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1. Introduction 
Bipartite graphs underlie suitable models for such a 
broad spectrum of real-life problems, that adapting 
results on general graphs to the bipartite case and even 
attacking combinatorial problems separately for 
bipartite graphs has been a sufficiently motivated 
activity since the early years of graph theory; see for 
example [12] where a bipartite translation” for various 
graph concepts is given. 

This is also the case for the definition and 
characterization of many special graph classes; for 
instance, Frost et al. in [5] propose several bipartite 
analogues of split graphs. Giakoumakis and Vanherpe 
defined in [6] the class of bicographs as a bipartite 
equivalent of cographs and showed that the bicographs 
are exactly the class of Star123, Sun4, P7-free graphs.

Figure 1. The forbidden configurations for the bicographs.

Fouquet et al. in [4] defined the weak bisplit graphs 
that turned out to be a generalization of bicographs. 
More precisely, in [4] a general decomposition scheme 
for bipartite graphs (called canonical decomposition) is 
given, under which the weak-bisplit graphs are totally 
decomposable; it is finally shown that these graphs are 
exactly the bipartite   graphs with no induced Star123
nor P7. Another generalization of bicographs, the 
Star123, Sun4-free bipartite graphs, have been studied in 
[10], but no recognition algorithm is given.

In this paper, we present a linear time algorithm for 
a further generalization of both weak-bisplit and 
Star123, Sun4-free bipartites, namely, the Star123-free 
bipartite graphs. To this end, our algorithm extends the 

recognition algorithm for Star123, P7-free bipartite 
graphs given in [7], by making use of some structural 
properties of the Star123-free bipartite graphs, first 
discussed by Lozin in [9]. For simplicity and 
abbreviation, we will present all the theorems without 
proofs, the reader can find these proofs in [13].

The paper is organized as follows. In section 2, we 
are giving the basic concepts and notations to be used 
throughout this paper. In section 3, we define the 
extended canonical decomposition for bipartite graphs 
and we present Lozin’s theorem on the structure of the 
Star123-free bipartite graphs. In section 4, the main 
ideas of the recognition algorithm are presented in the 
form of procedures and necessary conditions 
concerning the decomposition tree. In section 5, the 
final algorithm is given and it is shown that, using 
suitable data structures, its execution time is linear on 
the input size. Section 6 concludes the paper.

2. Notation and Terminology
For terms not defined in this paper the reader can refer 
to [1]. The graphs considered in this paper are finite, 
without multiple edges or loops. As usual, for any 
graph G, we denote by V (G) the set of its vertices and 
by E (G) the set of its edges (or simply by V and E if 
there is no risk of confusion) by n and m their 
respective cardinalities. A bipartite graph G = (B ∪ W,
E) is defined by two disjoint vertex subsets B - the 
black vertices and W - the white ones, and a set of 
edges E ⊆ B × W. 

If the color classes B or W are both non empty the 
graph will be called bichromatic, monochromatic
otherwise. The bicomplement of a bipartite graph G = 
(B ∪ W, E) is the bipartite graph defined by bipG = (B
∪ W, B × W - E). For a vertex x, the set of its neighbors 
in G is denoted by N (x), the cardinality of N (x) is 
called the degree of x in G and is denoted by dG (x) (or 
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simply d (x) if no confusion can arise). A chordless 
chain on k vertices is denoted by Pk and a chordless 
cycle on k vertices is denoted by Ck. Given a subset X
of the vertex set V (G), the subgraph induced by X will 
be denoted by G [X]. A graph G is called Z-free where 
Z is a set of graphs, when G does not contain un 
induced subgraph isomorphic to a graph in Z.

Let G = (V, E) be a graph. A (non-empty, proper) 
subset M of V is a (proper) module of G if every vertex 
in V−M is either adjacent to all vertices in M or to none 
of them. A module of G is said to be strong if it does 
not overlap with any other module.

Modular decomposition is a form of decomposition 
of G that associates with G a unique decomposition 
tree whose leaves are the vertices of G while the set of 
leaves associated to the subtree rooted on an internal 
node corresponds to the strong modules of G. An 
internal node is labeled P (resp. S, N) for parallel (resp. 
series, neighbourhood) modules. The module 
corresponding to a P node induces in G a non 
connected graph, that of a S node induces a connected 
graph whose complement is non connected and that of 
a N node induces a connected graph whose 
complement is also connected.

Given an internal node of the modular 
decomposition tree of G, say α, we denote by M (α) 
the corresponding strong module of G. The 
representative graph of α  is the subgraph of G induced 
by the set of vertices containing precisely one vertex 
from each proper maximal strong module of G [M
(α)]. When G is prime with respect to modular 
decomposition the representative graph of G will be 
denoted G*.

