
The International Arab Journal of Information Technology, Vol. 3, No. 3, July 2006 231

An Optimizing Query Processor with an Efficient
Caching Mechanism for Distributed Databases

Selvaraj Prabha1, Arputharaj Kannan2, and Palaniappan Anandha Kumar 2

1Department of Information, RMK Engineering College, India
2Department of Computer Science and Engineering, Anna University, India

Abstract: This paper provides an efficient way of querying among many distributed and heterogeneous data sources. We
describe a database optimization framework that supports data and computation reuse, query scheduling and caching
mechanism to speed up the evaluation of multiquery workload. The Caching query result is stored as an eXtensible Markup
Language (XML) document. An XML oriented common data model and an XML Parser (XP) accept the SQL statement, which
consists of selection constructs to impose constraints, project construct and also to update the database distributed. It also
maintains the historical database to store the historical data. Using this optimized query processor and XML cache could
simply fasten the query processing. The experimental results show that execution time is optimized and query cost is reduced.

Keywords: Temporal, caching, Xparser, query optimizer.

Received May 24, 2005; accepted December 20, 2005

1. Introduction
Time is an important aspect of all real-world
phenomena. Conventional databases model in an
enterprise change dynamically by a snapshot at a
particular point in time. As information is updated in a
conventional database, the old is discarded forever. For
many applications such an banking, accounting,
medical record bookkeeping, etc., the changes made on
their databases over time are a valuable source of
information which can direct their future operation.
Due to the importance of time varying data, efforts
have been made to design temporal databases, which
support aspects of time.

The problem of query optimization in relational
database systems has received lot of attention. The
efficient management and analysis of large data sets is
important in many fields. As data sets sizes continue to
grow, it is increasingly important and challenging to
efficiently execute. In many cases, data analysis is
employed in a collaborative environment, where
multiple clients access the same data sets and perform
similar processing on the data. In this case, a data
server needs to process multiple queries
simultaneously to minimize latency to the clients. The
recently emerged eXtensible Markup Language (XML)
has been widely accepted as the standard, and many
projects are developed based on XML to facilitate data
interchange and information sharing. The issue of
XML data management and query processing is
therefore very important and attracts a lot of attentions.
The query is processed and the result is stored as an
XML document. Finally, XML documents benefit
from their hierarchical structure. Hierarchical

document are, in general, faster to access because you
can drill down to the part you need, like stepping
through the table of contents They are also easy to
rearrange, because each piece is delimited.

The main objective is to design a query processing
system, which handles temporal database, and to
optimize the multiple data analysis query workload in
distributed environment for both temporal databases.
One critical aspect in optimizing multi query loads lies
in identifying data and computational reuse
opportunities in the query data processing, so that same
data is not retrieved multiple times and common
processing is not performed repeatedly. We have
designed and implemented database support for these
applications by devising a data and computational
reuse framework that enables the execution of queries
in the result, where the client application intends to
hold the results for a significantly long time interval.

This paper focuses on the design of databases with
optimization but not applications. In network, the
clients that do not have resources to connect to
databases. In such a scenario, the complete process of
retrieving the data and populating is performed on the
server and the populated row set is passed on to the
client using suitable architecture like Remote Method
Invocation (RMI) or Enterprise Java Beans (EJB). The
client would be able to perform all the operations like
retrieving, scrolling, inserting, updating, and deleting
on the row set without any connection to the database.
Whenever data is committed to the database, a method
is called which synchronizes the data in the rowset to
that in the database.

232 The International Arab Journal of Information Technology, Vol. 3, No. 3, July 2006

The network communication cost is reduced and the
response time is greatly improved, as only the required
data is sent from the query optimizer to the distributed
database. The optimization framework will be very
effective in achieving data and computational reuse,
increasing system throughput and decreasing average
query execution time.

2. System Architecture
The architecture of the system developed in this work
is shown in Figure 1. Caching is very attractive for use
in distributed systems due to the reduced network
traffic and improved response time. The idea of
caching is that the maintenance of the results of
previously executed queries. Since cached items are
stored in XML data cache as XML document, query
optimizer checks whether a query is fully answerable,
partial or not. Through reasoning among cached
results, the exact work to be done at the server side can
be determined.

Instead of page replacement technique, we are going
for query based cache replacement for better
performance. Since distributed environment care
should be taken to maintain the basic properties of the
database systems. Whenever the query processor
recognizes an updating statement, it updates the
historical database and delete the XML document for
the corresponding table. If no updating statement was
received and the cache size increases, we use aging
technique to replace the cache.

One critical aspect in optimizing multi query loads
lies in identifying data and computational reuse
opportunities in the query data processing, so that same
data is not retrieved multiple times and common
processing is not performed repeatedly. We have
designed and implemented database support for these
applications by devising a data and computational
reuse framework that enables the execution of queries.
The network communication cost is reduced and the
response time is greatly improved, as only the required
data is sent from the query optimizer to the distributed
database. The optimization framework will be very
effective in achieving data and computational reuse,
increasing system throughput and decreasing average
query execution time.

In applications, executing queries with possibly
large number of rows in the result, where the client
application intends to hold the results for a
significantly long time interval. The clients who do not
have resources to connect to databases can do querying
and updating the database.

The query distribution manager maintains the
database server table along with the tables for which
the user has access. The query cache manager which
receives the query from the user through optimizer and
checks for the availability in the data cache. If not
found then it messages the mismatch information. If

found it checks whether the related data is already
queried and retrieves the result.

Figure 1. Optimized query processor with efficient caching
mechanism.

