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Operator Decomposition of Graphs
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Abstract: In this paper we introduce a new form of decomposition of graphs, the (P, Q)-decomposition. We first give an 
optimal algorithm for finding the 1-decomposition of a graph which is a special case of the (P, Q)-decomposition which
was first introduced in [21]. We then examine the connections between the 1-decomposition and well known forms of 
decomposition of graphs, namely, modular and homogeneous decomposition. The characterization of graphs totally 
decomposable by 1-decomposition is also given. The last part of our paper is devoted to a generalization of the 1-
decomposition. We first show that some basic properties of modular decomposition can be extended in a new form of 
decomposition of graphs that we called operator decomposition. We introduce the notion of a (P, Q)-module, where P and 
Q are hereditary graph-theoretic properties, the notion of a (P, Q)-split graph and the closed hereditary class (P, Q) of 
graphs (P and Q are closed under the operations of join of graphs and disjoint union of graphs, respectively). On this base,
we construct a special case of the operator decomposition that is called (P, Q)-decomposition. Such decomposition is 
uniquely determined by an arbitrary minimal nontrivial (P, Q)-module in G. In particular, if G ∉ (P, Q), then G has the 
unique canonical (P, Q)-decomposition. 
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1. Introduction
All graphs considered are finite, undirected, without 
loops and multiple edges. For all notions not defined 
here the reader is refered to [3]. The vertex and the 
edge sets of a graph G are denoted by V (G) and E
(G), respectively, while n denotes the cardinality of V
(G) and m the cardinality of E (G). We write 

( )vuvu ~~ /  if vertices u and v are adjacent (non-
adjacent). For the subsets U, W ⊆ V (G) the notation 
U∼W means that u∼ w for all vertices Uu∈ and w ∈
W, U ~/  W means that there are no adjacent vertices u∈
U and w ∈ W. To shorten notation, we write u ∼ W
(u~/W) instead of {u}∼W ({u} ~/W). The subgraph of G
induced by a set A ⊆ V (G) is denoted by G [A]. We 
write G  for the complement graph of G. The 
neighborhood of a vertex v in the graph G is denoted by 
NG

(v) (or N (v)), )(\\)()( vNvGVvN GG = .
One type of graph decomposition based on the well-

known notion of split graphs is investigated. A triad T = 
(G, A, B), where G is a graph and (A, B) is an ordered 
bipartition of V (G) into a clique A and a stable set B, is 
considered as an operator acting on the set of graphs. An 
operator T acts on a graph H by formula:

( )},/{ HVxAaaxHGTH ∈∈∪∪= (1)

(all edges of the complete bipartite graph with the parts 
A and V (H) are added to the disjoint union GU H).

An isomorphism of triads is defined as an 
isomorphism of 2-colored graphs. Denote by Tr the set 
of triads distinguished up to isomorphism of triads. The 
action (1) induces the associative binary operation on 
Tr. So the set Tr becomes a semigroup.of operators with 
the exact action on the set of graphs. The semigroup Tr
was introduced in [21]. The following structure theorem 
of the decomposition was presented in the same paper.

A graph F is called decomposable if there exist a 
triad T and a graph H such that F = TH, otherwise F is 
indecomposable. The decomposition theorem asserts 
that every decomposable graph F can be uniquely 
represented in the form:

F = T1T2…TkF0
Where Ti is indecomposable element of the semigroup 
Tr and F0 is indecomposable graph. This theorem 
occurs to be useful instrument for the characterization 
and enumeration of several graph classes [19, 22]. On 
the base of the theorem, the Kelly-Ulam reconstruction 
conjecture was proved for the class of decomposable 
graphs. A criterium of decomposability of graphs was 
presented in [23]. In the same paper on the base of the 
decomposition theorem an exhaustive description of 
unigraphs was obtained. (A graph is called a unigraph 
if it is determined uniquely up to isomorphism by its 
degree sequence). Namely, it was proved that a graph is 
a unigraph if and only if all its indecomposable 
components are unigraphs, and the catalogue of 
indecomposable unigraphs was given.

In this paper, a decomposition theory is developed. 
In section 2, we present the 1-decomposition which 
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was first introduced in [21]. An o (n) algorithm of 
constructing 1-decomposition starting from the degree 
sequence of the vertices of a graph is presented in 
section 3. In section 4, several examples of the 
applications of 1-decomposition are discussed 
concerning the structure and recognition of some classes 
of graphs. We study also a connection between the 1-
decomposition and two well known forms of 
decomposition of graphs namely modular and 
homogeneous decomposition. Finally, we characterize 
by forbidden subgraphs the family of graphs which are 
totally decomposable by the 1-decomposition. A far-
reaching notion of a more general decomposition that 
we called (P, Q)-decomposition is introduced in section 
5. We conclude this section by giving an example of the 
application of (P, Q)-decomposition.

2. Basic Structure Theorem of 1-
Decomposition

This decomposition is based on the well-known 
notion of split graphs. A graph G is called split [6] if 
there is a partition of its vertex set into a clique A and 
an independent set B. We call this partition a 
bipartition. One of the parts can be empty, but not 
both.

( ) BAGV U= (2)

In what follows, a sequence of length n is called 
an n-sequence. The ith member of a sequence d is 
denoted by di. An n-sequence d is graphical if a graph 
exists (a realization of the sequence d) such that d is 
its degree sequence (the list of its vertex degrees). A 
graphical sequence is called split if it has a split 
realization. A splitness criterium for a graph is 
formulated in terms of vertex degrees. Therefore, all 
realizations of a split sequence are split. An n-
sequence d is called proper if

0...1 21 ≥≥≥≥≥− ndddn

Obviously, a graphical sequence can be assumed to be 
proper.

Theorem 1: For a proper graphical n-sequence d put 
m =  m (d) = max {i : di ≥ i - 1}. The sequence d is 
split if and only if the following equality holds

∑ ∑
= +=

+−=
m

i

n

mi
dimmdi

1 1
)1( (3) 

For m = 1 and m = n equality (3) has the form:

)1(0
1 1
∑ ∑
= =

−==
n

i

n

i
nndiordi ,

respectively [12]. 

It is convenient to consider split graphs together 
with fixed bipartitions. For a split graph G with 

bipartition (2), we shall call the triad (G, A, B) a 
splitting of G or a splitted graph.

Theorem 1 implies that a proper split sequence d
can be divided into two parts dA and dB which are the 
lists of vertex degrees for the upper (A) and the lower 
(B) parts of its realizations, respectively (one of the 
parts can be empty). The sequense d written in the 
form:

d = (dA; dB) 

is called a splitting of d or a splitted sequence. A 
splitted graph having dA and dB as the lists of vertex 
degrees for its upper and lower parts, respectively, is 
called a realization of the splitted sequence d.
The following assertion is obvious.