3. Extended Canonical Decomposition of 
Bipartite Graphs

Definition 1: Given a bipartite graph G = (B ∪ W, E) 
of order at least 2, G is a  K + S graph if and only if G 
contains an isolated vertex or its vertex set can be 
decomposed into two sets K and S such that K induces 
a complete bipartite graph while S is a stable set [4].

Property 1: Let G = (B ∪W, E) be a bipartite graph of 
order at least 2. G is a K + S graph if and only if there 
exists a partition of its vertex set into two non empty 
classes V1 and V2 such that all possible edges exist 
between the black vertices of V1 and the white vertices 
of V2 while there is no edge connecting a white vertex 
of V1 with a black vertex of V2 [4].

Such a partition will be referred as an associated 
partition of G and will be denoted by the ordered pair 
(V1, V2). 

Theorem 1 below provides a decomposition scheme 
for K + S graph.

Theorem 1: A bipartite graph G is a K + S graph if and 
only if G admits a unique (up to isomorphism) 

partition of its vertex set into non empty sets (V1, ..., 
Vk) satisfying the following conditions [4]:

1. ∀ i = 1, ..., k − 1, (V1 ∪ ... ∪ Vi, Vi + 1 ∪ ... ∪ Vk) is 
an associated partition to the graph G.

2. ∀ i = 1, ..., k, G [Vi] is not a K + S graph.

The partition (V1,...,Vk) of the above theorem will be 
called K + S decomposition while a set Vi said to be a 
K + S-component of the graph.

From K + S decomposition together with the 
decomposition of a bipartite graph G into its connected 
components (parallel decomposition) or those of bipG
(series decomposition in the bipartite sense) yield a 
new decomposition scheme for G, called canonical 
decomposition.

It is shown in [4] that whatever the order in which 
the decomposition operators are applied (K + S 
decomposition, series decomposition or parallel 
decomposition), a unique set of indecomposable (or 
prime) graphs with respect to canonical decomposition 
is obtained. Obviously, a tree is associated to this 
decomposition. The nodes of this tree are subsets of the 
vertex set. The internal nodes are labeled by the type of 
decomposition applied, while its leaves correspond to 
indecomposable graphs.

A bipartite graph that is indecomposable with 
respect to canonical decomposition can be decomposed 
using modular decomposition. In this case, since 
proper modules of a (connected) bipartite graph are all 
monochromatic, the root of the modular decomposition
tree has label N while its non trivial children consist of 
monochromatic stable sets and will be labeled M.

In the following, the decomposition process 
consisting of applying canonical decomposition 
followed by modular decomposition on a bipartite 
graph will be denoted extended canonical 
decomposition; this process is associated to a unique 
decomposition tree, namely the extended canonical 
decomposition tree.

By convention, the set of vertices corresponding to 
the set of leaves having an internal node α as their least 
common ancestor will be denoted simply by α. Thus 
the graph that is induced by the set of vertices α is 
denoted by G [α].

Following is a description of the Extended 
Canonical Decomposition Tree:

Let G be a bipartite graph and T its extended 
canonical decomposition tree.

1. There are 5 different types of internal nodes: 
Parallel (labeled 0), Series (labeled 1), K + S 
(labeled 2), Neighborhood (labeled N) or 
Monochromatic (labeled M). The leaves correspond 
to the vertices of G. An internal node having label i, 
i ∈{0, 1, 2, N, M} will be called a i-node.

2. Two internal nodes having the same label cannot be 
neighbors.
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3. The father of a M-node has label N, the father of a i-
node, i ∈{0, 1, 2, N} has label j, j ∈{0, 1, 2}.

4. If G is bi-chromatic, an internal node whose label is 
distinct from M is bichromatic.

5. The children of a 2-node are ordered following the 
order given by the K + S decomposition. (Theorem 
1).

6. Internal nodes labeled 0 or 1 cannot have a leaf as 
child. Such node would contain either a universal or 
an isolated vertex.

7. Let δ be a 2-node, if its father is labeled 0 then:
a. The first K + S component of δ cannot be a white 

leaf.
b. The last K + S-component of δ cannot be a black 

leaf.
Otherwise the father of δ would have an isolated 
vertex and would induce a K + S graph.

8. Let δ be a 2-node, if its father is labeled 1 then:
a. The first K + S-component of δ cannot be a black 

leaf. 
b. The last K + S-component of δ cannot be a white 

leaf.

In [9] V.V Lozin gives the following characterization
for bipartite Star123-free graphs.

