
The International Arab Journal of Information Technology, Vol. 3, No. 3, July 2006 193

Linear Time Recognition of Bipartite
Star123-Free Graphs

Ruzayn Quaddoura
Faculty of Science and Information Technology, Zarqa Private University, Jordan

Abstract: In this paper, we present a linear time recognition algorithm for recognizing bipartite graphs without induced
subgraphs isomorph to star123. Bipartite star123-free graphs are a natural generalization of both weak bisplit and Star123, Sun4-
free bipartite graphs, both further generalizing bicographs.

Keywords: Bipartite graph, decomposition of graphs, complexity.

Received October 17, 2004; accepted July 25, 2005

1. Introduction
Bipartite graphs underlie suitable models for such a
broad spectrum of real-life problems, that adapting
results on general graphs to the bipartite case and even
attacking combinatorial problems separately for
bipartite graphs has been a sufficiently motivated
activity since the early years of graph theory; see for
example [12] where a bipartite translation” for various
graph concepts is given.

This is also the case for the definition and
characterization of many special graph classes; for
instance, Frost et al. in [5] propose several bipartite
analogues of split graphs. Giakoumakis and Vanherpe
defined in [6] the class of bicographs as a bipartite
equivalent of cographs and showed that the bicographs
are exactly the class of Star123, Sun4, P7-free graphs.

Figure 1. The forbidden configurations for the bicographs.

Fouquet et al. in [4] defined the weak bisplit graphs
that turned out to be a generalization of bicographs.
More precisely, in [4] a general decomposition scheme
for bipartite graphs (called canonical decomposition) is
given, under which the weak-bisplit graphs are totally
decomposable; it is finally shown that these graphs are
exactly the bipartite graphs with no induced Star123
nor P7. Another generalization of bicographs, the
Star123, Sun4-free bipartite graphs, have been studied in
[10], but no recognition algorithm is given.

In this paper, we present a linear time algorithm for
a further generalization of both weak-bisplit and
Star123, Sun4-free bipartites, namely, the Star123-free
bipartite graphs. To this end, our algorithm extends the

recognition algorithm for Star123, P7-free bipartite
graphs given in [7], by making use of some structural
properties of the Star123-free bipartite graphs, first
discussed by Lozin in [9]. For simplicity and
abbreviation, we will present all the theorems without
proofs, the reader can find these proofs in [13].

The paper is organized as follows. In section 2, we
are giving the basic concepts and notations to be used
throughout this paper. In section 3, we define the
extended canonical decomposition for bipartite graphs
and we present Lozin’s theorem on the structure of the
Star123-free bipartite graphs. In section 4, the main
ideas of the recognition algorithm are presented in the
form of procedures and necessary conditions
concerning the decomposition tree. In section 5, the
final algorithm is given and it is shown that, using
suitable data structures, its execution time is linear on
the input size. Section 6 concludes the paper.

2. Notation and Terminology
For terms not defined in this paper the reader can refer
to [1]. The graphs considered in this paper are finite,
without multiple edges or loops. As usual, for any
graph G, we denote by V (G) the set of its vertices and
by E (G) the set of its edges (or simply by V and E if
there is no risk of confusion) by n and m their
respective cardinalities. A bipartite graph G = (B ∪ W,
E) is defined by two disjoint vertex subsets B - the
black vertices and W - the white ones, and a set of
edges E ⊆ B × W.

If the color classes B or W are both non empty the
graph will be called bichromatic, monochromatic
otherwise. The bicomplement of a bipartite graph G =
(B ∪ W, E) is the bipartite graph defined by bipG = (B
∪ W, B × W - E). For a vertex x, the set of its neighbors
in G is denoted by N (x), the cardinality of N (x) is
called the degree of x in G and is denoted by dG (x) (or

P Star123 Sun4

194 The International Arab Journal of Information Technology, Vol. 3, No. 3, July 2006

simply d (x) if no confusion can arise). A chordless
chain on k vertices is denoted by Pk and a chordless
cycle on k vertices is denoted by Ck. Given a subset X
of the vertex set V (G), the subgraph induced by X will
be denoted by G [X]. A graph G is called Z-free where
Z is a set of graphs, when G does not contain un
induced subgraph isomorphic to a graph in Z.

Let G = (V, E) be a graph. A (non-empty, proper)
subset M of V is a (proper) module of G if every vertex
in V−M is either adjacent to all vertices in M or to none
of them. A module of G is said to be strong if it does
not overlap with any other module.

Modular decomposition is a form of decomposition
of G that associates with G a unique decomposition
tree whose leaves are the vertices of G while the set of
leaves associated to the subtree rooted on an internal
node corresponds to the strong modules of G. An
internal node is labeled P (resp. S, N) for parallel (resp.
series, neighbourhood) modules. The module
corresponding to a P node induces in G a non
connected graph, that of a S node induces a connected
graph whose complement is non connected and that of
a N node induces a connected graph whose
complement is also connected.