Corollary 1: A proper split n-sequence d with 
( ) 1)( −〉 dmd dm  has the unique splitting

(d1,…, dm (d) + 1,…dn) (4)

If ( ) 1)( −= dmd dm , the sequence d has exactly two 
splittings,, namely,(4) and

( ).,...,;,..., )(1)(1 ndmdm dddd −

The concept of isomorphism of splitted graphs 
appears naturally. Let (G, A, B) and (H, C, D) be two 
splitted graphs, and HGf →:  be a graph isomorphism. 
If f preserves the parts, i. e., f (A) = C and f (B) = D, 
then f is called an isomorphism of splitted graphs (G, A,
B) and (H, C, D). In this case we 
write ( ) ( )DCHBAGf ,,,,: →  and (G, A, B) ≅ (H, C,
D). It may happen that ( ) ( ),,,,, DCHBAG ≅/
although HG≅ (for example, two splitted graphs 
resulting from K4 - e).

In what follows, graphs are considered up to 
isomorphism, but splitted ones are considered up to 
isomorphism of splitted graphs. Denote by Σ and Γ the 
sets of splitted graphs and of simple graphs, 
respectively. Define the composition Γ→Γ×Σ:o
composition as follows: 

If Γ∈=Σ∈ HBAG ),,,(,σσ ,  then 
( ) ( ){ }HVAaaHGH ∈∈+= ννσ ,:Uo (5)

The edge set of the complete bipartite graph with 
the parts A and V (H) is added to the disjoint union
GUH If, in addition, H is a split graph with a 
bipartitionV(H)=CUD, then the compositionσ ° H =F
is split as well with the bipartition 
( ) ( ) ( ).DBCAfV UUU= In this case we suppose

(G, A, B) ° (H, C, D) = (F, AU C, B U D)         (6)

In what follows we omit the sign o  of the composition.
Formula (6) defines a binary algebraic operation on 

the set Σ  of triads which is called the multiplication of 
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triads. It is clear that this operation is associative. In 
what follows Σ is regarded as a semigroup with the 
multiplication (6).

Formula (5) defines an action of the semigroup Σ on 
the set of graphs, i. e.,

(σp) G = σ (pG) for Γ∈Σ∈ G,,ρσ .

We call a representation of a graph G in a form:

,...1 HG kσσ= Γ∈Σ∈ Hi ,σ
s

an operator decomposition of the graph G.
An element Σ∈σ  is called decomposable if there 

are Σ∈βα , such that .βασ =  Otherwise σ is 
indecomposable. Analogously, a graph G is called 1-
decomposable (or decomposable on the level split) if 

Γ∈∑∈= HHG ,,σσ . Otherwise G is 1-
indecomposable (indecomposable on the level split).

Theorem 2:

1. An n-vertex graph G with a proper degree 
sequence

( ) ,...,,...,, 2121 nn ddddddd ≥≥≥=

is 1-decomposable if and only if there exist 
nonnegative integers p and q such that

∑ ∑
= +−=

+−−=<+<
p

i

n

qni
ii dqnpdnqp

1 1

)1(,0 (7)

2. Call a pair (p, q) satisfying the conditions (7) good. 
One can associate with every good pair (p, q) the 
decomposition

G = (F, A, B) H              (8)

Where
( ) ( )dddd qnpp ,...,,,..., 11 −+  and ( )dd nqn ,...,1+−

are the vertex degree lists from A, V (H), and B, 
respectively. Moreover, every 1-decomposition of 
the form (8) is associated with some good pair.

3. Let po be the minimum of the first components in 
good pairs, and q0 = |{i: di < p0}| if p0 ≠ 0 and q0 = 
1 for p0 = 0 then the triad (G, A, B) in (8) is 
indecomposable if and only if the relevant good 
pair (p, q) coincides with (p0, q0) [23].

Corollary 2: The component H in operator 
decomposition of the form G = σH is 1-indecompo-
sable if and only if for the associated good pair (p, q) 
the parameters p and q are the maximums of the first 
and the second coordinates in good pairs, 
respectively.

Theorem 3:

1. Every graph G can be represented as a composition

G = (G1, A1,B1) … (Gk, Ak, Bk) G0 (9)

of indecomposable components. Here (Gi, Ai, Bi)
are indecomposable splitted graphs and G0 is an 1-
indecomposable graph. (If G is 1-indecomposable, 
then there are no splitted components in (9)).
(Decomposition (9) is called 1-decomposition of 
G).

2. Graphs G and G' with 1-decompositions (9) and

0111 ),,)...(,,( GBAGBAGG lll ′′′′′′′=′

are isomorphic if and only if the following 
conditions hold: 

a. G0  ≅ G'0
b. k = l
c. (Gi, Ai, Bi) ≅ (G'i, A'i, B'i), i = 1…., k

Denote by Σ*and *Γ the sets of indecomposable 
elements in the semigroup Σ and of 1-
indecomposable graphs, respectively [21].

By the decomposition theorem, each element σ in the 
semigroup Σ of splitted graphs can be uniquely 
decomposed into the product:

*
1 ,1,... Σ∈≥= ik k σσσσ

and every decomposable graph G can be uniquely 
represented as the decomposition:

*
00 ,, Γ∈Σ∈= GGG σσ

of the operator part σ and the indecomposable part 
G0, (we call V (G0) a 1-module). In other words, the 
following corollary holds.

Corollary 3: The set Σ of splitted graphs is the free 
semigroup over the alphabet Σ* with respect to 
multiplication (6). A free action of this semigroup is 
defined by (5).

The triads ),,( iiii BAGT = with φ=iB  are 
allowed in decomposition (9). We call such triads A-
parts of G. It is abvious that |Ai| = 1 in every A-part. 
We call two A-parts Ai and Aj, i < j, undivided if 
every Tk, i < k < j, is A-part also. Undevided B-parts 
( φ=iA ) are defined analogously. If one substitutes all 
undevided A-parts as well as undevided B-parts by 
their products, one gets a canonical 1-decomposition 
of G. This decomposition does not contain 
neighboring A-parts (as well as neighboring B-parts). 
Theorem 3 implies that canonical 1-decomposition of 
a graph G is determined uniquely.

3. An O (n) Algorithm for Constructing 
the Canonical 1-Decomposition

The algorithm is based on Theorem 3. The set of 
vertices of a graph G with equal degrees is called a 
link in G.
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Corollary 4: For every graph all the vertices of one 
link are included in the same canonical component. If 
the component is a triad, then a link is contained
entirely in the upper or in the lower part of the triad.

Theorem 4: The canonical 1-decomposition of a 
graph can be constructed in time O (n) from the 
degree sequence of the graph.