Theorem 2: Let G be a bipartite Star123-free graph. One 
of the following hold:

1. G is K + S graph.
2. G and 

__
G bip aren’t both connected.

3. G* or the bicomplement of G* is a path Pk or a 
cycle Ck with k ≥ 7. 

Thus the following Corollary is immediate.

Corollary 1: A bipartite Star123-free graph G is prime 
with respect to canonical decomposition if and only G* 
or the bicomplement of G* is a path Pk or a cycle Ck
and k ≥ 7.

4. Bipartite Star123-Free Graphs 
Recognition

A bipartite graph is Star123-free if and only if its 
indecomposable subgraphs with respect to extended 
canonical decomposition are either single vertices or Pk
s or Ck or their bicomplement. Thus our recognition 
algorithm constructs an extended canonical 
decomposition tree whose prime graphs verify this 
condition.

As a matter of fact, our algorithm extends the 
recognition algorithm for weak-bisplit graphs that was 
presented in [7]. This construction is incremental 
modulo a preprocessing on the vertices of the graph 
and follows the ideas developed by Corneil, Perl and 
Stewart in [2] for cograph recognition.

The main step of our algorithm accepts as input an 
extended canonical decomposition tree T of a bipartite 

Star123-free graph G = (B ∪ W, E), a new vertex x and 
a set of edges Ex connecting x to some vertices of B ∪
W. We assume that the vertex x is of maximum degree 
in G. The algorithm first takes into account the 
adjacencies of x with respect to the vertices of G by 
using a marking process on T described below. Next, it 
produces the extended canonical decomposition tree of 
G' = (B ∪ W ∪ {x}, E ∪ Ex) if G' is Star123-free graph 
or stops otherwise.

Figure 2. A bipartite graph Star123-free and its extended canonical 
decomposition tree.

Henceforth, G, T, x, Ex denote the inputs of the 
algorithm while T' denotes the extended canonical 
decomposition tree of the bipartite graph G' = (B ∪ W
∪ {x}, E ∪ Ex). We may assume that G is bi-
chromatic, since otherwise G could not contain a 
Star123. We also assume w.l.o.g. that x is a white 
vertex.

Algorithm Mark
Input: The decomposition tree T of G and the vertex x
Output: The marked tree T.

Mark and unmark the leaves of T that are neighbors 
of x;

Let α be a node on a bottom-up traversal of T:

If there is a child of α that is marked and unmarked 
then mark α

End If;
If all of the children of α that are not reduced to 
white leaves are marked and unmarked then
unmark α

End If; 
 
Algorithm Mark
Input: The decomposition tree T of G and the vertex x
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Mark and unmark the leaves of T that are neighbors 
of x;

Let α be a node on a bottom-up traversal of T:

If there is a child of α that is marked and unmarked 
then mark α

End If;
If all of the children of α that are not reduced to 
white leaves are marked and unmarked then
unmark  α

End If;

Once the tree T has been marked, there is at most 
three different possible states for a node of T. A node 
of T is either marked (denoted by *) or not marked 
(denoted by ()) or marked and unmarked (denoted (*)). 
Moreover the black vertices of an internal marked and 
unmarked node of T are all adjacent to x, which is not 
the case of marked or not marked nodes. The vertex x
has both neighbors and non-neighbors among the 
vertices belonging to a marked node. Finally, a leaf of 
T is either not marked or marked and unmarked.

We may assume henceforth that the marking 
process on T is done and that the set of marked nodes 
is not empty, otherwise the black vertices of G would 
be uniform with respect to x and the construction of T
would be obvious.

Figure 3. The marked tree for the illustrated graph in the Figure 2 
when x is adjacent to b1, b4 and b7.

4.1 Necessary Conditions
If G' is a bipartite Star123-free graph, G' must verify 
some necessary conditions. We assume in this section 
that G' is always a bipartite Star123-free graph.

Definition 2: Let α be an internal marked node of T. 
The node α is said to be a well-marked path of type 1 
(resp. of type 2) and of length k if there is a partition of 
the vertex set of α into monochromatic sets, namely 
(V1, V2, ..., Vk) such that:

1. The edge set of the subgraph induced by α is 

1

1

1 −

−

=
×∪ ii

k

i
VV .

2. V1 (resp. V1 ∪ Vk) is the set of neighbours of x in α.

Theorem 3: Let α be an internal marked N-node of T. 
Let G* [α] be the representative graph of G [α] and let 
{v1, v2,..., vk} be the vertex set of G* [α]. One of the 
following holds:

1. M (vi) ∪ {x} is a module of G [α ∪ {x}] for some I 
∈2 {1, 2, ..., k}.

2. α is a well-marked path or a bicomplement of a well 
marked path of type 1 or 2 and of length k≥ 7.

