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Distributed Systems
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Abstract: A sliding strategy for load balancing is introduced. The strategy groups a certain number of adjacent nodes to 
perform a load balancing process. Upon the completion of a given period, the groups are to be rotated by shifting each group 
one position to the right, thus produces different groups. This strategy (sort of clustering) not only reduces the load balancing 
overheads, but also it could be utilized as a backbone by any load balancing strategy. The proposed load balancing strategy 
always converges, and tends to be in a steady state in a negligible processing time. In this paper, the load status and the 
locations of the nodes regarding the system’s topology are irrelevant to load balancing process. The new algorithm can be 
always applied to any distributed system, even if it is heavily loaded, since the cost of scheduling is very low due to the highly 
reduced number of messages. This is achieved by reducing dramatically the overheads incurred from attached information 
tables, message passing, job thrashing, and response time.
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1. Introduction

The growth of distributing systems with the possibility 
of sharing the available resources has led to the ability 
of executing some jobs arrived at a certain node 
remotely. Consequently, load balancing is aiming at 
reducing the overall response time of jobs execution in 
any distributed system. This increases the possibility of 
maximizing the overall utilization of any given 
distributed system by sending some of the tasks at 
highly loaded nodes to be executed remotely. Such 
process can be profitable if the gain obtained from load 
balancing outperforms the execution of all the jobs 
locally, in terms of the number of executed tasks in 
time unit, and the number of accepted tasks if the 
queues are of limited length.

Almost all scheduling strategies in distributed 
systems depend on load status and locations of the 
system nodes. The used policies are normally classified 
under centralized, distributed and internally source or 
server initiative and others. Such classification entails 
unavoidable overheads which stem from the fact that 
heavy computations are necessary to balance the load. 
These heavy computations are subject to be minimized.

To take a reasonable decision of sending a job to be 
executed remotely or not depends, to some degree, on 
the amount of information available at the load 
balancer node. At such node a formal assessment is 
needed to be done to take a right decision of where to 
perform the newly arriving job. The information 
needed to take a decision by a load balancer is 
composed of the status of each other node in the 
system, the location of the nodes that are willing to 

accept the transferred jobs, and some other information 
depending on the load balancing strategy applied, such 
as the criteria of transferring a job.

As long as an abstract structure of a certain node is 
concerned, the node can be visualized as a queue and a 
processing unit. As a consequence, every arriving task 
is to be queued waiting for execution if the job's arrival 
rate is more than the job's served rate. The round 
response time could be expressed as the time spent by 
a task since its arrival up to the end of its execution 
time. 

As mentioned above, the information needed at each 
node includes the location of the peer node that is 
willing to accept a task or even to transfer a job. This 
information should be on-line. Otherwise, the delayed 
information may lead to a situation where a node that 
appeared lightly loaded is no more as it was, and 
hence, all the transferred jobs are to suffer from 
waiting to be transferred again to a different node (job 
thrashing). On the other hand, the process of locating 
the peer node(s) may involve a high number of 
messages to be communicated among different nodes 
in the system. This might be an overhead that causes a 
delayed response time.

Having located a peer node; the issue of either 
processing the task locally or remotely is to be 
triggered. Given the information available at each 
node, the decision of transferring a job is to be taken. 
Hence, the time necessary to transfer a job and to 
receive its results is to be taken into account. Hereby, 
another type of overhead is incurred. This overhead 
depends not only on the size of the task to be 
transferred, but also on the distance between the 
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partner nodes, although this last problem might be 
bypassed due to the present high-speed 
communications facilities available.  

A great deal of effort has been devoted to the 
scheduling problem. Many of these efforts can be 
found in the literature. In [11] the authors tried to solve 
this issue as a nonlinear programming problem. Their 
measure focused on the average job response time on a 
probabilistic basis. This metric is very important to 
evaluation, but still, other metrics such as the number 
of messages passed through the load balancing process 
are rather important and should be taken into account 
as well. The authors in [5] tried to control the 
overheads in adaptive load sharing, in one of their 
proposed algorithms; they used a heuristic scheme to 
guess the load level at different nodes, while in their 
second algorithm they probe the jobs and decide not to 
transfer the unnecessary ones. However, in the first 
algorithm it is not guaranteed to know the load level in 
advance, while the other algorithm is biased against 
some jobs and involves extra computation to decide 
which of the jobs is to be transferred and which should 
not. P.Krueger and et al. in [6] proposed an adaptive 
strategy to probabilistically select the best counterpart 
of a generic node, if it exists to transfer some of its 
load to be executed remotely. The adaptation process 
involves extra computations and remains location 
dependent. Others as in [6] used a sender-initiated 
algorithm to solve the load balancing problem; this 
class of algorithms may suffer from instability and do 
not using the maximum capacity of the system. Efe et 
al. in [5] proposed a central job dispatcher for load 
balancing. It is true that the centralizing nature of load 
balancing can, under some constraints, give better 
response time than other strategies. However, they do
not only suffer if the center has problems, but also their 
decisions could be valueless due to the delayed 
information used by the decision maker. 