Proof: Here we assume that vertices of an arbitrary 
graph G are enumerated in the proper order, i. e.,

1degdeg +≥ ii vv , i = 1,…, n - 1. We denote by:

ji
k
N

kk CCCCCC N ≠= ),,...,,( 21
21 (10)

the brief degree sequence of G. Here, N is a number 
of pairwise different vertex degrees of G, and ki is a 
number of vertices of G with the degree Di, i = 1, ..., 
N. Let

D = (D1, D2, … , DN)  (11)

be corresponding sequence of links in G, i. e.,
Di = {v ∈ V (G) : deg v = Ci}. Note that ki is the 
number of vertices in Di. We give a description of an 
algorithm constructing the canonical 1-decomposition 
of G.

Input: The degree sequence (10) of a graph G and the 
corresponding sequence (11).

Output: Triads Ti = (G [AiUBi], Ai, Bi) and a set 
( )HVM ⊆  such that G = T1T2...TrG [M] is the 

canonical 1-decomposition of G.

It follows from Corollary 4 that we can regard Ai
(Bi) as the set of indices of members of D, which are 
included in the upper (lower) part of the component Ti. 
Analogously, we consider M as a set of indices of 
corresponding members of D.

Step 0: Construct the sequences S = (S0, ... , SN) and K
= (K0, ... , KN) of the sums as follows:

S0 := 0, K0 := 0, Si := Si – 1 + Ciki, Ki := Ki – 1
+ ki, i = 1,... ,N.

The sequences S and K can be constructed in time 
O(N). For arbitrary n0 ≤ nl ≤ r we have

.KKD,SSvdeg 1nn

n

nj
j1nn

Dv
01

1

0

01

1ni0n
i

−
=

−
∈

−=−= ∑∑
≤≤

U

Let the components T1, ..., Ti - 1 of the decomposition be 
already constructed. We denote by fD (lD) the minimal 
(maximal) index of members of D that are contained in 
none of T1, T2, ..., Ti -1. Let f (l) be minimal (maximal) 
of the vertex indices in 

Df
D (

Dl
D ). Initially, when i =

1, put fD = 1, f = 1; lD = N, l = n.

Step 1: Dominating sets.
If 

Df
C = l - 1, then:

1.1 construct Ti as follows: Ai := {fD}, Bi :={0};
1.2 fD:=fD + 1, f := f +

Df
k .

Step 2: Isolated sets.
If 

Dl
C = f - 1, then:
2.1 construct Ti as follows: Ai := {0}, Bi :=

{lD};
2.2 lD := lD - 1, l :=1 - klD .

Step 3: We will denote by pD, qD the sought for |Ai|, |Bi|, 
respectively, and by p, q the numbers of vertices in the 
upper and the lower parts of the relevant triad Ti (i. e.,
p =| |U

IAj
jD

∈

, q = | U
IBj

jD
∈

| ).

3.0 Put pD = 1, p = 
Df

k , Bound=0.
3.1 Find a natural number qD corresponding to 

pD, that is a number satisfying the following 
conditions:
(cl) Bound< pD + qD < lD - fD +1;

(lD - fD+1 naturally is the number of 
elements Di that are contained in none of 
T1, T2,... ,Ti-1)

(c2) 1++ DD qlC < p + (f - 1).

(c3) 
DD qlC − ≥ p + (f - 1). 

If such qD does not exist, then go to (5) (the 
number r of triads in the                                           
decomposition equals to i - 1). 

3.2 q := 
DDD qll Kk −− .

Step 3 requires O(qD - Bound) time.

Step 4: Check whether the pair (pD, qD) is good. If the 
equation

)1()(

()1()( 11

−−−

+−−=−−−

−

−−+

fqSS
qflpfpSS

DDD

DDD

qll

fpf

holds, then the pair (pD, qD) is good and perform:

4.1 construct Ti as follows: 

        Ai := {fD,fD + 1,...,fD + PD - 1},
Bi = {lD - D + 1,lD – Qd + 2, ..., lD};

4.2  fD := fD + PD,  f := f + p,
        ID := ID - qD, 1:= l - q.
Otherwise perform:
4.3 p := p +

DD pfk +  ,pD := pD + 1;
4.4 Bound := qD.  Go to (3.1).

Step 5: M := { fD + fD + 1, ..., lD}. 
 

Condition (cl) and operation on Bound in (4.4) provide 
that finding one component Ti requires O(qD + PD) 
time, where pD = |Ai|, qD = |Bi|. Since after constructing 
Ti we actually diminish in (2.2), (4.2) the unprocessed 
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sequence D (i.e. we diminish the boundary in (cl)) on 
pD + qD, the total complexity of the algorithm is O(N).

4. Applications of Structure Theorem of 1-
Decomposition

4.1. Characterization and Recognition of Some 
Graph Classes

Let us consider several simple examples. An edge set 
E' ⊆ EG is independent in G if the subgraph of G
induced by E' is a threshold graph. Let IE denote the 
family of independent edge sets. Analogously, a vertex 
set V' ⊆ V (G) is independent if G [V'] is a threshold 
graph. Let IE denotes the family of independent vertex 
sets. A graph G is matroidal [17] if the independence 
system (E, IE) is a matroid. A graph G is matrogenic 
[7] if the independence system (V, IV) is a matroid.

Let G be an arbitrary graph. Define a binary relation 
≥ on V (G) by u ≥ v⇔ N [u] ⊇ N [v], this relation is a 
preorder and it is called the vicinal preorder of G. If
u ≥ v or v ≥ u, then u and v are called comparable. 
Otherwise, u and v are incomparable, we denote this 
fact by u ||v. A preorder ≥ is total if u vu ≥  or 

uv ≥  for every u, v ∈ V (G). 
A graph G is called box-threshod (BT) [18] if for every 
two vertices u, v ∈ V (G) satisfy ,degdeg yxvu =⇒  
or equivalently:

.degdeg vuvu f⇒〉

A graph G is called regular if all its vertex degrees 
are equal. A split graph G with bipartition (A, B) is 
biregular if all vertices from A have the same degree 
and all vertices from B have the same degree. 

A (2K2, C4) free graph is called a pseudo-split [2]. A 
detailed description of the class PSplit of pseudo-split 
graphs is presented in [2]. In [16] the linear-time 
recognizes whether a graph is pseudo-split is proved. 
We repeat the last result on the base of 1-
decomposition.

