testing: A Layered Approach 113

Figure 1. Information flow related with distributor agent.

a. Job Origination: The task assignments for the
testing agents are to be delivered by the distributor
D. After receiving the assignments from D, each
agent can manage and control itself on a local
dimension and interact directly with its clones to
exchange, provide and receive services, data and
knowledge. But the testing agents need not to
communicate with each other. Similarly there is no
interaction to be maintained between the clones of
testing agents. The details are hidden to each other.
Testing agents must have prediction modules to
compute about Cj, Kj for test scheduling. The testing
agents have independent options to be operated
either in the testing mode or in the distributor mode
and that should be based on the time parameter
supplied by the distributor agent and the structural
properties of the software being tested.

b. Testing Mode: In this mode, the testing agents will
be performed to execute the test cases and at the
end, send the technique specific integrated test
report to D. Here aj needs to generate clones and A
must be the subset of S. i. e., xy andSA ≤∈ .
This is explained in the step-3.2. in the cloning
algorithm. In this mode, the total time to be spent in
aj can be calculated as in equation (1) as follows.

)(
jj egjj ttCT +∗= (1)

c. Distributor Mode: The clones of any agent must be
controlled by their respective parent agents. i. e., all

testing agents (except clones) must be capable
enough to act as a distributor and as a load
scheduler for their respective clones. The message
from aj to its clones might be a set of {P or part of P
+ specification about acj}. After the completion of
assigned task to the clones, the response
transmission to the parent agent will consist of
{Reference to Partial P + specification about acj +
Individual test Results}. Then the parent agent will
collect the individual test results from its clones and
will generate the integrated test report for any
particular testing environment. This mode is
explained in the step-3.3 in the cloning algorithm. In
this mode, the testing agent aj can be defined as,

},........,,{ 121 −=
jjKjjjj acacacaa where Kj

indicates the total number of agents in the specific
testing environment. Kj-1 denotes the number of
cloning agents for testing purpose only and the
remaining one aj (testing or parent agent) will act as
environmental distributor (distributor only for
specific testing technique) not as D. If any agent aj
is overloaded, the load must be shared by multiple
identical agents. i. e., aj must be cloned as ac1, ac2,
and so on. Here, A needs not to be the subset of S. i.
e., xy but SA ≤∉ . The total time to be spent for
testing can be calculated by using equation (2) as
follows.

)tt()K/C(T
jj egjjj +∗= (2)

EWI: External World Interface, i. e., interface with the users.
IWI: Internal World Interface, i. e., interface with other system components.
ITR: Integrated Test Report, i. e., consolidated output from the distributor.
ETR: Environmental Test Report, i. e., technique based output from the Individual testing agent.
.Information flow inside the agent :ــــــــ
……: Information outside the agent.

 Test Technique 1

 Test Technique y

 Service Agent Specification 1

 Service Agent Specification y

 Assignment to a1

 Assignment to ay

Current Activity Information

Required Techniques
Classification

Service Agent
Identification

Service Agent
Registration

 Incomplete
Registration

Request for
Service

Response from
Service Agent

Assignment
Registration Process

ITR
Test
Report
Integrator

ETR of a1

ETR of ay

ETR from a1

ETR from ay

Test Result Integration

On Registration
Completion

EWI

EWI

EWI

Request
from Ext.
World

ITR

IWI

IWI

IWI

Request for
Service Agent

Registration
Response from
Service Agent

Assignment to a1

Assignment to ay

ETR from a1

ETR from ay

114 The International Arab Journal of Information Technology, Vol. 3, No. 2, April 2006

2.2.2. Cloning of Agents
All the clones of a particular agent are identical in that
they have exactly same behavior. Each principle
partner (clone) can manage and control itself on a local
dimension and interact directly with its originator to
exchange, provide and receive services, data and
knowledge. The structure of the agent is the reduced
version of testing agent, which only consists of the
‘testing section’ and ‘test result integrator’ as in the
testing agent.
Effect of Cloning: The addition of testing agents

improves the adequacy criteria and enhances the defect
detection rate with corresponding increment in the
number of test cases. The addition of clones for
particular environment will reduce the total processing
time but there will be an increment in the number of
testers in the manual testing. Of course, if one adds
more agents (clones) in a particular environment, then
the system throughput will always improve irrespective
of the type of testing – either manual or automated.
The cloning process can be done based on either Tp or
units (classes) components, packages, etc. For the
remainder of the simulation runs in this paper, the
cloning process is based on the number of units
(classes).