The proposed approach in this paper takes into 
consideration the number of messages exchanged. To 
this aim, the number of exchanged messages is fixed in 
each load balancing period regardless of the system 
size (when the system consists of groups of three 
nodes), while it was 2 (n - 1) in other works [2, 12, 13], 
where n is the number of nodes. This would be an 
evident enhancement on the overall system throughput. 
Another issue is the location problem. This is totally 
avoided due to devising a controller node in each 
group that acts as a local load balancer. Therefore, the 
domain of the controller is limited to its direct 
neighbors.

The rest of the paper is organized as follows. In 
section 2 the proposed strategy is described. Numerical 
results are in section 3. Conclusions are shown in 
section 4. 

2. Proposed Strategy

The overheads normally incurred from implementing 
any load balancing policy are always subject to 
strategies aiming at reducing such overheads. Here, in 
this work, we tried to reduce the overheads stem from 
the communication problem (message passing and 
relatively long distance transfer), location problem or 
constructing clusters, and job thrashing. Many other 
problems are faced and to be discussed later, such as
stability, scalability, robustness, and efficiency.

2.1. System Topology

The system is supposed to be some sort of network, 
connected as a closed bus and the nodes are to be 
logically ordered from 1 to n, where n is the total 
number of nodes in the entire system as shown in 
Figure 1. In this system, two methods were used to 
configure the topology. In the first method, the nodes 
are coupled in pairs, peer-to-peer, where no 
contentions suppose to happen; i. e., each couple of 
nodes stands alone and it is not in touch with any other 
node at any moment for the purpose of load balancing. 
However, these couples are to be changed at every load 
balancing process, as it is addressed here after in this 
subsection. The cost of changing the groups is the 
minimum due to the number of messages that are to be 
exchanged. While in the second method, the group of 
nodes that share the load consists of three nodes each, 
the process of grouping is discussed later in this 
section as well.

Since the system is tested over 2 and 3 nodes 
groups. Figure 2 shows the topology of a sample 
network before and after the first load balancing 
operation. Figures 2-a and 2-b show the grouping 
policy applied when the system is coupled in pairs. 
While Figures 2-c and 2-d show the connected nodes 
as groups of threes. Figures 2-b and 2-d reveal the 
connected nodes after a load balancing process.

Communication Networks

Figure 1. System topology.

To select the nodes of each group in a dynamic 
manner, we applied the pseudo-code shown in Figure 
3. Each group could be constructed of any number of 
nodes. But it is noticed that when the groups’ size 
exceeds 3, then the entire system will be changed into 
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a pure clustering system, and in this case it would not 
be different from any other clustering strategy. 
Therefore, if the number of nodes becomes more than 
3, then the system might loose the gain that may be 
obtained from the proposed strategy in terms of control 
messages number, growth of transferring distance, and 
its dynamic nature. 

   (a) (b)

                            (c)                                              (d)

Figure 2. Coupling process after each load balancing operation.

Since the system groups the nodes into threes, then 
the system would scale and the size of the network 
would be irrelevant. On the other hand, job thrashing is 
avoided here; i. e., it would not happen that many 
nodes would dump many jobs over a lightly loaded 
node at a given period. Otherwise, the tasks are to be 
swinging from one part to another on the network, and 
the system would be instable.

Another issue is the robustness; the proposed 
strategy is robust to any failure that may occur. This is 
achieved simply because if any node failed then only at 
that moment no load balancing happens in that 
particular group. At any other moment the topology is 
changed, the failure node is ignored and the system 
carries on without any problems.

The following mechanism is used to change the 
coupled nodes in a dynamic manner. Upon each load 
balancing process, the pseudo-code in Figure 3 is 
triggered and each couple of nodes is to be changed. 
This gives the proposed policy the potential of 
reducing the overheads mentioned above in terms of 
message passing and selecting a coordinator. For 
example, if we take the topology in Figure 2-c and 2-d 

then the grouping mechanism would comply with the 
following pseudo-code:

n := NetworkSize;
k := 0;
l := 0;
j :=1;
for i := j + 1, n + 1, STEP 3;
        begin

k := k + 1;
C (k, 1) := i - 1;
C (k, 2) := i;
If I + 1 >= n then C (k, 3) :=(I + 3) mod n

Else
C (k + 3) :=I + 1

end

Figure 3. Pseudo-code for constructing neighboring groups.