It is well known that the class (1, 1) of split graphs 
coincides with the class of {2K2, C4, C5} free graphs
[6], so (1, 1) ⊂ PSplit. Let G ∈ PSplit \ (1, 1). Then G
contains an induced subgraph 5CH ≅ . Obviously if a 
vertex v of G - V (H) is adjacent (not adjacent) to some 
vertex of H then it is adjacent (non adjacent) to every 
vertex of H and all such vertices form a clique (stable 
set) in the graph G. Therefore G = TC5 for 5CG ≠  and 

TrT )1,1(∈ .
A graph G is called a net [14] if its vertex set V (G)

can be partitioned into the sets K and S such that: 

1. K is a clique, S is a stable set, and |K| = |S| ≥ 2.
2. There exists a bijection f between K and S such that 

either N (x) = {f (x)} for all vertices x in S (a thin 

net) or else N (x) = K - {f (x)} for all  vertices x in S
(a thick net).

The 1-decomposition theory allowed to describe the 
structure and enumerated matroidal and matrogenic 
graphs [22], box-threshold graphs [19]. 
 

Theorem 5: A graph is threshold, matroidal, 
matrogenic, or box-threshold if and only if all its 
indecomposable components are threshold, matroidal, 
matrogenic, or box-threshold, respectively.

Theorem 6: Let G be a graph, and (9) be its 1-
decomposition.

1. The graph G is matroidal if and only if [22]:

• All its 1-indecomposable components Gi, 1 ≤ i
≤ k, are one-vertex graphs or nets.

• The last component G0 is one-vertex, net, 
perfect matching of more than one edge, or the 
complements of this matching.

2. The graph G is matrogenic if and only if [22]:

• All its 1-indecomposable components Gi, 1 ≤ i 
≤ k, are one-vertex graphs or nets.

• The graph G0 is one-vertex, net, perfect 
matching of more than one edge, the comple-
ments of this matching or the chordless 
pentagon C5.

3. The graph G is box-threshold if and only if [19]:

• All its 1-indecomposable components Gi,1≤ i ≤
k, are split biregular graphs.

• The graph G0 is split biregular or non-split 
regular graph.

4. The graph G is pseudo-split if and only if G0 is 
split or 50 CG ≅

Corollary 5: Matroidal graph, matrogenic graph, 
box-threshold graph, and pseudo-split graph can be 
recognized in linear time starting from its degree 
sequence.

4.2. Connection of 1-Decomposition with 
Modular Decomposition

In this section we shall adapt the construction of the 
well known modular decomposition tree for taking into 
account the 1-decomposition of a graph. Let us remind 
some notions and facts from the modular 
decomposition theory (see, e. g., [3]).

Let G be a graph, M ⊆ V (G). M is called a module 
of G if Mv~ or .~ Mv / For every vertex 

( ) .M\GVv∈ If M is a module, then V (G) is naturally 
partitioned into three parts:

( ) .~,~, MBMAMBAGV /∪∪=  (12)

The partition (12) is associated with the module M.
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For every graph G, the sets V (G), singleton subsets of 
V (G) and Ø are modules. These modules are called 
trivial. All the other modules are nontrivial. A graph 
is prime if it contains only trivial modules.

Two modules M', M are overlapping if the sets 
'\,'\,' MMMMMM ∩ are all nonempty. A module 

M of a graph G is called strong if for any other 
module M' the modules M, M' do not overlap, i.e. one 
of the following conditions holds:

.','' MMMMMM ⊇⊆=∩ φ

For example, the vertex sets of the connected 
components of the graph G, the vertex sets of the 
connected components of the complement graphG , as 
well as trivial modules are strong modules. 

We write M1< M2 (M1<M2) if M1 is a module 
(strong module) of the graph G [M2], )(2 GVM ⊆ . 
One can immediately check the following.

Proposition 1: The binary relations < and <  are 
transitive.

A maximal strong submodule H of a module M is a 
strong module of G strictly contained in M, such that 
every strong module strictly containing H, contains 
also M. Proposition 1 directly implies.

Proposition 2: The maximal strong submodules of a 
strong module M of a graph G are exactly all 
maximal with respect to inclusion strong modules of 
G [M].

For an arbitrary graph G we define the directed 
graph T (G): The vertices (nodes) of T (G) are in a 
bijective correspondence with the strong modules of 
the graph G and have the names of these modules; the 
vertex M 2 is a son of the vertex Ml if and only if M 2
is a maximal strong submodule of Ml.

Theorem 7: For any graph G the graph T (G) is a 
rooted tree with a root in the vertex V (G).

Proof: It is sufficient to prove that every vertex of the 
graph T (G) has only one parent. Conversely, let the 
vertex M has two parents: M1 and M 2 .  So M ⊂ M1

and M ⊂ M2 The definition of a strong module 
implies that either M1 ⊂ M2 or M2 ⊂ M1. In any case 
we have the contradiction with the maximality of the 
strong module M. 

Let us mark every vertex of the tree T (G) by one 
of the labels

P, S, N, l   (13)

as follows:

• P if the induced subgraph G [M] is not connected.
• S if the induced subgraph G (M) is not connected.

• N if |M|>1 and both induced subgraphs G [M] and 
G (M) are connected.

• l if |M| = 1.

The labeled tree T (G) is called the modular 
decomposition of the graph G. Linear time 
algorithms for the modular decomposition were 
presented in [4, 5].

Often the tree T (G) is defined recursively. The 
application of 1-decomposition in such a recursion is 
based on the following theorem.

Theorem 8: Let G be biconnected (both G and G are 
connected) 1-decomposable graph and G = TH be the 
1-decomposition such that T =  (G , Al, Bl) is an 
indecomposable triad. Let ),...,,( 1

2
1

1
1

rAAA  be a 
partition of A1 into subsets of vertices with equal 
neighborhoods in B1, and let ),...,,( 1

2
1

1
1

sBBB be 
analogous partition of Bl into subsets of vertices with 
equal neighborhoods in Al. Put M = V (H). Then

sr BBBAAAM 1
2

1
1
11

2
1

1
1 ,...,,,,...,,,

is the list of maximal strong modules of the graph G.