Given an internal node of the modular
decomposition tree of G, say α, we denote by M (α)
the corresponding strong module of G. The
representative graph of α is the subgraph of G induced
by the set of vertices containing precisely one vertex
from each proper maximal strong module of G [M
(α)]. When G is prime with respect to modular
decomposition the representative graph of G will be
denoted G*.

3. Extended Canonical Decomposition of
Bipartite Graphs

Definition 1: Given a bipartite graph G = (B ∪ W, E)
of order at least 2, G is a K + S graph if and only if G
contains an isolated vertex or its vertex set can be
decomposed into two sets K and S such that K induces
a complete bipartite graph while S is a stable set [4].

Property 1: Let G = (B ∪W, E) be a bipartite graph of
order at least 2. G is a K + S graph if and only if there
exists a partition of its vertex set into two non empty
classes V1 and V2 such that all possible edges exist
between the black vertices of V1 and the white vertices
of V2 while there is no edge connecting a white vertex
of V1 with a black vertex of V2 [4].

Such a partition will be referred as an associated
partition of G and will be denoted by the ordered pair
(V1, V2).

Theorem 1 below provides a decomposition scheme
for K + S graph.

Theorem 1: A bipartite graph G is a K + S graph if and
only if G admits a unique (up to isomorphism)

partition of its vertex set into non empty sets (V1, ...,
Vk) satisfying the following conditions [4]:

1. ∀ i = 1, ..., k − 1, (V1 ∪ ... ∪ Vi, Vi + 1 ∪ ... ∪ Vk) is
an associated partition to the graph G.

2. ∀ i = 1, ..., k, G [Vi] is not a K + S graph.

The partition (V1,...,Vk) of the above theorem will be
called K + S decomposition while a set Vi said to be a
K + S-component of the graph.

From K + S decomposition together with the
decomposition of a bipartite graph G into its connected
components (parallel decomposition) or those of bipG
(series decomposition in the bipartite sense) yield a
new decomposition scheme for G, called canonical
decomposition.

It is shown in [4] that whatever the order in which
the decomposition operators are applied (K + S
decomposition, series decomposition or parallel
decomposition), a unique set of indecomposable (or
prime) graphs with respect to canonical decomposition
is obtained. Obviously, a tree is associated to this
decomposition. The nodes of this tree are subsets of the
vertex set. The internal nodes are labeled by the type of
decomposition applied, while its leaves correspond to
indecomposable graphs.

A bipartite graph that is indecomposable with
respect to canonical decomposition can be decomposed
using modular decomposition. In this case, since
proper modules of a (connected) bipartite graph are all
monochromatic, the root of the modular decomposition
tree has label N while its non trivial children consist of
monochromatic stable sets and will be labeled M.

In the following, the decomposition process
consisting of applying canonical decomposition
followed by modular decomposition on a bipartite
graph will be denoted extended canonical
decomposition; this process is associated to a unique
decomposition tree, namely the extended canonical
decomposition tree.

By convention, the set of vertices corresponding to
the set of leaves having an internal node α as their least
common ancestor will be denoted simply by α. Thus
the graph that is induced by the set of vertices α is
denoted by G [α].

Following is a description of the Extended
Canonical Decomposition Tree:

Let G be a bipartite graph and T its extended
canonical decomposition tree.

1. There are 5 different types of internal nodes:
Parallel (labeled 0), Series (labeled 1), K + S
(labeled 2), Neighborhood (labeled N) or
Monochromatic (labeled M). The leaves correspond
to the vertices of G. An internal node having label i,
i ∈{0, 1, 2, N, M} will be called a i-node.

2. Two internal nodes having the same label cannot be
neighbors.

Linear Time Recognition of Bipartite Star123-Free Graphs 195

3. The father of a M-node has label N, the father of a i-
node, i ∈{0, 1, 2, N} has label j, j ∈{0, 1, 2}.

4. If G is bi-chromatic, an internal node whose label is
distinct from M is bichromatic.

5. The children of a 2-node are ordered following the
order given by the K + S decomposition. (Theorem
1).

6. Internal nodes labeled 0 or 1 cannot have a leaf as
child. Such node would contain either a universal or
an isolated vertex.

7. Let δ be a 2-node, if its father is labeled 0 then:
a. The first K + S component of δ cannot be a white

leaf.
b. The last K + S-component of δ cannot be a black

leaf.
Otherwise the father of δ would have an isolated
vertex and would induce a K + S graph.

8. Let δ be a 2-node, if its father is labeled 1 then:
a. The first K + S-component of δ cannot be a black

leaf.
b. The last K + S-component of δ cannot be a white

leaf.

In [9] V.V Lozin gives the following characterization
for bipartite Star123-free graphs.

Theorem 2: Let G be a bipartite Star123-free graph. One
of the following hold:

1. G is K + S graph.
2. G and

__
G bip aren’t both connected.

3. G* or the bicomplement of G* is a path Pk or a
cycle Ck with k ≥ 7.

Thus the following Corollary is immediate.

Corollary 1: A bipartite Star123-free graph G is prime
with respect to canonical decomposition if and only G*
or the bicomplement of G* is a path Pk or a cycle Ck
and k ≥ 7.

