
178 The International Arab Journal of Information Technology, Vol. 3, No. 2, April 2006

A Dynamic Sliding Load Balancing Strategy in
Distributed Systems

Ahmad Dalal’ah
Computer Science Department, Jordan University of Science and Technology, Jordan

Abstract: A sliding strategy for load balancing is introduced. The strategy groups a certain number of adjacent nodes to
perform a load balancing process. Upon the completion of a given period, the groups are to be rotated by shifting each group
one position to the right, thus produces different groups. This strategy (sort of clustering) not only reduces the load balancing
overheads, but also it could be utilized as a backbone by any load balancing strategy. The proposed load balancing strategy
always converges, and tends to be in a steady state in a negligible processing time. In this paper, the load status and the
locations of the nodes regarding the system’s topology are irrelevant to load balancing process. The new algorithm can be
always applied to any distributed system, even if it is heavily loaded, since the cost of scheduling is very low due to the highly
reduced number of messages. This is achieved by reducing dramatically the overheads incurred from attached information
tables, message passing, job thrashing, and response time.

Keywords: Load balancing, distributed systems, scalability, message passing.

Received January 10, 2005; accepted March 20, 2005

1. Introduction

The growth of distributing systems with the possibility
of sharing the available resources has led to the ability
of executing some jobs arrived at a certain node
remotely. Consequently, load balancing is aiming at
reducing the overall response time of jobs execution in
any distributed system. This increases the possibility of
maximizing the overall utilization of any given
distributed system by sending some of the tasks at
highly loaded nodes to be executed remotely. Such
process can be profitable if the gain obtained from load
balancing outperforms the execution of all the jobs
locally, in terms of the number of executed tasks in
time unit, and the number of accepted tasks if the
queues are of limited length.

Almost all scheduling strategies in distributed
systems depend on load status and locations of the
system nodes. The used policies are normally classified
under centralized, distributed and internally source or
server initiative and others. Such classification entails
unavoidable overheads which stem from the fact that
heavy computations are necessary to balance the load.
These heavy computations are subject to be minimized.

To take a reasonable decision of sending a job to be
executed remotely or not depends, to some degree, on
the amount of information available at the load
balancer node. At such node a formal assessment is
needed to be done to take a right decision of where to
perform the newly arriving job. The information
needed to take a decision by a load balancer is
composed of the status of each other node in the
system, the location of the nodes that are willing to

accept the transferred jobs, and some other information
depending on the load balancing strategy applied, such
as the criteria of transferring a job.

As long as an abstract structure of a certain node is
concerned, the node can be visualized as a queue and a
processing unit. As a consequence, every arriving task
is to be queued waiting for execution if the job's arrival
rate is more than the job's served rate. The round
response time could be expressed as the time spent by
a task since its arrival up to the end of its execution
time.

As mentioned above, the information needed at each
node includes the location of the peer node that is
willing to accept a task or even to transfer a job. This
information should be on-line. Otherwise, the delayed
information may lead to a situation where a node that
appeared lightly loaded is no more as it was, and
hence, all the transferred jobs are to suffer from
waiting to be transferred again to a different node (job
thrashing). On the other hand, the process of locating
the peer node(s) may involve a high number of
messages to be communicated among different nodes
in the system. This might be an overhead that causes a
delayed response time.

Having located a peer node; the issue of either
processing the task locally or remotely is to be
triggered. Given the information available at each
node, the decision of transferring a job is to be taken.
Hence, the time necessary to transfer a job and to
receive its results is to be taken into account. Hereby,
another type of overhead is incurred. This overhead
depends not only on the size of the task to be
transferred, but also on the distance between the

A Dynamic Sliding Load Balancing Strategy in Distributed Systems 179

partner nodes, although this last problem might be
bypassed due to the present high-speed
communications facilities available.

A great deal of effort has been devoted to the
scheduling problem. Many of these efforts can be
found in the literature. In [11] the authors tried to solve
this issue as a nonlinear programming problem. Their
measure focused on the average job response time on a
probabilistic basis. This metric is very important to
evaluation, but still, other metrics such as the number
of messages passed through the load balancing process
are rather important and should be taken into account
as well. The authors in [5] tried to control the
overheads in adaptive load sharing, in one of their
proposed algorithms; they used a heuristic scheme to
guess the load level at different nodes, while in their
second algorithm they probe the jobs and decide not to
transfer the unnecessary ones. However, in the first
algorithm it is not guaranteed to know the load level in
advance, while the other algorithm is biased against
some jobs and involves extra computation to decide
which of the jobs is to be transferred and which should
not. P.Krueger and et al. in [6] proposed an adaptive
strategy to probabilistically select the best counterpart
of a generic node, if it exists to transfer some of its
load to be executed remotely. The adaptation process
involves extra computations and remains location
dependent. Others as in [6] used a sender-initiated
algorithm to solve the load balancing problem; this
class of algorithms may suffer from instability and do
not using the maximum capacity of the system. Efe et
al. in [5] proposed a central job dispatcher for load
balancing. It is true that the centralizing nature of load
balancing can, under some constraints, give better
response time than other strategies. However, they do
not only suffer if the center has problems, but also their
decisions could be valueless due to the delayed
information used by the decision maker.