Proof: Let M' be a non-trivial module in G and

.' MM ⊆/   (14)

Put

.,~
,~,\~,'\~

''
12

'
12

'
111 1

MMCMBB

MAAMBBMAA

II

I

==

===

Let C ≠ φ then since CA ~~
1 and ,~~

1 CB /  we have 

21
~~~ BA  and .~~~

21 AB / From (14) we have φ≠22
~~ BA U

and therefore ,~~
11 φ=BA U  otherwise the triad T is 

decomposable:

).B~,A~
),B~A~(G)(B~,A~),B~A~(G()B,A,G(T

22

22111111111 UU==

So 11
' BAM U⊃ . Since the graph G is biconnected, 

then both sets A1 and Bl are nonempty. Further we have 
,~ 1AM BM ~/ and therefore )(' GVM = . But M' is 

nontrivial. The contradiction obtained proves that 
condition (14) implies

.' φ=MM I  (15)

We proved that M is maximal strong module in G.
If now M' is maximal strong module in G distinct 

from M, then (15) holds and so 1
' AM ⊆ or 1

' BM ⊆ . 
The further proof follows from the definition of a 
module.
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So if a graph G is 1-decomposable and (9) is its 1-
decomposition, then the modular decomposition tree of 
G has the form represented in Figure 1.

Figure 1. The modular decomposition tree of an 1-decomposable 
graph.

Now, define the tree Tl (G) from the tree T (G) by 
replacing the subtrees corresponding to the triads (Gi,
Ai, Bi) by leaves with appropriate names (Gi, Ai, Bi), 
and changing the label N of the fathers of (Gi, Ai, Bi) by 
the label 1.

Note that by Theorem 8 one can easily transform 
the tree T1 (G) into T (G) if it is necessary. But for 
some problems it is sufficient to have T1 (G) only, and 
we do not need to apply a “heavy artillery” of 
constructing N-nodes in modular decomposition tree. 
Let us present some examples of such cases.

A graph G is a spider if it can be represented in the 
form G = (H, K, S) R where H is a net with its net 
partition (K, S), and R is an arbitrary graph. In other 
words a spider G is a graph of the one of the following 
types:

a. G is split graph with a bipartition SKGV U=)(  such 
that all edges between K and S form a perfect 
matching.

b. G = H , where H is a graph of type (a).
c. G = (H, K, S)R or G = (H , K, S)R, where H is a 

graph of type (a) and R is an arbitrary graph.

Proposition 3: A graph G is a spider if and only if the 
first indecomposable component in its 1-
decomposition is of the form (a) or (b). Hence it can be 
easily recognized from its degree sequence.

A graph G is called P4-sparse [10] if no set of five 
vertices induces more than one P4 in G.

Theorem 9: A graph G is P4-sparse if and only if one of 
the following conditions holds for every induced 
subgraph H of G with at least two vertices [14]:

1. H is disconnected.
2. H is disconnected.
3. H is isomorphic to a spider.

A graph G is called P4-reducible [13] if no vertex in G
belongs to more than one induced P4 of G. Clearly the 

class of P4-reducible graphs is a subclass of P4-sparse 
graphs.

In our terms the characterization theorem of P4-
reducible graphs is formulated in the following way.

Theorem 10: A graph G is P4-reducible if and only if 
for every induced subgraph H of G exactly one of the 
following conditions is satisfied [13]:

1. H is disconnected.
2. H is disconnected.
3. H can be represented in the form H = (H1, A1, B1) 
H0, H1 ≅ P4. 

Figure 2. An example of a P4-sparse graph G and its tree T1(G).

Note that a spider is prime if |R| ≤ 1 (in this case the 
spider contains only trivial strong modules).

Theorem 11:

1. A graph G is P4-sparse if and only if Tl (G) does not 
contain an N-node and its leaf is either a clique or a 
stable set or a prime spider.

2. A graph G is P4-reducible if and only if TI (G) does 
not contain an N-node and its leaf is either a clique 
or a stable set or a P4.

Corollary 6:

1. The set of P4-sparse graphs is a closure of the set of 
the one-vertex graph and prime spiders with respect 
to the operations of disjoint union of graphs, join of 
graphs, and the multiplication on the prime spiders.

2. The set of P4-reducible graphs is a closure of the set 
of one-vertex graph and P4 with respect to the 
operation of disjoint union of graphs, join of graphs,
and the multiplication on P4.

So, the tree T1 (G) of the P4-sparse and P4-reducible
graph G does not contain an N-node and we don't need 
to find strong modules for recognizing P4-sparse and 
P4-reducible graphs.
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4.3. Totally 1-Decomposable Graphs
Denote by (1, P, S) the class of graphs whose 
decomposition tree T1 (G) does not contain an N-node 
(totally T1-decomposable graphs). Now, we are going 
to characterize the class (1, P, S).

The endpoints of the P4 with the vertex set {a, b, c, 
d} and the edge set {ab, bc, cd} are the vertices a and d 
while b and c are the midpoints of this P4. Let G be an 
arbitrary graph and let q be an internal node of T (G). 
We denote by M (q) the corresponding module of G i.
e., the set of leaves of the subtree in T (G) with the root 
in the vertex q. Let also V (q) = {q1, q2, …, qr}  be the set 
of sons of q in T (G). The representative graph G (q) of 
the module M (q) is the graph whose vertex set is V (q) 
and qi ∼ qj if and only if there exists a vertex of M (qi) 
that is adjacent to a vertex of M (qi), Note that by 
definition of a module, if a vertex of M (qi) is adjacent 
to a vertex of M (qj), then M (qi) ~ M (qj). Thus, G (q) 
is isomorphic to the subgraph of G induced by a subset 
of M (q) consisting of a single vertex from each 
maximal strong submodule of M (q) in the modular 
decomposition of G. So we can define a representative 
graph G (q) as the induced subgraph G [xl, x2,..., xr] of 
a graph G where xi is an arbitrary vertex in M (qi), i = 
l, 2, . . . , r.

It is easy to see that if q is an S-node then G (q) is a 
complete graph, if q is a P-node then G (q) is 
edgeless, and if q is an N-node then G (q) is a prime 
graph. Let Z(1, P, S) = {Z1, Z2, Z3, Z4, Z5} as shown in
Figure 3. Now, on the base of modular decomposition 
theory and two following known theorems we are 
going to show that (1, P, S) is exactly the class of Z(1, P,

S)
-free graphs.

Figure 3. The set Z(1, P, S) of graphs.

Theorem 12:  Every prime graph G containing C4
contains Z3 (a house) or Z6 (a domino) or a graph Z7
as shown in Figure 4 [11].