Definition 3: An internal marked nodeα  is called a 
lowest marked node if every descendant of α is not a 
marked node i. e., if every descendant of α is either 
marced and unmarced or unmarked.

Corollary 2: Let α be an internal marked node. Then 
the following conditions hold:

1. α cannot be labeled M.
2. If α is a N-node then α is a lowest marked node.

Theorem 4: Let α and α' be two internal marked nodes 
of T. One of the following conditions holds:

1. One of these two nodes is an ancestor of the other.
2. Let β be the least common ancestor to α and α', let 
δ (resp. δ') be the child of β that contains α' (resp. 
α'). Then:
a. β has label 0 or 1.
b. When β has label 0 (resp. 1), x is independent of 

(resp. total for) all the children of β except δ and
δ . 

c. Letγ  be an ancestor to β and ς be the child of γ
that contains β  then:
1. If γ is labeled 0 (resp. 1) then x is independent 
of (resp. total for) all the children of γ except ς.

2. If γ is labeled 2 then x is independent of (resp. 
total for) all the children of γ that succeed 
(resp. precede) ς.

Corollary 3: There are at most two lowest marked 
nodes (say α andα'). Morever the least common 
ancestor to α' and α' is labeled 0 or 1.

For example, since there is three lowest marked 
nodes in the marked tree of Figure 3, the graph G ∪
{x} is not a Star123-free; while if x is not adjacent to 
one of b1, b4, b7 then the obtained graph is a Star123-
free since there is only two lowest marked nodes and 
their least common ancestor is a 0-node.

The necessary conditions of Corollary 3 have to be 
checked. The below Algorithm determines the set S of 
lowest marked nodes whose size must be 1 or 2 within 
O (d (x)) time complexity. As a matter of fact this 
algorithm is inspired from [2] with some simple 
change.

Algorithm Find-lowest-marked-nodes
Input: T The extended canonical decomposition tree of 
G marked by x and the set M of marked nodes (M ≠ Ø)
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Output: The set S of lowest marked nodes in case of 
success, otherwise the message “failure”.

Let α1 be an element of M. Mark α1 and all of its 
ancestors as “visited”

While M ≠ Ø DO
Let γ be an element of M. M←M−{γ}
Let γ' be the least ancestor visited ofγ
(γ and all of its ancestors are now marked as 
“visited”)
If α2 has not been found then
If γ' = α1 then α1←γ
Else (α2 is found for the first time) α2 ←γ
End If

Else (α2has been found)
If (γ' = α1 or γ' =α2) then
α1 ←γ or α2 ←γ according to
whether γ' = α1  or γ' = α2

Else
Exit with the message “failure”

End If
End If

End While
S ← {α1}
If α2  has been found then
S←S ∪ {α2}
End If

When the above Algorithm terminates with two 
lowest marked nodes α1 and α2 it is easy to check 
whether their least common ancestor has label 0 or 1. 
In this case we denote by α1, α2 of these two lowest 
marked nodes and by β0 their least common ancestor. 
We denote also by α to one of the two nodes α1 and 
α2. At this point, we introduce some new notations in 
order to simplify the presentation.

Notation 1:

1. Let δ, δ' be two internal nodes such that δ is an 
ancestor of δ', we denote child (δ, δ') the (unique) 
child of δ containing δ'.

2. Let δ be an internal node of T chosen among α or 
one of its ancestors that is distinct from β0. We 
denote by children (*) (δ) (resp. children() (δ)) the set 
of marked and unmarked (resp. not marked) 
children of δ.

3. When δ has label 2, considering the ordering of the 
children of δ, we denote by children1(*) (δ) (resp. 
children2(*) (δ)) the set of marked and unmarked 
children of δ that precede (resp. succeed) child (δ, 
α) and we denote by children1() (δ)(resp. children2()

(δ)) the set of not marked children of δ that precede 
(resp. succeed) child (δ,α). 

We remark that the behavior with respect to x of the 
children of β0 (if exist) that are distinct from child (β0,

α) is not compatible with the label of β0. Every 
ancestor to α satisfying this property is called 
misconfigured. More precisely:

Definition 4: Let δ be an ancestor of α. Then δ is said 
to be misconfigured if it belongs to one of the 
following cases:

• Is a 0-node and (δ = β0 or children (*) (δ) ≠ Ø).
• δ is a 1-node and (δ = β0 or children () (δ) ≠ Ø).
• δ is a 2-node, and children1 () (δ)  ≠Ø (in that case δ

is said to be misconfigured before α), or children2
(*) (δ) ≠ Ø (in that case δis said to be misconfigured 
after α).