4. Bipartite Star123-Free Graphs
Recognition

A bipartite graph is Star123-free if and only if its
indecomposable subgraphs with respect to extended
canonical decomposition are either single vertices or Pk
s or Ck or their bicomplement. Thus our recognition
algorithm constructs an extended canonical
decomposition tree whose prime graphs verify this
condition.

As a matter of fact, our algorithm extends the
recognition algorithm for weak-bisplit graphs that was
presented in [7]. This construction is incremental
modulo a preprocessing on the vertices of the graph
and follows the ideas developed by Corneil, Perl and
Stewart in [2] for cograph recognition.

The main step of our algorithm accepts as input an
extended canonical decomposition tree T of a bipartite

Star123-free graph G = (B ∪ W, E), a new vertex x and
a set of edges Ex connecting x to some vertices of B ∪
W. We assume that the vertex x is of maximum degree
in G. The algorithm first takes into account the
adjacencies of x with respect to the vertices of G by
using a marking process on T described below. Next, it
produces the extended canonical decomposition tree of
G' = (B ∪ W ∪ {x}, E ∪ Ex) if G' is Star123-free graph
or stops otherwise.

Figure 2. A bipartite graph Star123-free and its extended canonical
decomposition tree.

Henceforth, G, T, x, Ex denote the inputs of the
algorithm while T' denotes the extended canonical
decomposition tree of the bipartite graph G' = (B ∪ W
∪ {x}, E ∪ Ex). We may assume that G is bi-
chromatic, since otherwise G could not contain a
Star123. We also assume w.l.o.g. that x is a white
vertex.

Algorithm Mark
Input: The decomposition tree T of G and the vertex x
Output: The marked tree T.

Mark and unmark the leaves of T that are neighbors
of x;

Let α be a node on a bottom-up traversal of T:

If there is a child of α that is marked and unmarked
then mark α

End If;
If all of the children of α that are not reduced to
white leaves are marked and unmarked then
unmark α

End If;

Algorithm Mark
Input: The decomposition tree T of G and the vertex x
Output: The marked tree T

b
1

b
2

b
3

w
1

w
2

b
4

b
5

b
6

w
3

w
4

w

b
7

b
8

b
9

b
10

w
6

w
7

w
8

 2 2
b7 w

6
 b8 w7 b 9 w

8
b10

0

2 1 N

b
2

0

2 2 w
3
 b6 w5 b5 w

4 b4

b1 w
1

b
3

w
2

196 The International Arab Journal of Information Technology, Vol. 3, No. 3, July 2006

Mark and unmark the leaves of T that are neighbors
of x;

Let α be a node on a bottom-up traversal of T:

If there is a child of α that is marked and unmarked
then mark α

End If;
If all of the children of α that are not reduced to
white leaves are marked and unmarked then
unmark α

End If;

Once the tree T has been marked, there is at most
three different possible states for a node of T. A node
of T is either marked (denoted by *) or not marked
(denoted by ()) or marked and unmarked (denoted (*)).
Moreover the black vertices of an internal marked and
unmarked node of T are all adjacent to x, which is not
the case of marked or not marked nodes. The vertex x
has both neighbors and non-neighbors among the
vertices belonging to a marked node. Finally, a leaf of
T is either not marked or marked and unmarked.

We may assume henceforth that the marking
process on T is done and that the set of marked nodes
is not empty, otherwise the black vertices of G would
be uniform with respect to x and the construction of T
would be obvious.

Figure 3. The marked tree for the illustrated graph in the Figure 2
when x is adjacent to b1, b4 and b7.

4.1 Necessary Conditions
If G' is a bipartite Star123-free graph, G' must verify
some necessary conditions. We assume in this section
that G' is always a bipartite Star123-free graph.

Definition 2: Let α be an internal marked node of T.
The node α is said to be a well-marked path of type 1
(resp. of type 2) and of length k if there is a partition of
the vertex set of α into monochromatic sets, namely
(V1, V2, ..., Vk) such that:

1. The edge set of the subgraph induced by α is

1

1

1 −

−

=
×∪ ii

k

i
VV .

2. V1 (resp. V1 ∪ Vk) is the set of neighbours of x in α.

Theorem 3: Let α be an internal marked N-node of T.
Let G* [α] be the representative graph of G [α] and let
{v1, v2,..., vk} be the vertex set of G* [α]. One of the
following holds:

1. M (vi) ∪ {x} is a module of G [α ∪ {x}] for some I
∈2 {1, 2, ..., k}.

2. α is a well-marked path or a bicomplement of a well
marked path of type 1 or 2 and of length k≥ 7.

Definition 3: An internal marked nodeα is called a
lowest marked node if every descendant of α is not a
marked node i. e., if every descendant of α is either
marced and unmarced or unmarked.

Corollary 2: Let α be an internal marked node. Then
the following conditions hold:

1. α cannot be labeled M.
2. If α is a N-node then α is a lowest marked node.