The proposed approach in this paper takes into
consideration the number of messages exchanged. To
this aim, the number of exchanged messages is fixed in
each load balancing period regardless of the system
size (when the system consists of groups of three
nodes), while it was 2 (n - 1) in other works [2, 12, 13],
where n is the number of nodes. This would be an
evident enhancement on the overall system throughput.
Another issue is the location problem. This is totally
avoided due to devising a controller node in each
group that acts as a local load balancer. Therefore, the
domain of the controller is limited to its direct
neighbors.

The rest of the paper is organized as follows. In
section 2 the proposed strategy is described. Numerical
results are in section 3. Conclusions are shown in
section 4.

2. Proposed Strategy

The overheads normally incurred from implementing
any load balancing policy are always subject to
strategies aiming at reducing such overheads. Here, in
this work, we tried to reduce the overheads stem from
the communication problem (message passing and
relatively long distance transfer), location problem or
constructing clusters, and job thrashing. Many other
problems are faced and to be discussed later, such as
stability, scalability, robustness, and efficiency.

2.1. System Topology

The system is supposed to be some sort of network,
connected as a closed bus and the nodes are to be
logically ordered from 1 to n, where n is the total
number of nodes in the entire system as shown in
Figure 1. In this system, two methods were used to
configure the topology. In the first method, the nodes
are coupled in pairs, peer-to-peer, where no
contentions suppose to happen; i. e., each couple of
nodes stands alone and it is not in touch with any other
node at any moment for the purpose of load balancing.
However, these couples are to be changed at every load
balancing process, as it is addressed here after in this
subsection. The cost of changing the groups is the
minimum due to the number of messages that are to be
exchanged. While in the second method, the group of
nodes that share the load consists of three nodes each,
the process of grouping is discussed later in this
section as well.

Since the system is tested over 2 and 3 nodes
groups. Figure 2 shows the topology of a sample
network before and after the first load balancing
operation. Figures 2-a and 2-b show the grouping
policy applied when the system is coupled in pairs.
While Figures 2-c and 2-d show the connected nodes
as groups of threes. Figures 2-b and 2-d reveal the
connected nodes after a load balancing process.

Communication Networks

Figure 1. System topology.

To select the nodes of each group in a dynamic
manner, we applied the pseudo-code shown in Figure
3. Each group could be constructed of any number of
nodes. But it is noticed that when the groups’ size
exceeds 3, then the entire system will be changed into

180 The International Arab Journal of Information Technology, Vol. 3, No. 2, April 2006

a pure clustering system, and in this case it would not
be different from any other clustering strategy.
Therefore, if the number of nodes becomes more than
3, then the system might loose the gain that may be
obtained from the proposed strategy in terms of control
messages number, growth of transferring distance, and
its dynamic nature.

 (a) (b)

 (c) (d)

Figure 2. Coupling process after each load balancing operation.

Since the system groups the nodes into threes, then
the system would scale and the size of the network
would be irrelevant. On the other hand, job thrashing is
avoided here; i. e., it would not happen that many
nodes would dump many jobs over a lightly loaded
node at a given period. Otherwise, the tasks are to be
swinging from one part to another on the network, and
the system would be instable.

Another issue is the robustness; the proposed
strategy is robust to any failure that may occur. This is
achieved simply because if any node failed then only at
that moment no load balancing happens in that
particular group. At any other moment the topology is
changed, the failure node is ignored and the system
carries on without any problems.

The following mechanism is used to change the
coupled nodes in a dynamic manner. Upon each load
balancing process, the pseudo-code in Figure 3 is
triggered and each couple of nodes is to be changed.
This gives the proposed policy the potential of
reducing the overheads mentioned above in terms of
message passing and selecting a coordinator. For
example, if we take the topology in Figure 2-c and 2-d

then the grouping mechanism would comply with the
following pseudo-code:

n := NetworkSize;
k := 0;
l := 0;
j :=1;
for i := j + 1, n + 1, STEP 3;
 begin

k := k + 1;
C (k, 1) := i - 1;
C (k, 2) := i;
If I + 1 >= n then C (k, 3) :=(I + 3) mod n

Else
C (k + 3) :=I + 1

end

Figure 3. Pseudo-code for constructing neighboring groups.