Figure 4. The graphs for Theorem 12.

It is evident, that for every prime split graph G there 
exists a bipartition ),( BRK U such that RK U is a 
clique, B is a stable set, |R| ≤ 1, degB (v) = 0 for a 
vertex Rv∈ and degB(u) > 0 for every vertex Ku∈ .

Theorem 13: Let G be a prime split graph with a 
bipartition ),( BRK U  then every vertex of B is an 
endpoint of an induced P4 of G and every vertex of 
K is a midpoint of an induced P4 in G [8]. 

Lemma 1: Every prime Z(1, p, s)-free graph G is split.

Proof: Note that a domino Z6 and a graph Z7 both 
contain the graph Z4 from Z(1, p, s), as well as a 
complement graph 6Z and a complement graph 7Z
both contain Z5 = 4Z . So, Theorem 12 together with the 
characterization of split graphs in terms of forbidden 
induced subgraphs prove the lemma.

Lemma 2: Let G be a Z(1, P, S)-free graph, and α be an 
N-node of the modular decomposition tree  T (G). 
Then G (α) is a split graph with a bipartition 

),( BRK U verifying the following conditions:

1. M (x) is a stable set for every node x ∈ B.
2. M (y) is a clique for every node y ∈ K.

Proof: Obviously, the representative graph G (α) is 
prime and, by Lemma 1, it is split. By Theorem 13, x is 
an endpoint of an induced P4 = G[x, y1, y2, x2] of the graph
G (α). If M (x) contains an edge ulu2, then the induced 
subgraph G[ul, u2, y1, y2, x2] is exactly Z5, a contradiction.

Let G[xl, y, y3, x3] be an induced P4 of the graph G (α) 
where y is a midpoint according to Theorem 13. If M(y)
contains two non adjacent vertices vl and v2, then the 
graph G contains a subgraph G[x1, vl, v2, y3, x3] isomorphic 
to Z4. The contradiction obtained proved the theorem.

Theorem 14: A graph G is TI -totally decomposable if 
and only if it is Z(l, p, s) free.

Proof: The “if” part is evident since every graph in Z(1, p,

s) is biconnected and 1-indecomposable. Now, let G be 
Z(1, p, s)

-free. By Lemma 2, for every N-node α in T (G) 
the graph M (α) is either split (when R = ø) or 1-
decomposable (where M (v) is the 1-module for a vertex 
v from nonempty R). Therefore the tree T1 (G) does not 
contain an N-node.

4.4. P-Connected Graphs and 1-Decomposition
A graph G is called P4-connected [15] (or P-
connected) if for every partition of V (G) into 
nonempty disjoint sets V1 and V2 there exists a 
crossing P4, that is a P4 containing vertices from both 
V1 and V2. The P-connected components (P-
components) of a graph are the maximal induced P-
connected subgraphs (or its vertex sets). Obviously P-
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connected components are onevertex graphs or have at 
least four vertices.

A P-connected graph G is separable if its vertex set 
V (G) can be partitioned into two nonempty disjoint 
sets V1 and V2 in such a way that every crossing P4 has 
its midpoint in V1 and it endpoints in V2. The partition 
(V1, V2) is called a separation. The following theorem 
provides the foundation of the homogeneous 
decomposition of graphs.

Theorem 15: For an arbitrary graph G exactly one of 
the following conditions is satisfied [15]:

1. Is disconnected.
2. G  is disconnected.
3. There is a unique proper separable P-connected 

components S of G with a partition (S1, S2) such that 
every vertex outside S is adjacent to all vertices in 
S1 and to no vertex in S2.

4. G is P-connected.

Now, we are going to outline the connection between 
1-decomposition and homogeneous decomposition.

Lemma 3: If G is a split 1-indecomposable graph, then 
G is P-connected.

Proof: Let (A, B) be the bipartition of V (G). Assume 
that G is not P-connected and let

)(... 121 GVVVV =UUU

be the partition of V (G) into P-components, and let 

.,...,2,1),,(),( liVBVABA iiii == II  

Fact 1: If there exist two adjacent vertices x ∼ y, x∈Ai,
y∈ Bj, then y ∼ Ai.

Proof: Without loss of generality assume that .1≠iV
Then .4≥iV   There exists a P4 in V1 containing x. Let

[ ] .,,,,~,,, 121214211 ii AxaBbbbaPbxabG ∈∈/≅

It is evident that a1 ~ y, otherwise G [y, x, a1, b1] ≅
P4. Let H be another P4 in Vi, such that {b1, al, x,
a2} .)( φ≠HVI  If at least one a1 or x is a midpoint of 
H, then y is adjacent to both midpoints of H. Now 
assume that b2 ∈ V (H). Let a3 be a midpoint of H
adjacent to b2. We have y ~a3 otherwise G [b2, a3, a1, y] ≅
P4. Further y is adjacent to both midpoints of H also.

Let ak∈ Ai. Since Vi is P-connected, then there exists 
a sequence H1, H2, ..., Hr of induced subgraphs of G, 
such that

V (Hj) ⊆ Vi, Hj ≅ P4, j = 1, 2, …, r,
V (Hj) ∩ V (Hj + 1) ≠ φ, j = 1, 2, …, r – 1, x ∈ V (H1), ak
∈ V(Hr)

Since y~x, y is adjacent to both midpoints of every Hj, 
in particular y~ak.

Fact 2: If y ~ Ai for some vertex y∈ Bj, then Ai ~ Bj.

Proof: On the contrary, suppose that there exist two 
non-adjacent vertices .,,~ jjiiji BbAaba ∈∈/ Then in 

complement graph G  the conditions of Fact 1 hold for 
vertices ai and bj. So we have ji Ba ~/ , in 

particular yai ~/ , a contradiction.

Fact 3: If φφ ≠≠ jiji ABBA ,,~ , then ji AB ~/ .

Proof: Suppose, contrary to our claim, that there exist 
two adjacent vertices jjiiji AaBbab ∈∈ ,,~ . Then Bi
~ Aj by Fact 1 and Fact 2. 

Let:

[ ] ,~,,,,,,,, 11214211 iiiii baBbbAaaPbaabG /∈∈≅
[ ] .~,,,,,,,, 323234332 abBbbAaaPbaabG jjjj /∈∈≅

Obviously, [ ] 4312 ,,, PbaabG i ≅ , which is impossible 
since Vi and Vj are p-components.

Fact 4: If φφ ≠≠/ jiji BAAB ,,~  then ji BA ~ .

Suppose that G contains an induced subgraph P4. 
So, there exists a p-component Vi such that φ≠iA and 

φ≠iB . Denote by NA(i) the set of p-components Vj, 

ij≠ , such that ji BA ~ . Denote by )(iBN  the set of p-

components Vj, ij≠ , such that ji AB ~/ . Note that by 

Fact 3 and Fact 4, if A
j NV ∈ and ,φ≠jA  then 

Bj NV ∈ . Analogously if Bj NV ∈  and ϕ≠jB , then 
A

j NV ∈ . If ( ) φ== )(iNiNM B
A U , then, obviously, 

Vi is 1-module.

Fact 5: If M ≠ φ, then M is 1-module.

Proof: Conversely, suppose that there exists two p
components Vj ∈ M and VK ∉ M containing two non-
adjacent vertices jjKkjk BbAaba ∈∈/ ,,~ . Let ii ba ~/
be two non-adjacent vertices in Vi. We 
have ikji baba ~,~ and therefore [ ] 4,,, PbaabG jiki ≅ , 
a contradiction. One can obtain analogous 
contradiction if suppose that there exists two p-
components MVj∈ and MVk∉  containing two 