Theorem 4: Let α and α' be two internal marked nodes
of T. One of the following conditions holds:

1. One of these two nodes is an ancestor of the other.
2. Let β be the least common ancestor to α and α', let
δ (resp. δ') be the child of β that contains α' (resp.
α'). Then:
a. β has label 0 or 1.
b. When β has label 0 (resp. 1), x is independent of

(resp. total for) all the children of β except δ and
δ .

c. Letγ be an ancestor to β and ς be the child of γ
that contains β then:
1. If γ is labeled 0 (resp. 1) then x is independent
of (resp. total for) all the children of γ except ς.

2. If γ is labeled 2 then x is independent of (resp.
total for) all the children of γ that succeed
(resp. precede) ς.

Corollary 3: There are at most two lowest marked
nodes (say α andα'). Morever the least common
ancestor to α' and α' is labeled 0 or 1.

For example, since there is three lowest marked
nodes in the marked tree of Figure 3, the graph G ∪
{x} is not a Star123-free; while if x is not adjacent to
one of b1, b4, b7 then the obtained graph is a Star123-
free since there is only two lowest marked nodes and
their least common ancestor is a 0-node.

The necessary conditions of Corollary 3 have to be
checked. The below Algorithm determines the set S of
lowest marked nodes whose size must be 1 or 2 within
O (d (x)) time complexity. As a matter of fact this
algorithm is inspired from [2] with some simple
change.

Algorithm Find-lowest-marked-nodes
Input: T The extended canonical decomposition tree of
G marked by x and the set M of marked nodes (M ≠ Ø)

*

* *

(*)

(*)

(*)

(*) 2 2
b7 w

6
 b8 w7 b 9 w

8
b10

0

2 1 N

b
2

0

2 2 w
3
 b6 w5 b5 w

4 b4

b1 w
1

b
3

w
2

Linear Time Recognition of Bipartite Star123-Free Graphs 197

Output: The set S of lowest marked nodes in case of
success, otherwise the message “failure”.

Let α1 be an element of M. Mark α1 and all of its
ancestors as “visited”

While M ≠ Ø DO
Let γ be an element of M. M←M−{γ}
Let γ' be the least ancestor visited ofγ
(γ and all of its ancestors are now marked as
“visited”)
If α2 has not been found then
If γ' = α1 then α1←γ
Else (α2 is found for the first time) α2 ←γ
End If

Else (α2has been found)
If (γ' = α1 or γ' =α2) then
α1 ←γ or α2 ←γ according to
whether γ' = α1 or γ' = α2

Else
Exit with the message “failure”

End If
End If

End While
S ← {α1}
If α2 has been found then
S←S ∪ {α2}
End If

When the above Algorithm terminates with two
lowest marked nodes α1 and α2 it is easy to check
whether their least common ancestor has label 0 or 1.
In this case we denote by α1, α2 of these two lowest
marked nodes and by β0 their least common ancestor.
We denote also by α to one of the two nodes α1 and
α2. At this point, we introduce some new notations in
order to simplify the presentation.

Notation 1:

1. Let δ, δ' be two internal nodes such that δ is an
ancestor of δ', we denote child (δ, δ') the (unique)
child of δ containing δ'.

2. Let δ be an internal node of T chosen among α or
one of its ancestors that is distinct from β0. We
denote by children (*) (δ) (resp. children() (δ)) the set
of marked and unmarked (resp. not marked)
children of δ.

3. When δ has label 2, considering the ordering of the
children of δ, we denote by children1(*) (δ) (resp.
children2(*) (δ)) the set of marked and unmarked
children of δ that precede (resp. succeed) child (δ,
α) and we denote by children1() (δ)(resp. children2()

(δ)) the set of not marked children of δ that precede
(resp. succeed) child (δ,α).

We remark that the behavior with respect to x of the
children of β0 (if exist) that are distinct from child (β0,

α) is not compatible with the label of β0. Every
ancestor to α satisfying this property is called
misconfigured. More precisely:

Definition 4: Let δ be an ancestor of α. Then δ is said
to be misconfigured if it belongs to one of the
following cases:

• Is a 0-node and (δ = β0 or children (*) (δ) ≠ Ø).
• δ is a 1-node and (δ = β0 or children () (δ) ≠ Ø).
• δ is a 2-node, and children1 () (δ) ≠Ø (in that case δ

is said to be misconfigured before α), or children2
(*) (δ) ≠ Ø (in that case δis said to be misconfigured
after α).

Remark that if β0 exist then by Theorem 4, β0 is the
highest misconfigured ancestor of α and α'. We denote
henceforth by β the highest misconfigured ancestor of
α.

Proposition 1: Let δ be a 2-misconfigured node after
(resp. before) α. The set children2(*) (δ) (resp. children1
() (δ)) is reduced to a set of consecutive black leaves
located just after (resp. before) α.

Proposition 2: Let β be a 2 misconfigured node after
(resp. before) α and let γ be the father of α. Then the
following conditions hold:

1. Any node δ on the path between β and γ is either
labeled 0 (resp. 1) or 2, and when γ is not
misconfigured, γ is labeled 0 (resp. 1) or 2.