Remark that if β0 exist then by Theorem 4, β0 is the 
highest misconfigured ancestor of α and α'. We denote 
henceforth by β the highest misconfigured ancestor of 
α.

Proposition 1: Let δ be a 2-misconfigured node after 
(resp. before) α. The set children2(*) (δ) (resp. children1
() (δ)) is reduced to a set of consecutive black leaves 
located just after (resp. before) α.

Proposition 2: Let β be a 2 misconfigured node after 
(resp. before) α and let γ be the father of α. Then the 
following conditions hold:

1. Any node δ on the path between β and γ is either 
labeled 0 (resp. 1) or 2, and when γ is not 
misconfigured, γ is labeled 0 (resp. 1) or 2.

2. For every 2-node δ on the path between β and α, 
children (δ, α)  is the last child (resp. the first child) 
of δ.

3. There is no misconfigured node on the path between 
β and γ.

4. If γ is a misconfigured node then γ is labeled 1 
(resp. 0) or 2, and when γ is labeled 2, γ is a 
misconfigured node before (resp. after) α.

Corollary 4: If β is a 2-misconfigured node before and 
after α then β is the father of α.

Proposition 3: Assume that β is a 0-node (resp. a 1-
node). Let γ be the father of α. The following 
conditions hold:

1. γ is labeled 1 (resp. 0) or is labeled 2 such that α is 
the last child (resp. the first child) of γ.

2. When γ is a 1-node (resp. a 0-node), children(*) (γ) = 
Ø  (resp. children() (γ) = Ø).

3. When γ is a 2-node, children1()[[(γ) = Ø (resp. 
children2() (γ) = Ø).

By Propositions 2 and 3, there is at most two 
misconfigured ancestors of α that are β and the father 
of α. We denote henceforth by γ the father of α.
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4.2. Construction of T'
In order to construct T', we distinguish the different 
cases that may arise according to the existence of β and 
to the labels of the nodes α and β. We distinguish two 
cases, first, no ancestor of  α is misconfigured and 
second, there is a misconfigured ancestor of α. For 
each case we will present the necessary and sufficient 
conditions to be G' Star123-free graph. The 
constructions of T' are exactly the proof for the 
sufficient conditions. As we refer already, the reader 
can find the remaining proofs in [13].

4.2.1. No Ancestor of αααα is Misconfigured
In this case, the construction of T' from T will be 
reduced to modifications at the subtree rooted on α.

Case 1 α is labeled 0 or 1.

The construction of T' when α is labeled 0 is described 
in Figure 4. In a symmetrical manner, we construct T'
when α is labeled 1.

Figure 4. Construction of  T' when α has label 0, case 1.

Case 2 α  is labeled N.

Let G* [α] be the representative graph of G [α] and let 
{v1, v2, ..., vk} be the vertex set of G* [α]. By Theorem 
3, if M (vi) ∪ {x} is a module of G [α ∪ {x}] for some 
i∈{1, 2,..., k}, then x will be inserted as a new child of 
the M-node that represents the module M (vi). If α is a 
well-marked path or a bicomplement of a well-marked 
path of type 1 or 2, then x will be inserted as a new 
child of α.

Case 3. α is labeled 2.

Recall that the children of a 2-node are ordered and the 
adjacencies concerning the vertices of different 
children are given by this order (see Theorem 1). We 
define four subsets of consecutive children of α, 
namely A(*), B(), C(*) and D, as follows:

• A(*) contains the first consecutive children of α that 
are either a set of white leaves or total for x.

• B() denotes the set of the first consecutive children 
of α that are not members of A(*) and that are either 
a set of white leaves or independent of x.

• C(*)denotes the set of the first consecutive children 
of α that are not members of B() nor of A(*) and that 
they are either a set of white leaves or total for x. D
denotes the set of the remaining children of α.

Theorem 4: G' is a bipartite Star123-free graph if and 
only if D is independent of x and one of the following 
conditions holds:

1. C(*) is empty.
2. Induces a complete bipartite or a monochromatic 

graph.
3. C(*) induces a complete bipartite or a mono-

chromatic graph.

The construction of T' for this case is as follows: If C(*)

is empty, then x will be obviously inserted as a new 
child of α. Figure 5-a (resp. 5-b) shows the 
construction of T' when condition 2 (resp. condition 3) 
holds. If B() or C(*) is a monochromatic graph then Wα
= Ø.

Figure 5. Construction of T' when α has label 2, case 3.

4.2.2. There Exist Misconfigured Ancestors of αααα

Recall that β is the highest misconfigured ancestor of 
α, γ is the father of α and S is the set of the lowest 
marked nodes of T whose size is 1 or 2, and that in the 
last case, β is labeled 0 or 1.