2.2. Load Balancing Strategy

Two conditions are necessary to activate the load
balancing process, the first happens when the local
load exceeds a predefined threshold. At this stage the
coordinator of each group communicates with its
neighbors and distributes the load almost evenly
among the related nodes. The second case of load
balancing is performed periodically. Hereby, load
balancing is to be performed only if the load at the
coordinator node is still over the previously mentioned
threshold.

The policy is, first, applied over each group of
nodes. In this case, if nodes I, J and K are grouped then
the load over such nodes will become:

Netload = int ((load i + load j) / 2), for 2 nodes groups (1)

Netload = int ((load i +load j + load k) / 3, for 3 nodes
 groups (2)

Where, Netload is the number of jobs on each node
after load balancing, load i is the number of jobs on
node i.

This process is done simultaneously at each couple
of nodes. This could be achieved by applying the linear
algorithm mentioned in Figure 3, but instead of STEP
= 3, it becomes equal 2.

On the other hand the proposed strategy gets red of
location problem, in which the node should search for
its partner in the load balancing process.

3. Numerical Results

The scalability of the proposed system highlights the
fact that the overall cost relative to the size of the
entire system is irrelevant. This result stems from the
fact that the system is to be viewed only by 2 or 3
nodes depending on the method used that makes the
cost almost fixed. While in other policies [1, 3, 4, 7, 8,
10, 12, 13, 14, 15, 17, 20, 21] the overall cost incurred
from the load balancing process is size dependent and
hence it would not scale.

A Dynamic Sliding Load Balancing Strategy in Distributed Systems 181

In the proposed algorithm, as mentioned above, the
number of messages is fixed (in case of 2 nodes
groups, the number of messages would be at most 2,
while in 3 nodes groups, the number of messages
would be at most 5). On the other hand, in Central
algorithms the number of messages is 2 (n - 1) and in
Distributed algorithms the number of messages is
(n - 1) / 2, where n is the number of node in the entire
system.

One more advantage of our algorithm is that the
nodes involved in the load balancing process are only
the groups that are really in need for load balancing,
while in other policies the entire system would be
involved. In fact, only in an extreme case, all the
groups are to be balanced. This reduces the overall cost
on average.

Figure 4 shows the effectiveness of the proposed
strategy, in both cases 2 and 3 groups. In this sense, the
overhead incurs from messages exchanged among
different nodes is no longer relevant, since it is fixed
and very low.

Figure 4. Number of messages exchanged for central, distributed,
and the proposed two policies.

One more advantage issue is the number of success
jobs relevant to the overall jobs in the system. It is
clear that our strategy outperforms other strategies due
to the fact that the percentage of the tasks that are
prone to be transferred from one node to another
without being executed is very slim. Hence, the
utilization of the proposed system outperforms the
other cases in the conducted experiment. While in
other policies such possibility is very high [7, 14]. For
example, it might happen that a certain node
announces itself as a lightly loaded node, and as thus
many other nodes will transfer their surplus load to it,
which might cause the node to be an extremely highly
loaded one. As so, such node starts hunting another
node to transfer extra tasks to it. Another point in our
strategy worth noting is the possibility of accepting a
transferred job or more while many other jobs arriving
at it is very low. This is because load balancing process
happens to be among adjacent nodes only. Figure 5
shows the reaction of our system in comparison to the
no load balancing and to a clustering load balancing
strategy [1].

Figure 5. Number of success jobs relative to the total number of
jobs for the three compared policies.

4. Conclusions

The overheads stem from message passing and the
scalability issues are among the main objectives of any
load balancing system. To this aim, two methods of
grouping the nodes were introduced, devised and
tested. The first is to group the nodes in couples while
the second one is to group the nodes into triples. The
numerical results show that the overhead stem from
computations is reduced dramatically in both methods.
On the other hand, the number of messages is not any
more an important issue, since it turns to be fixed with
small number of messages as well as the utilization of
the system is maximized. The proposed policies
guaranteed the distributed system to be scalable.

References

[1] Chen M. S. and Shin K. G., “Sub Cube
Allocation and Task Migration in Hypercube
Multiprocessor,” IEEE Transactions on
Computers, vol. 39, no. 9, September 1990.

[2] Dalal’ah A. and Al-Dahoud A., “Dynamic Load
Balancing with Token-Passing in a Distributed
System,” IEEE International Conference on
Systems, Man, and Cybernetics, San Diego,
California, USA, pp. 398-400, October 1998.

[3] Eager D. L., Lazowska E. D., and Zahorjan J.,
“Adaptive Load Sharing in Homogeneous
Distributed Systems,” IEEE Transactions on
Software Engineering, vol. SE-12, no. 5, May
1986.