2. For every 2-node δ on the path between β and α,
children (δ, α) is the last child (resp. the first child)
of δ.

3. There is no misconfigured node on the path between
β and γ.

4. If γ is a misconfigured node then γ is labeled 1
(resp. 0) or 2, and when γ is labeled 2, γ is a
misconfigured node before (resp. after) α.

Corollary 4: If β is a 2-misconfigured node before and
after α then β is the father of α.

Proposition 3: Assume that β is a 0-node (resp. a 1-
node). Let γ be the father of α. The following
conditions hold:

1. γ is labeled 1 (resp. 0) or is labeled 2 such that α is
the last child (resp. the first child) of γ.

2. When γ is a 1-node (resp. a 0-node), children(*) (γ) =
Ø (resp. children() (γ) = Ø).

3. When γ is a 2-node, children1()[[(γ) = Ø (resp.
children2() (γ) = Ø).

By Propositions 2 and 3, there is at most two
misconfigured ancestors of α that are β and the father
of α. We denote henceforth by γ the father of α.

198 The International Arab Journal of Information Technology, Vol. 3, No. 3, July 2006

4.2. Construction of T'
In order to construct T', we distinguish the different
cases that may arise according to the existence of β and
to the labels of the nodes α and β. We distinguish two
cases, first, no ancestor of α is misconfigured and
second, there is a misconfigured ancestor of α. For
each case we will present the necessary and sufficient
conditions to be G' Star123-free graph. The
constructions of T' are exactly the proof for the
sufficient conditions. As we refer already, the reader
can find the remaining proofs in [13].

4.2.1. No Ancestor of αααα is Misconfigured
In this case, the construction of T' from T will be
reduced to modifications at the subtree rooted on α.

Case 1 α is labeled 0 or 1.

The construction of T' when α is labeled 0 is described
in Figure 4. In a symmetrical manner, we construct T'
when α is labeled 1.

Figure 4. Construction of T' when α has label 0, case 1.

Case 2 α is labeled N.

Let G* [α] be the representative graph of G [α] and let
{v1, v2, ..., vk} be the vertex set of G* [α]. By Theorem
3, if M (vi) ∪ {x} is a module of G [α ∪ {x}] for some
i∈{1, 2,..., k}, then x will be inserted as a new child of
the M-node that represents the module M (vi). If α is a
well-marked path or a bicomplement of a well-marked
path of type 1 or 2, then x will be inserted as a new
child of α.

Case 3. α is labeled 2.

Recall that the children of a 2-node are ordered and the
adjacencies concerning the vertices of different
children are given by this order (see Theorem 1). We
define four subsets of consecutive children of α,
namely A(*), B(), C(*) and D, as follows:

• A(*) contains the first consecutive children of α that
are either a set of white leaves or total for x.

• B() denotes the set of the first consecutive children
of α that are not members of A(*) and that are either
a set of white leaves or independent of x.

• C(*)denotes the set of the first consecutive children
of α that are not members of B() nor of A(*) and that
they are either a set of white leaves or total for x. D
denotes the set of the remaining children of α.

Theorem 4: G' is a bipartite Star123-free graph if and
only if D is independent of x and one of the following
conditions holds:

1. C(*) is empty.
2. Induces a complete bipartite or a monochromatic

graph.
3. C(*) induces a complete bipartite or a mono-

chromatic graph.

The construction of T' for this case is as follows: If C(*)

is empty, then x will be obviously inserted as a new
child of α. Figure 5-a (resp. 5-b) shows the
construction of T' when condition 2 (resp. condition 3)
holds. If B() or C(*) is a monochromatic graph then Wα
= Ø.

Figure 5. Construction of T' when α has label 2, case 3.

4.2.2. There Exist Misconfigured Ancestors of αααα

Recall that β is the highest misconfigured ancestor of
α, γ is the father of α and S is the set of the lowest
marked nodes of T whose size is 1 or 2, and that in the
last case, β is labeled 0 or 1.

Case 1. β is labeled 0.

Theorem 5: G' is a bipartite Star123-free graph iff the
following conditions hold:

1. If S contains one element then the set children(*) (β)
induces a complete bipartite graph.

2. Either there is α ∈ S such that child (β, α) be a
well-marked path of type 1 and of length k, 3 ≤ k ≠
6, or there is α ∈ S such that child (β, α) be a
bicomplement of a well-marked path of type 1 and
of length 6.

Remark that since children(*) (β) induces a complete
bipartite children(*) (β) is a well-marked path of type 1
and of length 2. Figure 6-a shows the construction of T
when S = {α1, α2} and condition 2 holds, or when S =

Linear Time Recognition of Bipartite Star123-Free Graphs 199

{α} and child (β, α) is a well-marked path of type 1
and of length 6 ≠ k ≥ 4 or even when child (β, α) is a
bicomplement of a well-marked path of type 1 and of
length 6. In this figure, α represents child (β, α1) and δ'
represents child (β, α2) children(*)(β). For abbreviation,
the children of δ and δ' are represented as a list of
alternate sets of black vertices and white vertices.

Figure 6-b shows the construction of T' when S =
{α} and α is a well-marked path of type 1 and of
length 3.