Case 1. β is labeled 0.

Theorem 5: G' is a bipartite Star123-free graph iff the 
following conditions hold:

1. If S contains one element then the set children(*) (β)
induces a complete bipartite graph.

2. Either there is α ∈ S such that child (β, α) be a 
well-marked path of type 1 and of length k, 3 ≤  k ≠
6, or there is α ∈ S such that child (β, α) be a 
bicomplement of a well-marked path of type 1 and 
of length 6.

Remark that since children(*) (β) induces a complete 
bipartite children(*) (β) is a well-marked path of type 1 
and of length 2. Figure 6-a shows the construction of T
when S = {α1, α2} and condition 2 holds, or when S =
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{α} and child (β, α)  is a well-marked path of type 1 
and of length 6 ≠ k ≥  4 or even when child (β, α)  is a 
bicomplement of a well-marked path of type 1 and of 
length 6. In this figure, α represents child (β, α1) and δ'
represents child (β, α2) children(*)(β). For abbreviation, 
the children of δ and δ' are represented as a list of 
alternate sets of black vertices and white vertices.

Figure 6-b shows the construction of T' when S = 
{α} and α is a well-marked path of type 1 and of 
length 3. 

Figure 6. Construction of T' when β has label 0.

Case 2 β is labeled 1.

Theorem 6: G' is a bipartite Star123-free graph iff the 
following conditions hold:

1. If S has one element, then the set children() (β)
induces an edgeless graph.

2. There is α ∈ S such that
a. Child (β, α) is a bicomplement of a well-marked 

path of type 1 and of length k, 3 ≤  k ≠ 6, or
b. Child (β, α) is a well-marked path of type 1 and 

of length 6, or
c. Child (β, α) has exactly two children, both of 

them inducing complete bipartite graphs.

The construction of T' when condition (a). or condition 
(b). holds is analogous to the construction of T' in 
Theorem 8. Also Figure 6-a shows the construction of 
T' when S = {α1, α2} and condition C holds. Figure 7 
describes the construction of T' when S = {α} and 
condition c holds (the set children() (β) that induces an 
edgeless graph is denoted by W()

β, B()β). In Figure 7-a 
child (β, α) is the node α, the set children(*) (β)  (resp.
children() (α)) is denoted by Wα

 (*), Bα (*) (resp. Wα
 (), Bα

()). In Figure 7-b children (β,α ) is the node γ. The 
child that is distinct from α and (by Proposition 3) is 
total for x, is denoted here by (*)(*) ,WB .

Case 3: β  is labeled 2.

In this case the size of S is one.

Case 3.1: γ is misconfigured.

Theorem 7: Assume that β is 2-misconfigured node 
after α. G' is a bipartite Star123-free graph iff one of the 
following holds:

1. γ is a 1-node and children() (γ) ∪ α is a 
bicomplement of a well-marked path of type 1 and 
of length 6.

2. γ is a 2-node and children1()(γ) ∪ α is a well-marked 
path of type 1 and of length 5.

Since children2(*)(β) is reduced to a set of consecutive 
black leaves just after child(β,α ), we can consider the 
set children2(*)(β)as a well-marked path of type 1 and 
of length 1. Figure 6-a also shows the construction of
T' when condition 1 or condition 2 holds: here, β is 
labeled 2, δ represents the node γ and δ' is the set 
children2(*)(β). The node β here is not necessarily the 
father of δ.

Figure 7. Construction of T when β has label 1, S = {α} and 
condition c of Theorem 6 holds.

Theorem 8: Assume that β is a 2-misconfigured node 
before α. G' is a bipartite Star123-free graph iff one of 
the following holds:

1. γ is a 0-node and
a. αγ ∪)(Children()  is a well-marked path of 

type 1 and of length 6, or
b. γ has two children, both of them inducing 

complete bipartite graphs.
c. γ is a 2-node and αγ ∪)(children (*)

2 is 
abicomplement of a well-marked path of type 1 
and of length 5.

The construction of T' when condition 1-a or condition 
2 holds is analogous to the construction of T' in 
Theorem 7. Figure 8 describes the construction of T' 
when condition 1.b holds.

Case 3.2 γ  is not misconfigured.

Let’s now consider the sets A(*), B(), C(*), and D
previously defined.
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Theorem 9: Assume that β is misconfigured after α. G' 
is a bipartite Star123-free graph iff one of the following 
holds:

1. α is a 0-node.
2. α is a N-node that induces a well-marked path of 

type 1 and of length k≥ 7.
3. α  is a 2-node and C(*) is empty or D is empty and 
B() induces a complete bipartite or a monochromatic 
graph.