2.2.3. Request Negotiation Algorithm
Definition 2: With respect to the product Pq which is to
be tested, the required set of agents can be defined as:

















≤<≤<≤<

=

=

= −

.0,0,0

),,.......,,(

),,.......,,(

121

21

yjHuFq

acacacaa
aaaDAA

A
ujq ujKujujujuj

uyuuuuu

P
 (3)

Where the following hold:
• Pq: Is the product to be tested and F is the total
number of requests waiting in the request queue for
service. On the arrival of new requests, the request
queue will be updated automatically and the count F
also will be updated as F = F + 1.

• H: Is the number of products to be tested
simultaneously.

• For successful service, i. e., agents allocation for the
product Pq,

qP
A must be less than or equal to I,

where I is the set of agents that are idle. i. e., not
participated in the current service.

• auj: Is the one of the testing agent of the product u in
H and acuj… is the one of the clone of auj.

• Kuj: Is the total number of agents in the particular
testing environment of u and Kuj-1 denotes the
number of clones of auj (aj of the product u).

Figure 2. Information flow related with testing agent

IWI

IWI

IWI

IWI

Request
for Clone

Registration
Response
from Clone

Assignment
to ajKj-1

Test Report
from aj1

Test Report
from ajKj-1

Assignment
to aj1

Test Case
Generator

Test Case Specifications

Current Activity Information

EWI

EWI

Test Case
Execution &
Monitoring

Individual
Test Report

Clone Specification aj1

 Assignment to ajKj-1
Clone Specification ajKj-1

 Assignment to aj1

Testing Mode

Distribution Mode

IWI

IWI

IWI

IWI

Request from
Distributor

ETR

Response to
Distributor

Assignment
from
Distributor

On Registration
Completion

Registration,
Prediction &
Mode Selection

Clone
Identification

Clone
Registration

Request
for Clone

Response
from Clone

Decision Making Distributor
Mode

Testing
Mode

Test Report from aj1

 Test Report from ajKj-1

ETR
Test
Report
Integrator

Test Report of aj1

Test Report of ajKj-1

Test Result Integration

Evolution of Agent-Oriented Distributed Model for Software Testing: A Layered Approach 115

Request negotiation algorithm is explained as follows:

1. Initialization
1.1. I = S, H = 0, q = 0.
1.2. Receive the new requests and set F with

appropriate value.
2. 2.1. q = q + 1.
2.2. Get Request (Pq).
2.3. Define

qP
A as in (3).

2.4. If IA
qP
≤ ,

 2.4.1. Allocate agents for the product Pq
 as defined in the step-2.3.
2.4.2. Update I as

qP
AII −= .

 2.4.3. H = H + 1.
2.4.4. Update F as

 F = F – Request (Pq)
2.5. If ,P IA

q
> Request (Pq) cannot be

processed temporarily. Goto step-3.
3. If q > F, q = 0.

 4. If 0≠F , then goto the step-2.1.
 5. Stop the process.

3. Experimentation and Analysis
The minimal version of the proposed framework is
constructed and tested in a LAN set up in the concept
proving stage [3]. The test samples are implemented in
C++ as experimental projects by two different teams.
Team 1 consists of four students and headed by an
academician and the team 2 consists of four students
and headed by a software developer. For each version
of the same project, the number of test cases is defined
as a fixed package for a particular testing technique.
As said earlier, the framework is constructed on the

basis of few basic operational real-world testing
techniques, as an attempt to describe how to practice
agent-oriented software testing. The experiment was
carried out in different environments (testing
techniques) namely loop testing (testing loops only),
condition testing (testing conditions only) and data
flow testing (testing data variables only).
The significance of the proposed framework can be

realized by analyzing the experimental values of total
number of test cases for each technique (Cj), time spent
for particular testing technique (Tj), errors found (Ej)
by using Cj, and the number of agents/persons involved
in particular testing Kj from the Table 1. In this
minimal version, the clone generation is based on the
number of classes (one class-one agent) and not based
on Tp.
From the estimates and observed values, the

primary advantages of the agent-decomposition,
independency and parallel activation are realized.
From the estimates of Cj, Tj, Ej and Kj-1 under
different situation, it is observed that the reliability of
the software can be enhanced by applying the

framework and considerable amount of time can be
saved which will be needed as the software approaches
shipping without any degradation with respect to the
reliability of the software irrespective of number of
technical persons involved.

Table 1. Test samples description and test reports.