Figure 6. Construction of T' when β has label 0.

Case 2 β is labeled 1.

Theorem 6: G' is a bipartite Star123-free graph iff the
following conditions hold:

1. If S has one element, then the set children() (β)
induces an edgeless graph.

2. There is α ∈ S such that
a. Child (β, α) is a bicomplement of a well-marked

path of type 1 and of length k, 3 ≤ k ≠ 6, or
b. Child (β, α) is a well-marked path of type 1 and

of length 6, or
c. Child (β, α) has exactly two children, both of

them inducing complete bipartite graphs.

The construction of T' when condition (a). or condition
(b). holds is analogous to the construction of T' in
Theorem 8. Also Figure 6-a shows the construction of
T' when S = {α1, α2} and condition C holds. Figure 7
describes the construction of T' when S = {α} and
condition c holds (the set children() (β) that induces an
edgeless graph is denoted by W()

β, B()β). In Figure 7-a
child (β, α) is the node α, the set children(*) (β) (resp.
children() (α)) is denoted by Wα

 (*), Bα (*) (resp. Wα
 (), Bα

()). In Figure 7-b children (β,α) is the node γ. The
child that is distinct from α and (by Proposition 3) is
total for x, is denoted here by (*)(*) ,WB .

Case 3: β is labeled 2.

In this case the size of S is one.

Case 3.1: γ is misconfigured.

Theorem 7: Assume that β is 2-misconfigured node
after α. G' is a bipartite Star123-free graph iff one of the
following holds:

1. γ is a 1-node and children() (γ) ∪ α is a
bicomplement of a well-marked path of type 1 and
of length 6.

2. γ is a 2-node and children1()(γ) ∪ α is a well-marked
path of type 1 and of length 5.

Since children2(*)(β) is reduced to a set of consecutive
black leaves just after child(β,α), we can consider the
set children2(*)(β)as a well-marked path of type 1 and
of length 1. Figure 6-a also shows the construction of
T' when condition 1 or condition 2 holds: here, β is
labeled 2, δ represents the node γ and δ' is the set
children2(*)(β). The node β here is not necessarily the
father of δ.

Figure 7. Construction of T when β has label 1, S = {α} and
condition c of Theorem 6 holds.

Theorem 8: Assume that β is a 2-misconfigured node
before α. G' is a bipartite Star123-free graph iff one of
the following holds:

1. γ is a 0-node and
a. αγ ∪)(Children() is a well-marked path of

type 1 and of length 6, or
b. γ has two children, both of them inducing

complete bipartite graphs.
c. γ is a 2-node and αγ ∪)(children (*)

2 is
abicomplement of a well-marked path of type 1
and of length 5.

The construction of T' when condition 1-a or condition
2 holds is analogous to the construction of T' in
Theorem 7. Figure 8 describes the construction of T'
when condition 1.b holds.

Case 3.2 γ is not misconfigured.

Let’s now consider the sets A(*), B(), C(*), and D
previously defined.

200 The International Arab Journal of Information Technology, Vol. 3, No. 3, July 2006

Theorem 9: Assume that β is misconfigured after α. G'
is a bipartite Star123-free graph iff one of the following
holds:

1. α is a 0-node.
2. α is a N-node that induces a well-marked path of

type 1 and of length k≥ 7.
3. α is a 2-node and C(*) is empty or D is empty and
B() induces a complete bipartite or a monochromatic
graph.

Figure 8. Construction of T' when β is a 2-misconfigured node
before α, γ is misconfigured and condition 1.b of t heorem 8 holds.

Figure 9-a shows the construction of T' when α is a
0-node. In this case, if the set children(*)(α) is a
singleton, δ1 is deleted and if this unique element of
children(*)(α) has label 2, then this element and δ2 are
gathered together. Figure 6-a shows also the
construction of T' when α is a N-node; here δ'
represents the set children2(*)(β) that is considered as a
well-marked path of type 1 and of length 1 and the
node δ is α. Remark that β here is not necessarily the
father of δ. Figure 9-b shows the construction of T'
when condition 3 holds with C(*) is empty. In this
figure, if δ2 is a singleton, then the node δ2 is deleted
and if this unique element of δ2 has label 0, then this
element and δ1 are gathered together. Finally, Figure 9-
c shows the construction of T' when condition 3 holds
with C(*) is not empty; here B() is denoted by Bα,Wα. If
B() is a monochromatic then Wα = Ø.

Theorem 10: Assume that β is a 2 misconfigured
before α. G' is a bipartite Star123-free graph iff one of
the following conditions holds:

1. α is labeled 1.
2. α is labeled 0 having exactly two children, both of

them inducing complete bipartite graphs.
3. α is labeled N and is a bicomplement of a well

marked path of type 1 and of length k ≥ 7.
4. α is labeled 2 and either C(*) is empty, or A(*) is

empty and C(*) induces a complete bipartite graph or
a monochromatic graph and D is independent of
x.

The construction of T' when condition 1, 3 or 4 holds
with C(*) is empty is analogous to the construction of T'
in Theorem 9 when condition 1, 2 or 3 holds with C(*)
is empty, respectively. Figure 10-a (10-b) shows the

construction of T' when condition 2 (4 with C(*) is not
empty) holds.