adjacent vertices .,,~ jjkkjk AaBbab ∈∈

If G does not contain a P4 (G is cograph), then G
contains either a dominating vertex a or an isolated 
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vertex b. In any case G is 1-decomposable, a 
contradiction.

Theorem 16: If G is a graph and (9) is its 1-
decomposition, then G1, G2, ..., Gk are p-components  
nets of G.

Remark 1: If G is 1-decomposable graph and (9) is its 
1-decomposition, then the P-component S with the 
bipartition (S1, S2) from condition (3) of Theorem 15
is exactly V (Gl) with the bipartition (A1, B1).

5. Generalization of 1-Decomposition
5.1. Semigroup of Triads
The notion of a module suggests the idea to insert an 
arbitrary graph G0 as a module in a graph G, that is to 
consider an operation (G, A, B) G0 = GU G0 + {ab :
a ∈ A, b ∈ V (G0)} where (A, B) is an arbitrary 
bipartition of the vertex set V (G). (In the graph    (G,
A, B) G0 obtained the set V (G0) is a module and the 
partition (V (G0), A, B) is associated with the module V
(G0). Obviously, one can obtain different graphs (G, A,
B) G0 from the same graphs G and G0 taking different 
bipartitions .)( BAGV U=

Consider triads T = (G, A, B) where G is a graph and 
(A, B) is an ordered partition of the set V (G) into two 
disjoint subsets (a bipartition). The sets A and B are 
called the upper and the lower parts of the graph G
(triad T), respectively (one of the parts can be empty).

Let Ti = (Gi, Ai, Bi), i = 1, 2, be two triads. An 
isomorphism )()(: 21 GVGV →β  of the graphs Gl and 
G2 preserving the bipartition (β (A1) = A2, β (B1) = B2)) 
is called an isomorphism of triads .21 TT →  We write 

21 TT ≅/ if and only if there exists an isomorphism 

21 TT → . Clearly, the situation when 21 GG ≅  but 

21 TT ≅/ is possible even when .21 AA =
Denote the set of all triads (graphs) up to 

isomorphism of triads (graphs) by Tr (Gr). We consider 
the triads from Tr as left operators acting on the set Gr, 
the action of the operators is defined by the formula

)}(,:{),,( GVxAaaxHGGBAH ∈∈+= U (16) (16)

So on the set Tr the action (16) induces a binary 
algebraic operation (the multiplication of triads):

),,)(,,( 222111 BAGBAG =
),,),,(( 21212111 BBAAGBAG UU

(17)  (17)

Lemma 4: The set Tr is a semigroup with respect to the 
multiplication (17). Formula (16) determines the action 
of Tr on Gr. In other words, Tr is a semigroup of 
operators on Gr, i. e.,

(T1T2)T3=T1(T2T3), (T1T2)G=T1(T2G)

for all 
.3,2,1, rri GGiTT ∈=∈

The following statement contains a number of 
simple properties of modules that were mentioned 
several times by different authors (see, for example, 
[3]).

Lemma 5: For an arbitrary graph G the following 
statements (1-4) are true:

1. If Ml and M2 are modules, then 21 MM I is a 
module.

2. If M1 and M2 are modules, φ≠21 MM I , then 

21 MM U is a module.
3. If Ml is a module of G, M2 is a module of G [Ml], 

then M2 is a module of G.
4. If M is a module of G, )(GVU ⊂ , then MU I is a 

module of G [U].

Lemma 5 can be naturally modified into the 
corresponding statement for the triads by replacing the 
words “graph G” and “module” with the words “triad 
T” and “T-module”, respectively. A triad T is called 
decomposable if it can be represented as a product of 
two triads. Otherwise, it is indecomposable (or prime).

Let T = ,),,( rTBAG ∈ M be a module in G and 

)~,~,( BAM  be the associated partition. We call M a T-
module if

BBAA ⊆⊆ ~,~

It is evident that an arbitrary singleton module is not 
necessary T-module. Therefore it is reasonable to 
consider singleton T-modules to be nontrivial.

Lemma 6: A triad T = (G, A, B) is decomposable if and 
only if there exists a nontrivial T-module in G.

Proof: Obviously, if T = (G1, A1, B1)(G2, A2, B2), then 
22 BA U is a nontrivial T-module of G. On the other 

hand let M be a nontrivial T-module of G, (Al, Bl, M) 
be the associated partition, A2 = A \ Al, B2 = B \ B1, G1 =
[ ]11 BAG U , G2 = G [M], Tl = (G1, A1, B1), T2 = (G2, A2,

B2). Then we have

T = T1T2 (18) 

The module M and the decomposition (18) are said 
to be associated. Modified Lemma 5 together with 
Lemma 5 implies Lemma 7. 

Lemma 7: Let

T = (G, A, B) = T1T2 (19)

And let M be T-module of G associated with 
decomposition (19). Then:
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1. The triad Tl is indecomposable if and only if M is a 
maximal (with respect to inclusion) nontrivial T-
module of G.

2. The triad T2 is indecomposable if and only if M is a 
minimal (with respect to inclusion) nontrivial T-
module of G.

3. If A' ⊆ A, B' ⊆ B, V = A' U B', 1 = M ∩ V and 'T =
),],[( BAVG ′′ then I is a T ′ -module of G [V].

It is evident that every triad T can be represented as a 
product:

T = TIT2...Tk, k ≥  1 (20)

of indecomposable triads Ti. We call such 
representation a decomposition of T into indecompos-
able parts.

An indecomposable part Ti with empty lower 
(upper) part is called an A-part (a B-part). A-parts Ti
and Tj, i < j, are called undivided if every 
indecomposable part Tk, i < k < j, is an A-part also. 
Undivided B-parts are defined analogously.

Theorem 17: The decomposition of a triad into 
indecomposable parts is determined uniquely up to 
permutation of undivided A-parts or undivided B-parts.

Proof: The statement is obvious for indecomposable 
triads. Further apply induction on the number of 
vertices.
Let

1,,...,... 2121 >′′′== lkTTTTTTTT lk

be two decompositions of triad T into indecomposable 
parts

),,(),,( 111
'

11111 BAGTTBAG ′′′=≠=

Putting ),,(...2 DCHSTT k ==  and lTT ′′...2 = (H', C',
D') we have

., ''
11 STTSTT ==  

By Lemma 7, the sets DCM U=  and 
'' DCM U=  are maximal T-modules, and the 

intersestion IBAM =)( 11
' UI is a T1-module of 

][ 11 BAG U . Now Lemma 6 implies that the module I
is trivial. On the other hand, I = φ since M' is maximal. 
So 11 BAI U=  and therefore (by symmetry)

, '
1

'
1

'
11 MBAMBA ⊆⊆ UU (21)

By (21), the triad Tl is the first indecomposable 
component in some decomposition of S' into 
indecomposable parts. Without loss of generality we 
can assume, by induction assumption, that '

21 TT = and 
so:

... ''
31

'
1 lTTTTT = .

Further, we have

~,~,~,~ '
1

''
111 MBMAMBMA // .

This together with (21) imply

,'