Figure 8. Construction of T' when β is a 2-misconfigured node 
before α, γ is misconfigured and condition 1.b of t heorem 8 holds.

Figure 9-a shows the construction of T' when α  is a 
0-node. In this case, if the set children(*)(α) is a 
singleton, δ1 is deleted and if this unique element of 
children(*)(α) has label 2, then this element and δ2 are 
gathered together. Figure 6-a shows also the 
construction of T' when α  is a N-node; here δ'
represents the set children2(*)(β) that is considered as a 
well-marked path of type 1 and of length 1 and the 
node δ is α. Remark that β here is not necessarily the 
father of δ. Figure 9-b shows the construction of T'
when condition 3 holds with C(*) is empty. In this 
figure, if δ2 is a singleton, then the node δ2 is deleted 
and if this unique element of δ2 has label 0, then this 
element and δ1 are gathered together. Finally, Figure 9-
c shows the construction of T' when condition 3 holds 
with C(*) is not empty; here B() is denoted by Bα,Wα. If 
B() is a monochromatic then Wα = Ø.

Theorem 10: Assume that β is a 2 misconfigured 
before α. G' is a bipartite Star123-free graph iff one of 
the following conditions holds:

1. α is labeled 1.
2. α is labeled 0 having exactly two children, both of 

them inducing complete bipartite graphs.
3. α is labeled N and is a bicomplement of a well 

marked path of type 1 and of length k ≥ 7.
4. α is labeled 2 and either C(*) is empty, or A(*) is 

empty and C(*) induces a complete bipartite graph or 
a monochromatic graph and D is independent of 
x.

The construction of T' when condition 1, 3 or 4 holds 
with C(*) is empty is analogous to the construction of T'
in Theorem 9 when condition 1, 2 or 3 holds with C(*) 
is empty, respectively. Figure 10-a (10-b) shows the 

construction of T' when condition 2 (4 with C(*) is not 
empty) holds.

Figure 9. Construction of T' when β is a 2 misconfigured after α
and γ  is not misconfigured.

Figure 10. Construction of T' when β is a 2 misconfigured before α
and γ  is not misconfigured.

5. Complexity
The recognition algorithm for bipartite Star123-free 
graphs can be written as follows:

Algorithm Star123-free graphs recognition
Input: A bipartite graph G = (B ∪ W, E).
Output: An extended canonical decomposition tree T
(G) if G is Star123-free, otherwise failure message “G is 
not Star123-free”.

Initialization step: Create a list L of all the vertices of 
G sorted by degrees in descending order
T← newvertex;
G'← Ø;
Construct-tree (G', T, head (L)).

Procedure Construct-tree (G', T, head (L))
Mark (T, x)
Find-lowest-marked-nodes (T, M)
If S = Ø Then T ← insert (x, T)
(If x is an isolated (universal) vertex, then add a new 
root with x as left (right) child and the root of T as right 
(left) child)

a) b) 

c) 

a)

b) 
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Else
Find the highest misconfigured ancestor β of some α ∈
S by computing the necessary sets mentionned in 

Definition 5:
If β violates the conditions of Theorem 4 then Exit 
with the message “failure”.

Notice that there is always such a β when S has two 
elements.
If there is no such β (and in that case S has only one 
element) then

T ← insert (x, T) (according to the Cases 1, 2, 3 
of 3.3.1)

Else
T ← insert (x, T)
(distinguish the Cases 1, 2, 3 of 3.3.2:
Case 1 - according to 3.14
Case 2 - according to 3.15
Case 3 - check first 3.9, 3.10, then
Subcase 3.1 - according to 3.16 and 3.17
Subcase 3.2 - according to 3.18 and 3.19)

End If
End If
G' ←G [V (G') ∪ {x}];
If L = Ø Then exit
Else
L ←L − {x}, x ← head (L)
Construct-tree (G', T, x)
End If

Let’s show now that recognition of bipartite Star123-
free graph can be done within linear time complexity 
on the size of G. Our goal is to show that the 
initialization step requires only O (dG' (x)) where dG' (x) 
is the degree of x in G'. For this we will assume that x 
is of maximal degree in G'. We assume also that each 
node in T can access to its father and that the set of 
children of a node are stored as doubly linked lists. 
Moreover, we assume that sequences of consecutive 
leaves having the same color are stored as 
monochromatic sets, thus visiting a such sequence can 
be done in one step.

5.1. Marking Procedure
Obviously the marking procedure runs within O (dG'
(x)) time since at most O (dG' (x)) nodes have been 
marked. We may also suppose that for each marked 
node on the tree, the set of its marked and unmarked 
children has been computed.