Figure 9. Construction of T' when β is a 2 misconfigured after α
and γ is not misconfigured.

Figure 10. Construction of T' when β is a 2 misconfigured before α
and γ is not misconfigured.

5. Complexity
The recognition algorithm for bipartite Star123-free
graphs can be written as follows:

Algorithm Star123-free graphs recognition
Input: A bipartite graph G = (B ∪ W, E).
Output: An extended canonical decomposition tree T
(G) if G is Star123-free, otherwise failure message “G is
not Star123-free”.

Initialization step: Create a list L of all the vertices of
G sorted by degrees in descending order
T← newvertex;
G'← Ø;
Construct-tree (G', T, head (L)).

Procedure Construct-tree (G', T, head (L))
Mark (T, x)
Find-lowest-marked-nodes (T, M)
If S = Ø Then T ← insert (x, T)
(If x is an isolated (universal) vertex, then add a new
root with x as left (right) child and the root of T as right
(left) child)

a) b)

c)

a)

b)

Linear Time Recognition of Bipartite Star123-Free Graphs 201

Else
Find the highest misconfigured ancestor β of some α ∈
S by computing the necessary sets mentionned in

Definition 5:
If β violates the conditions of Theorem 4 then Exit
with the message “failure”.

Notice that there is always such a β when S has two
elements.
If there is no such β (and in that case S has only one
element) then

T ← insert (x, T) (according to the Cases 1, 2, 3
of 3.3.1)

Else
T ← insert (x, T)
(distinguish the Cases 1, 2, 3 of 3.3.2:
Case 1 - according to 3.14
Case 2 - according to 3.15
Case 3 - check first 3.9, 3.10, then
Subcase 3.1 - according to 3.16 and 3.17
Subcase 3.2 - according to 3.18 and 3.19)

End If
End If
G' ←G [V (G') ∪ {x}];
If L = Ø Then exit
Else
L ←L − {x}, x ← head (L)
Construct-tree (G', T, x)
End If

Let’s show now that recognition of bipartite Star123-
free graph can be done within linear time complexity
on the size of G. Our goal is to show that the
initialization step requires only O (dG' (x)) where dG' (x)
is the degree of x in G'. For this we will assume that x
is of maximal degree in G'. We assume also that each
node in T can access to its father and that the set of
children of a node are stored as doubly linked lists.
Moreover, we assume that sequences of consecutive
leaves having the same color are stored as
monochromatic sets, thus visiting a such sequence can
be done in one step.

5.1. Marking Procedure
Obviously the marking procedure runs within O (dG'
(x)) time since at most O (dG' (x)) nodes have been
marked. We may also suppose that for each marked
node on the tree, the set of its marked and unmarked
children has been computed.

5.2. Finding the Lowest Marked Nodes
By Corollary 3, there are at most two lowest marked
nodes. For every lowest marked node α, let b be a
black vertex and w be a white vertex belonging to G
[α]. Let δ be an ancestor of α, let δ' be the father of δ
(if any) and δ'' be the father of δ' (if any). The number

of ancestors of α can be shown to be linear in the
degree of x in the initial graph, by the following simple
argument (taken from [4]): we can associate to (δ, δ',
δ'') a private neighbor of b or w. This is obvious if
either δ or δ' or δ'' is a 1-node, or if δ is a 0-node, δ' is a
2-node and δ'' is a 0-node: since δ' is connected there
must be a neighbor of b belonging to a graph located
after child child (δ',α) or a neighbor of w belonging to
a graph located before child (δ',α). The same holds
when δ, δ' and δ'' are labeled 2, 0 and 2, respectively.
Thus the number of ancestors of α is at most 3 × (dG'
(b) + dG (w)) which is O (dG' (x)) since we have
assumed that x is of maximal degree in G.

5.3. Computation of all Sets Needed for the
Construction of T at Every Call of
Constructtree

Let’s show that the computation of all sets needed for
the construction of T when x is inserted requires O (dG'
(x)) times. Consider an internal node of T among α or
one of its ancestors (say δ). When δ has 0 or 1 node the
computation of the sets children(*)(δ) and children()(δ)
is obvious.

When δ is a 2-node and is an ancestor of α, the
computation of the sets children1(*)(δ), children2()(δ)
and checking the proposition 1 can be done
simultaneously: If children1()(δ) is not empty then this
set must be a monochromatic set of black leaves
located just before child (δ', α) while all other children
of δ that are located before child (δ', α) are marked
and unmarked. Thus, the computation of those sets for
all ancestors of α requires to visit marked and
unmarked nodes whose number is O (dG' (x)). Hence
testing whether δ is misconfigured or not can be done
in O (dG' (x)) time.