Type of Projects

Game Editor
Laboratory
Experimental

Pack

Medical
Image
Analysis
Tool

Test Statistics

Team
1

Team
2

Team
1

Team
2

Team
1

Team
2

Team
1

Team
2

Size in LOC 400+ 500+ 700+ 700+ 1600+ 1800+ 2500+ 2500+

Cj 45 55 90 95 170 185 240 265
Tj
in
hrs

5.5 8.0 13.0 14.0 25.0 28.0 36.0 40.0

Ej 18 25 27 25 31 33 31 36

W
ith
ou
t M
A
S

Kj 1 1 1 1 1 1 1 1
Cj 45 55 90 95 170 115 240 265
Tj
in
hrs

1.5 2.0 2.25 2.25 2.0 2.25 2.25 2.5

Ej 25 26 28 26 36 39 37 42

T
yp
e
of
 T
es
tin
g

(L
oo
p
Te
st
in
g)

W
ith
 M
A
S

Kj 3 3 4 4 10 10 12 12
Cj 69 84 114 123 294 336 414 438
Tj
in
hrs

8.5 10 15 17 45 50 66 78

Ej 18 23 38 36 58 64 24 26

W
ith
ou
t M
A
S

Kj 1 1 1 1 1 1 1 1
Cj 69 84 114 123 294 336 414 438
Tj
in
hrs

2.25 2.5 3.0 3.25 3.5 4.25 4.5 5.5

Ej 21 25 45 48 69 76 31 37

T
yp
e
of
 T
es
tin
g

(C
on
di
tio
n
Te
st
in
g)

W
ith
 M
A
S

Kj 3 3 4 4 10 10 12 12
Cj 28 34 48 51 82 89 117 121
Tj
in
hrs

4 5.25 6.5 7.0 10.0 12.0 15.0 16.0

Ej 18 24 19 26 29 35 42 46

W
ith
ou
t M
A
S

Kj 1 1 1 1 1 1 1 1
Cj 28 34 48 51 82 89 117 121
Tj
in
hrs

1.0 1.25 1.25 1.5 1.0 1.25 1.0 1.0

Ej 19 29 23 27 34 37 52 53

T
yp
e
of
 T
es
tin
g

(D
at
a
Fl
ow
 T
es
tin
g)

W
ith
 M
A
S

Kj 3 3 4 4 10 10 12 12

4. Conclusion
The multi-agent system presented here is systematic
and it does illustrate its effectiveness in selecting the
appropriate assignment based on requirements. This
methodology rests on the idea of building a conceptual
model that is incrementally refined and it can be
extended from other existing models of other fields of
software engineering. The arguments and results
support that the agent models fit better for testing the
complex software systems. This allows the system to
perform better than the existing non-agent systems in

116 The International Arab Journal of Information Technology, Vol. 3, No. 2, April 2006

the face of high throughput. The interpretations offered
here concentrate on necessary, rather than sufficient
conditions, so that they can be extended. Other related
work includes developing distributed algorithms for
reorganizing when goals are not being met by the
agents in the systems.

References
[1] Avison D., Lau F., Myers M., and Nielsen P.

A., “Action Research,” Communications of the
ACM, vol. 42, no.1, pp. 94-97, January 1999.

[2] Basali V. R., Selby R. W., “Comaparing the
Effectiveness of Software Testing Strategies,”
Technical Report, University of Marryland,
College park, USA, 1985.

[3] Booch G., Object-Oriented Analysis and Design
with Applications, Addison-Wesley, 1994.

[4] Chavez A., Mouka A., and Maes P., “Challenger:
A Multi-Agent System for Distributed Resource
Allocation,” in Proceedings of the 1st
International Conference on Autonomous Agents,
Marina Del Ray, California, USA, pp. 323-331,
1997.

[5] CianCarini P. and Wooldridge M. (Ed), Agent-
Oriented Software Engineering, vol. 1957,
LNCS, Springer-Verlag, 2001.

[6] Decker K., Pannu A., Sycara K., and Williamson
M., “Designing Behavior for Information
Agents,” Technical Report, The Robotics
Institute, Carnegie Mellon University, Panama,
July 1996.

[7] Dhavachelvan P. and Uma G. V., “Multi-Agent
Based Integrated Framework for Intra-Class
Testing of Object-Oriented Software,” accepted
in Journal on Applied Soft Computing, Elsevier,
pp. 205-222, 2004.

[8] Duran J. W., Ntafos S. C., “An Evaluation of
Random Testing,” IEEE Transactions on
Software Engineering, vol. SE-10, no. 4,
pp. 438-443, July 1984.

[9] Franklin S. and Graesser A., “Is it an Agent, or
Just a Program?: A Taxonomy for Autonomous
Agent,” in Proceedings of the 3rd International
Workshop on Agent Theories, Architectures, and
Languages, Springer-Verlag, pp. 197-203, 1996.

[10] Gamma E., Helm R., Johnson R., and Vlissides
J., Design Patterns, Addison-Wesley, 1995.

[11] Henry S. and Goff R., “Complexity Measurement
of a Graphical Programming Language,”
Software Practice and Experience, vol. 19, no.
11, pp. 1065-1088, 1988.

[12] Hetzel, William C., The Complete Guide to
Software Testing, QED Information Sciences,
1998.