11 φ== AA or '

11 φ==BB .

In both situations we have

......,..., ''
3

'
12

'
1

'
3

'
11

'
111

'
1 jK TTTTTTTTTTTTTT === .

By the induction assumption, one can conclude that k =
l, and under the respective ordering, we have

liTTTT ii ,...,3,, '
2

'
1 === .                          

Multiplying all undivided A-parts as well as all 
undivided B-parts in a decomposition (20) we obtain a 
canonical decomposition

,1,...21 ≥= rCCCT r        (22)

of T. Theorem 17 implies Corollary 7.

Corollary 7: The canonical decomposition of a triad is 
determined uniquely.

The components Ci in decomposition (22) are called 
canonical parts of the triad T. Now, let us turn to the 
graphs. It is obvious that every decomposable graph G
can be represented in a form G = TG0 with nontrivial 
indecomposable G0. We call G0 an indecomposable 
part of G, T is called an operator part. Further, let (20) 
be the decomposition of T into indecomposable parts, 
then the representation

G = T1T2…TkG0    (23)

is called an operator decomposition of G. If (22) is a 
canonical decomposition of T, then the representation

G = C1C2…CrG0     (24)

is called a canonical operator decomposition of G.
For an indecomposable part G0 we have G = G [M] 

where M is a minimal nontrivial module of the graph 
G, every such module is associated with some 
decomposition (24). So we have Corollary 8.

Corollary 8: Every minimal nontrivial module M of a 
graph G determines the unique canonical operator 
decomposition.

5.2. (P, Q)–Decomposition
By Corollary 8, it is obvious that a graph can have 
several operator decompositions. But when solving a 
concrete problem it may be useful to admit only the 
decompositions whose operator parts satisfy some 
conditions efficient for the problem. Now we are going 
to present the common theory of operator 
decomposition with conditions for the operator part.
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Let P and Q be two nonempty hereditary (with 
respect to induced subgraphs) classes of graphs. A 
graph G is called (P, Q)-split if there exists a triad (G,
A, B) in Tr with G [A] ∈ P, G [B] ∈ Q ((P, Q)-triad). 
Let us denote by (P, Q) and (P, Q)Tr the sets of all (P,
Q)-split graphs and (P, Q)-triads, respectively. The set 
(P, Q) ((P, Q)Tr) is said to be closed hereditary class if 
the following conditions hold:

1. The class P is closed with respect to the join of 
graphs.

2. The class Q is closed with respect to the disjoint 
union of graphs.

The class of split graphs is the simplest example of the 
closed hereditary class; here P is the class of complete 
graphs and Q is the class of edgeless graphs. Another 
example, if P is the class of P4-free graphs (cographs) 
and Q = P, then the closed hereditary class (P, Q) is 
the class of P4-bipartite graphs [9].

In what follows (P, Q) is a closed hereditary class. 
A graph G is called (P, Q)-decomposable 
(decomposable on the level (P, Q)) if G can be 
represented in a form

rr GHTQPTTHG ∈∈= ,),(,  (25)

Otherwise , G is (P, Q)-indecomposable. The following 
statement is obvious.

Proposition 4: The set (P, Q)Tr is a subsemigroup in Tr
if and only if it is a closed hereditary class.

If rTQPT ),(∈  and ,21TTT =  then every triad Tl

and T2 belongs to (P, Q)Tr also. Therefore if the graph 
H in (25) is (P, Q)-decomposable and (20) is a 
decomposition of the triad T into indecomposable 
parts, then

rik TQPTHTTTG ),(,...21 ∈=      (26)

We call a decomposition (26) a (P, Q)-
decomposition of G (or operator decomposition of the 
graph G on the level (P, Q)). A canonical (P, Q)-
decomposition is defined analogously to a canonical 
decomposition of the triad T.

A module associated with a decomposition (25) is 
called a (P, Q)-module. A singleton (P, Q)-module as a 
singleton T-module of a graph G is considered to be 
nontrivial.

Theorem 18: Let (P, Q) be an arbitrary closed 
hereditary class and G ∈ Gr, then:

1. Every (P, Q)-decomposition (26) is associated with 
a minimal nontrivial (P, Q)-module M (H = G [M]) 
and determined by the module uniquely up to 
permutation of undivided A-parts or undivided B-
parts.

2. Every minimal nontrivial (P, Q)-module M of G is 
associated with some (P, Q)-decomposition (26).

3. If G ∉ (P, Q), then (P, Q) -decomposition of G is 
determined uniquely up to permutation of undivided 
A-parts or undivided B-parts.

Proof: By the above, it remains to prove that if G ∉ (P, 
Q), then there is at most one minimal nontrivial (P, Q)-
module in G. Let Ml and M2 be two different minimal 
nontrivial (P, Q)-modules in G, then

,2,1,)(,),(, ==∈= iMHVTQPTHTG iiriii

T1 = (G1, A1, B1)

Further, we have M1 ∩ M2 = φ, M2 ⊆ A1 U  B1, H2 = G
[M2] is an induced subgraph of Gl, and ).,(2 QPH ∈ So 
we have ),(22 QPHTG ∈= , a contradiction.       

Corollary 9: Let ''
1

'
1

'
1 ...... HCCGandHCCG k == be 

canonical (P, Q)-decompositions of graphs G and G', 
respectively. Suppose that there exists only one 
minimal nontrivial (P, Q)-module in G (in particular, 
let G ∉ (P, Q)). Then G ≅ G' if and only if the 
following conditions hold:

1. k = l. 
2. kiCC ii ,...,1,' =≅ .
3. H ≅ H'.

Proof: It is obvious that if conditions (1-3) hold, then 
G ≅ G. Inversely, let G ≅ G'. Without loss of generality 
we can consider G and G' to be equal labeled graphs. 
Theorem 18 implies that there exists a unique 
canonical (P, Q)-decomposition.

.... '
11 GHCCG ==  

6. Conclusion
This paper presents an optimal algorithm for finding 
the 1-decomposiotion of a graph and examines the 
connections between the 1-decomposition and well 
known forms of decomposition of graphs namely 
modular and homogeneous decomposition. The 
characterization of graphs which is totally 
decomposable by 1-decomposition is also given.

The main result of this paper is the introduction of a 
new form of decomposition of graph, which is a 
generalization of the 1-decomposition namely the (P, 
Q)-decomposition. This form of decomposition 
suggests that it is interesting from one hand to widen 
it’s application on different class of graphs, and from 
the other hand to search efficient algorithms to 
construct this decomposition in some specious cases, 
as that of the 1-decomposition.
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