2.2. Load Balancing Strategy

Two conditions are necessary to activate the load 
balancing process, the first happens when the local 
load exceeds a predefined threshold. At this stage the 
coordinator of each group communicates with its 
neighbors and distributes the load almost evenly 
among the related nodes. The second case of load 
balancing is performed periodically. Hereby, load 
balancing is to be performed only if the load at the 
coordinator node is still over the previously mentioned 
threshold.

The policy is, first, applied over each group of 
nodes. In this case, if nodes I, J and K are grouped then 
the load over such nodes will become:

Netload = int ((load i + load j) / 2), for 2 nodes groups (1)

Netload = int ((load i +load j + load k) / 3, for 3 nodes 
                 groups (2)

Where, Netload is the number of jobs on each node 
after load balancing, load i is the number of jobs on 
node i.  

This process is done simultaneously at each couple 
of nodes. This could be achieved by applying the linear 
algorithm mentioned in Figure 3, but instead of STEP 
= 3, it becomes equal 2.

On the other hand the proposed strategy gets red of 
location problem, in which the node should search for 
its partner in the load balancing process. 

3. Numerical Results

The scalability of the proposed system highlights the 
fact that the overall cost relative to the size of the 
entire system is irrelevant. This result stems from the 
fact that the system is to be viewed only by 2 or 3 
nodes depending on the method used that makes the 
cost almost fixed. While in other policies [1, 3, 4, 7, 8, 
10, 12, 13, 14, 15, 17, 20, 21] the overall cost incurred 
from the load balancing process is size dependent and 
hence it would not scale.
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In the proposed algorithm, as mentioned above, the 
number of messages is fixed (in case of 2 nodes 
groups, the number of messages would be at most 2, 
while in 3 nodes groups, the number of messages 
would be at most 5). On the other hand, in Central 
algorithms the number of messages is 2 (n - 1) and in 
Distributed  algorithms the number of messages is 
(n - 1) / 2, where n is the number of node in the entire 
system.

One more advantage of our algorithm is that the 
nodes involved in the load balancing process are only 
the groups that are really in need for load balancing, 
while in other policies  the entire system would be 
involved. In fact, only in an extreme case, all the 
groups are to be balanced. This reduces the overall cost 
on average.

Figure 4 shows the effectiveness of the proposed 
strategy, in both cases 2 and 3 groups. In this sense, the 
overhead incurs from messages exchanged among 
different nodes is no longer relevant, since it is fixed 
and very low. 

Figure 4. Number of messages exchanged for central, distributed,
and the proposed two policies.

One more advantage issue is the number of success 
jobs relevant to the overall jobs in the system. It is 
clear that our strategy outperforms other strategies due 
to the fact that the percentage of the tasks that are 
prone to be transferred from one node to another 
without being executed is very slim. Hence, the 
utilization of the proposed system outperforms the 
other cases in the conducted experiment. While in 
other policies such possibility is very high [7, 14]. For 
example, it might happen that a certain node 
announces itself as a lightly loaded node, and as thus 
many other nodes will transfer their surplus load to it,
which might cause the node to be an extremely highly 
loaded one. As so, such node starts hunting another 
node to transfer extra tasks to it. Another point in our 
strategy worth noting is the possibility of accepting a 
transferred job or more while many other jobs arriving 
at it is very low. This is because load balancing process 
happens to be among adjacent nodes only. Figure 5 
shows the reaction of our system in comparison to the 
no load balancing and to a clustering load balancing 
strategy [1]. 

Figure 5. Number of success jobs relative to the total number of 
jobs for the three compared policies.

4. Conclusions

The overheads stem from message passing and the 
scalability issues are among the main objectives of any 
load balancing system. To this aim, two methods of 
grouping the nodes were introduced, devised and 
tested. The first is to group the nodes in couples while 
the second one is to group the nodes into triples. The 
numerical results show that the overhead stem from 
computations is reduced dramatically in both methods. 
On the other hand, the number of messages is not any 
more an important issue, since it turns to be fixed with 
small number of messages as well as the utilization of 
the system is maximized. The proposed policies 
guaranteed the distributed system to be scalable. 
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