[13] Jennings N. R. and Wooldridge M. (Eds), Agent
Technology: Foundations, Applications and
Markers, Springer, Berlin, 1998.

[14] Jennings N. R., Wooldridge M., “Agent-Oriented
Software Engineering,” in Bradshaw J. (Ed),
Handbook of Agent Technology, AAAI/MIT
Press, 2000.

[15] Jones B. F., Sthamer H. H., and Eyres D. E.
“Automatic Structural Testing Using Genetic
Algorithms,” Software Engineering Journal, vol.
11, no. 5, pp. 299-306, 1996.

[16] Kitchenham B. A., Pfleeger S. L., Hoaglin D. C.,
and Rosemberg J., “Preliminary Guidelines for
Empirical Research in Software Engineering,”
IEEE Transactions on Software Engineering, vol.
28, no. 8, August 2002.

[17] Malaiya Y. K., Karunanithi N., and Verma P.,
“Predictability of Software Reliability Models”,
IEEE Transaction on Reliability, vol. 41, no. 4,
pp.539-546, December 1992.

[18] Malaiya Y. K., Mayrhauser A. V., and Srimani P.
K., “An Examination of Fault Exposure Ratio,”
IEEE Transaction on Software Engineering, vol.
19, no. 11, pp. 1087-1094, November 1993 .

[19] Nicholas R. Jennings, “On Agent-Based
Software Engineering,” International Journal on
Artificial Intelligence, vol. 117, pp. 277-296,
2000.

[20] Perini A., Brescian P., Giorgini, P. Giunchigila
F., and Mylopoulas J., “Towards an Agent-
Oriented Approach to Software Engineering,” in
Proceedings of Dagli Oggetti Agli Agenti (Woa),
Modena, Italy, pp. 272-284, September 2001.

[21] Petrie C., “Agent-Based Software Engineering,”
Lecture Notes in Artificial Intelligence,
Springer-Verlag, vol. 1957, pp. 58-76, 2001.

[22] Seaman C. B., “Qualitative Methods in Empirical
Studies of Software Engineering,” IEEE
Transactions on Software Engineering, vol. 25,
no. 4, August 1999.

[23] Sjoberg D. I. K., Anda B., Arisholm E., Dyba T.,
Jørgensen M., Karahasanovic A., Koren E. F.,
and Vokac M., “Conducting Realistice
Experiments in Software Engineeing,” in
Proceedings of the International Symposium on
Empirical Software Engineering (ISESE’02),
IEEE Computer Society, pp. 17-26, 2002.

[24] Szyperski C., Component Software, Addison
Wesley, 1998.

[25] Tracey N., Clark. J., and Mander K., “The Way
Forward for Unifying Dynamic Test-Case
Generation: The Optimization-Based Approach,”
in Proceedings of the IFIP International
Workshop on Dependable Computing and it’s
Applications (DCIA), South Africa, pp. 169-180,
January 1998.

[26] Trivedi K. S., Probability and Statistics with
Reliability, Queuing, and Computer Science
Applications, Prentice Hall, India, 2003.

Evolution of Agent-Oriented Distributed Model for Software Testing: A Layered Approach 117

[27] Wagnor K., Chin C., and McCluskey E., “Pseudo
Random Testing,” IEEE Transaction on
Computers, vol. C-36, pp. 332-343, March 1987.

[28] Wooldridge M. and Jennings N. R., “Intelligent
Agents: Theory and Practice,” Knowledge
Engineering Review, vol. 10, no. 2, 1995.

[29] Zhu H., Patrick A. V. Hall, and John H. R.,
“Software Unit Test Coverage and Adequacy,”
ACM Computing Surveys, vol.29, no. 4, pp. 367-
427, December 1997.

Dhavachelvan Ponnurangam
received his BE degree in electrical
and electronics engineering from the
University of Madras, India, in 1997
and his ME degree in computer
science and engineering from the
Anna University, India, in 2000.

Currently, he is an assistant professor in the
Department of Information Technology at Sri
Manakula Vinayagar Engineering College,
Pondicherry, India, and he has completed his PhD in
the area of agent-based software testing, from the
Department of Computer Science and
Engineering, Anna University, India. His research
interests include software testing, software metrics, and
soft computing and related applications.

Uma Anbarasan received her ME
and PhD degrees in computer
science, both from the Anna
University, Tamil Nadu, India, in
1993 and 2001, respectively.
Currently, she is an assistant
professor in the Department of

Computer Science and Engineering at the Anna
University of Tamil Nadu, India. She has published
approximately 40 journal and congress papers, and she
is the author of two books in computer science. Her
research interests include neural networks, fuzzy
systems, machine learning, and related applications.
Her current main research interests are in the fields of
fuzzy and linguistic modeling, knowledge based
systems, and fuzzy expert systems.