We now examine the computation of the sets A(*),
B(), C(*)and D when α is a 2-node: The first set that is
computed is A(*) by visiting the set of children of α
while the visited nodes are either marked and
unmarked or monochromatic set of white leaves. By
Theorems 4, 9, or 10 the remaining marked and
unmarked children of α must belong to C(*).
The computation of C(*) is done as follows: first pick

a child of α (say c) among the remaining marked and
unmarked nodes and visit the set of children of α from
c in both directions using doubly linked lists, as long as
the visited nodes are either marked and unmarked or a
monochromatic set of white leaves. All marked and
unmarked children of α must be visited following this
process otherwise D is not independent of x. Once the
set C(*) is known, the computation of B()and D follows
immediately.

We leave to the reader the task of verifying that in
all cases, the insertion of x to the existing tree i.e. a call
of Construct-tree(G, T, x) takes constant time.

202 The International Arab Journal of Information Technology, Vol. 3, No. 3, July 2006

5.4. Complexity
We will show now that our algorithm recognizes if a
bipartite graph G is a Star123-free within linear time on
the size of G. Let us first show that when adding a
vertex x in a graph G, we can know in O (dG (x))
whether x is of maximal degree in G. For this, we use
an additional data structure, namely an array A such
that A [i] is the list of vertices outside G whose degree
in G is i. Initially A [0] contains all vertices of G. the
vertex x is chosen into the non empty list of A having a
lowest index. When adding x to G, its neighbors that
belong to A [i] move from A [i] to A [i + 1]. In order to
find in constant time each neighbor y of x in A [i], we
use an array B such that B [y] contains the address of y
into the list A [i]. Hence, the time complexity for
finding and moving the neighbors of x from A [i] to A
[i + 1] and for updating B is O (dG (x)). Since testing
whether G' = G ∪ {x} is a bipartite Star123-free or not
can be done within O (dG (x)) time complexity, it is
clear that our recognition algorithm runs in linear time
on the size of G.

6. Conclusion
This paper presents an optimal algorithm for
recognition the bipartite Star123-free graphs. We think
that this study must be prolonged, since, as we
signaled, bipartite graphs present in the same time,
theoretically and practically interest. In this
perspective, the algorithmic method, which we apply
for our recognition algorithm of bipartite Star123-free
graphs has been proved already its effectiveness since
initially proposed for the recognition of cographs and
weak bisplit graphs, Therefore, we are convinced, in
spite of a technique appearance where this method is
presented, we can extend with success its application
in the algorithmic study for other graph classes.

References
[1] Bondy J. A. and Murty U. S. R., Graph Theory

with Applications, North Holand, New York,
1979.

[2] Corneil D. G., Perl Y., and Stewart L. K., “A
Linear Recognition Algorithm for Cographs,”
SIAM Journal of Computing, vol. 14, no. 4, pp.
926-934, November 1985.

[3] Cournier A. and Habib M., “A New Linear
Algorithm for Modular Decomposition,” Lecture
Notes in Computer Science, Springer, Berlin, vol.
787, pp. 68-84, 1994.

[4] Fouquet J. L., Giakoumakis V., and Vanherpe J.
M., “Bipartite Graphs Totally Decomposable by
Canonical Decomposition,” International
Journal of Foundations of Computer Science,
vol. 10, no. 4, 1999.

[5] Frost H., Jacobson M., Kabell J., and Mc-Morris
A., “Bipartite Analogues of Split Graphs and
Related Topics,” ARS Combinatorial, vol. 29, pp.
283-288, 1990.

[6] Giakoumakis V. and Vanherpe J. M., “Bi-
Complement Reducible Graphs,” Advances in
Applied Mathematics, vol. 18, no. 4, 1997.

[7] Giakoumakis V. and Vanherpe J. M., “Linear
Time Recognition of Weak Bisplits Graphs,”
International Journal of Foundations of
Computer Science, vol. 14, no. 1, pp. 107-136,
2003.

[8] Lerchs H., “On the Cliques and Kernels,”
Technical Report, Department of Computer
Science, University of Toronto, 1971.

[9] Lozin V. V., Bipartite Graphs Without a Skew
Star, RUTCOR Research Report 20-2001, March
2001.

[10] Lozin V. V., “On a Generalization of
Bicomplement Reducible Graphs,” Lecture Notes
in Computer Science, Springer, Berlin, vol. 1893 ,
pp. 528-538, 2000.

[11] McConnel R. M. and Spinrad J., “Linear Time
Modular Decomposition and Efficient Transitive
Orientation of Comparability Graphs,” Technical
Report, Department of Computer Science,
University of Colorado, 1993.

[12] McKee T. A., “Bipartite Analogs of Graph
Theory,” Congressus Numerantium, vol. 60, pp.
261-268, 1987.

[13] Quaddoura R. and Vanhaerpe J. M., “Linear time
Recognition of Bipartite Star123-free Graphs,”
Technical Report, LaRIA 2002-12, 2002.

Ruzayn Quaddoura received his
MSc in computer science from
Institute National Polytechnique de
Grenoble (INPG), France, and his
PhD in computer science from
Picardie Jules Verne University,
France, in 1997 and 2003,

respectively. Currently, he is an assistant professor at
the Department of Computer Science, Zarqa Private
University, Jordan. His research interests include
algorithmic, combinatorial optimization, and graph
theory.