[4] Eager D. L., Lazowska E. D., and Zahorjan J.,
“The Limited Performance Benefits of Migration
Active Processes for Load Sharing,” in
Proceedings of ACM Sigmetrics Conference, pp.
662-675, 1988.

[5] Efe K. and Groselj B., “Minimizing Control
Overheads in Adaptive Load Sharing,” The
Center for Advanced Computer Studies,
University of Southwestern Louisiana, Lafayette,
USA, 1989.

[6] Hac A., “Dynamic Load Balancing in a
Distributed System Using a Sender-Initiated
Algorithm,” Journal of System Software, vol. 11,
no. 2, pp. 79-94, 1990.

0

50000

100000

150000

1 3 5 7 9 11 13 15

Number of nodes

ALL

NO_LB

OUR

OTHER

N
um

be
r

of
 s

uc
ce

ss
fu

l j
ob

s

0
50

100
150
200
250
300

1 3 5 7 9 11 13 15

Number of nodes

N
um

be
r

of
 m

es
sa

ge
s

Central

Distributed

Rot_2

Rot_3

182 The International Arab Journal of Information Technology, Vol. 3, No. 2, April 2006

[7] Hagmann R. B., “Process Server,” in
Proceedings of the 8th International Conference
of Distributed Computing Systems, Cambridge,
Mass, pp. 260-267, May 1986.

[8] Kara M., “Using Dynamic Load Balancing in
Distributed Information Systems,” Report 94.18,
School of Computer Studies, University of
Leeds, May 1994.

[9] Krueger P. and Shivaratri N. G., “Adaptive
Location Policies for Global Scheduling,” IEEE
Transactions on Software Engineering, vol. 20,
no. 6, June 1994.

[10] Leland W. and Ott T., “Load Balancing
Heuristics and Process Behavior,” in Proceedings
of ACM Sigmetrics Conference, pp. 54-69, May,
1988.

[11] Ni L. M. and Hwang K., “Optimal Load
Balancing in a Multiple Processor System with
Many Job Classes,” IEEE Transactions on
Software Engineering, vol. SE-11, no. 5, May
1985.

[12] Ni L. M., Xu C., and Gendreau T. B., “A
Distributed Drafting Algorithm for Load
Balancing,” IEEE Transactions on Software
Engineering, vol. SE-11, no. 10, October 1985.

[13] Pinter S. S. and Woltstahl Y., “On Mapping
Processes to Processor in Distributed Systems,”
International Journal of Parallel Programming,
vol. 16, no. 1, 1987.

[14] Rao G. S., Stone H. S., and Hu T. C.,
“Assignment of Tasks in a Distributed Processor
System with Limited Memory,” IEEE
Transactions on Computers, vol. C-28, no. 4,
April 1979.

[15] Shin K. G. and Chang Y., “Load Sharing in
Distributed Real Time Systems with State-
Change Broadcasts,” IEEE Transactions on
Computers, vol. 38, no. 8, August 1989.

[16] Tantawi A. N. and Towsley D., “Optimal Static
Load Balancing in Distributed Computer
Systems,” Journal of the ACM, vol. 32, no. 2, pp.
445-465, April 1985.

[17] Xu J. and Hwang K., “Heuristic Methods for
Dynamic Load Balancing in a Message-Passing
Multicomputer,” Journal of Parallel and
Distributed Computing, vol. 18, no. 1, pp. 1-13,
1993.

[18] Zein O., El-Toweisy M., and Mukkamala R., “A
Distributed Scheduling Algorithm for
Heterogeneous Real-Time Systems,” in
Proceedings of Advances in Computing and
Information (ICCA’91), Ottawa, Canada, pp. 27-
29, May 1991.

[19] Zhou S., “A Trace-Driven Simulation Study of
Dynamic Load Balancing,” IEEE Transactions
on Software Engineering, vol. 14, no. 9, pp.
1327-1341, September 1988.

[20] Zhou S. and Ferrari D., “An Empirical
Investigation of Load Indices for Load Balancing
Applications,” in Proceedings of the
International Symposium on Computer
Performance Modeling Measurement and
Evaluation (Performance‘87), Brussels, Belgium,
pp. 515-528, 1987.

[21] Zhou S. and Ferrari D., “An Experimental Study
of Load Balancing Performance,” Technical
Report UCB/CSD 87/336, University of
California, USA, January 1987.

Ahmad Dalal'ah received his BSc in
computer science from Yarmouk
University, Jordan in 1985. During the
period 1989-1993 he was a TA at
Mu'tah University, Jordan. He
received his PhD in computer
networks in 1998 from Genoa

University, Italy. Currently, he is with the Computer
Science Department at Jordan University of Science and
Technology. His research interests include ad hoc
networks and load balancing in distributed systems.