5.2. Finding the Lowest Marked Nodes
By Corollary 3, there are at most two lowest marked 
nodes. For every lowest marked node α, let b be a 
black vertex and w be a white vertex belonging to G
[α]. Let δ be an ancestor of α, let δ' be the father of δ
(if any) and δ''  be the father of δ' (if any). The number 

of ancestors of α can be shown to be linear in the 
degree of x in the initial graph, by the following simple 
argument (taken from [4]): we can associate to (δ, δ', 
δ'') a private neighbor of b or w. This is obvious if 
either δ or δ' or δ'' is a 1-node, or if δ is a 0-node, δ' is a 
2-node and δ'' is a 0-node: since δ' is connected there 
must be a neighbor of b belonging to a graph located 
after child child (δ',α) or a neighbor of w belonging to 
a graph located before child (δ',α). The same holds 
when δ, δ' and δ'' are labeled 2, 0 and 2, respectively. 
Thus the number of ancestors of α is at most 3 × (dG'
(b) + dG (w)) which is O (dG' (x)) since we have 
assumed that x is of maximal degree in G.

5.3. Computation of all Sets Needed for the 
Construction of T at Every Call of 
Constructtree

Let’s show that the computation of all sets needed for 
the construction of T when x is inserted requires O (dG'
(x)) times. Consider an internal node of T among α or 
one of its ancestors (say δ). When δ has 0 or 1 node the 
computation of the sets children(*)(δ) and children()(δ)
is obvious.

When δ is a 2-node and is an ancestor of α, the 
computation of the sets children1(*)(δ), children2()(δ)
and checking the proposition 1 can be done 
simultaneously: If children1()(δ) is not empty then this 
set must be a monochromatic set of black leaves 
located just before child (δ', α)  while all other children 
of δ that are located before child (δ', α)  are marked 
and unmarked. Thus, the computation of those sets for 
all ancestors of α requires to visit marked and 
unmarked nodes whose number is O (dG' (x)). Hence 
testing whether δ is misconfigured or not can be done 
in O (dG' (x)) time. 

We now examine the computation of the sets A(*),
B(), C(*)and D when α is a 2-node: The first set that is 
computed is A(*) by visiting the set of children of α
while the visited nodes are either marked and 
unmarked or monochromatic set of white leaves. By 
Theorems 4, 9, or 10 the remaining marked and 
unmarked children of α must belong to C(*).
The computation of C(*) is done as follows: first pick 

a child of α (say c) among the remaining marked and 
unmarked nodes and visit the set of children of α from 
c in both directions using doubly linked lists, as long as 
the visited nodes are either marked and unmarked or a 
monochromatic set of white leaves. All marked and 
unmarked children of α must be visited following this 
process otherwise D is not independent of x. Once the 
set C(*) is known, the computation of B()and D follows 
immediately.

We leave to the reader the task of verifying that in 
all cases, the insertion of x to the existing tree i.e. a call 
of Construct-tree(G, T, x) takes constant time. 
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5.4. Complexity
We will show now that our algorithm recognizes if a 
bipartite graph G is a Star123-free within linear time on 
the size of G. Let us first show that when adding a 
vertex x in a graph G, we can know in O (dG (x)) 
whether x is of maximal degree in G. For this, we use 
an additional data structure, namely an array A such 
that A [i] is the list of vertices outside G whose degree 
in G is i. Initially A [0] contains all vertices of G. the 
vertex x is chosen into the non empty list of A having a 
lowest index. When adding x to G, its neighbors that 
belong to A [i] move from A [i] to A [i + 1]. In order to 
find in constant time each neighbor y of x in A [i], we 
use an array B such that B [y] contains the address of y
into the list A [i]. Hence, the time complexity for 
finding and moving the neighbors of x from A [i] to A
[i + 1] and for updating B is O (dG (x)). Since testing 
whether G' = G ∪ {x} is a bipartite Star123-free or not 
can be done within O (dG (x)) time complexity, it is 
clear that our recognition algorithm runs in linear time 
on the size of G.

6. Conclusion
This paper presents an optimal algorithm for 
recognition the bipartite Star123-free graphs. We think 
that this study must be prolonged, since, as we 
signaled, bipartite graphs present in the same time, 
theoretically and practically interest. In this 
perspective, the algorithmic method, which we apply 
for our recognition algorithm of bipartite Star123-free 
graphs has been proved already its effectiveness since 
initially proposed for the recognition of cographs and 
weak bisplit graphs, Therefore, we are convinced, in 
spite of a technique appearance where this method is 
presented, we can extend with success its application 
in the algorithmic study for other graph classes. 
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