The experiments were conducted with MS Access,
Oracle and SQL Server. XML representation of the
data from heterogeneous database gives a common
orientation. We used MS Access, Oracle and SQL
Server as back ends. The proposed scheme can be
utilized to enable efficient sharing between systems.
Which caters for a more structured handling of the
exchanged information.

3. Related Work
3.1. Temporal Data Model
Transitioning temporal support in TSQL2 to SQL3 [6]
summarizes the additions of table with transaction and
valid time support. An Authorization Model for
temporal XML Documents. This efficiently explains
how to move conventional system to one
encompassing temporal support.

Semantics of time varying attributes and their use
for temporal database design [7] presents an efficient
study of important aspects of the temporal semantics of
attributes.

Temporal statement modifiers [9], launch the notion
of statement modifiers that provide a wealth of
systematically adding temporal support to an existing
query language. A middle ware approach to temporal
query processing [15] is well discussed. They also
offer a way to methodically and temporal support to an
existing implementation such that the result is a

User Interface

Query Optimizer

Query Distribution
Manager

Query Cache Manager

DB1 DB2 DBn

DB Listener DB Listener

Apply
XParser

XML
Data Cache

Database
Server Table

Query Based Cache
Replacement
Strategy

Historical
Database
Manager

DB Listener

An Optimizing Query Processor with an Efficient Caching Mechanism for Distributed Databases 233

temporal query language syntax, semantics and
implementation.

3.2. Historical Database
An aggregation computation over complex objects [8],
explains the transaction time model for maintaining
historical database. The Vagabond approach to logging
and recover in recovery in transaction-time temporal
object database systems [10] concentrates on log-only-
updation by keeping the old versions of objects which
have to be copied to a new place before updating.

Efficient execution of multiple query work loads [3]
and the utilization of intermediate results [1] and reuse
of intermediate results [5] has been explained which
improves the response time.

3.3. Optimizing Execution Time
Optimizing the execution of multiple query analysis
on parallel and distributed environments [2] explains
the analysis of data and computational reuse to
improve the response time and reduce the latency [4]
by caching the computed results for future use. An
efficient caching mechanism for XML content
adaptation [14] improves the hit ratio and space
efficiency.

3.4. XML Representation
Converting relational database into XML document
[12] explains the methodology of translating relational
database into XML schema. Query translation from
eXtensible Style Sheet Language Transformations
(XSLT) to Sequential Query Language (SQL) [9]
explains connection between the data that user sees and
the data in the database. More specifically in
translating XSLT queries to SQL queries. XML storing
and processing techniques [10] explains the XML data
organization methods, query evaluation model for
Xquery and physical optimization of Xpath and
Xquery queries.

4. Translate the Data to the XML
Document

Designing data organization, we present a possible XML
document to store the information about the data
retrieved from the RDBMS for further processing to be
efficient for both queries and updates. We can transform
a database table into an XML document with a
Document Type Definition (DTD) as shown below:

<metadata>
<column-definition>
<column-definition>
</metadata>
<data>
<currentRow>

<field-name1>value</field-name1>
<field-name2>value</field-name2>
</currentRow>
<currentRow>…
</currentRow>
</data>
<?xml version="1.0" ?>
- <properties>
-<XPRowset>
<command />
<concurrency>1008</concurrency
<datasource />
<escape-processing>true
</escape-processing>
<fetch-irection>0</fetch-direction>
<fetch-size>0</fetch-size>
<isolation-level>2</isolation-level>
<key-columns />
<map />
<max-field-size>0</max-field-size>
<max-rows>0</max-rows>
<query-timeout>0</query-timeout>
<read-only>true</read-only>
<rowset-type>

ResultSet.TYPE_SCROLL_INSENSITIVE</rowset-
type>
<show-deleted>false</show-deleted>
<table-name />
<url />
- <sync-provider>
</properties>
- <metadata>
<column-count>9</column-count>
- <column-definition>
<column-index>1</column-index>
<auto-increment>false
</auto-increment>
<case-sensitive>false</case-sensitive>
<currency>false</currency>
<nullable>0</nullable>
<signed>false</signed>
<searchable>true</searchable>
<column-display-size>11
</column-display-size>
<column-label>au_id </column-label>
<column-name>au_id</column-name>
<schema-name />
<column-precision>11
</column-precision>
<column-scale>0</column-scale>
<table-name />
<catalog-name />
<column-type>12</column-type>
<column-type-name>varchar
</column-type-name>
</column-definition>
+ <column-definition>

234 The International Arab Journal of Information Technology, Vol. 3, No. 3, July 2006

+ <column-definition>
+ <column-definition>
+ <column-definition>
+ <column-definition>
+ <column-definition>
+ <column-definition>
+ <column-definition>

</metadata>
- <data>
- <currentRow>
<au_id>341-22-1782</au_id>
<au_lname>Smith</au_lname>
<au_fname>Meander</au_fname>
<phone>913 843-0462</phone>
<address>10 Mississippi Dr.</address>
<city>Lawrence</city>
<state>KS</state>
<zip>66044</zip>
<contract>false</contract>
</currentRow>
+ <currentRow>

+ <currentRow>
+ <currentRow>
+ <currentRow>
+ <currentRow>
- <currentRow>

<au_id>998-72-3567</au_id>
<au_lname>Ringer</au_lname>
<au_fname>Albert</au_fname>
<phone>801 826-0752</phone>
<address>67 Seventh Av.</address>
<city>Salt Lake City</city>
<state>UT</state>
<zip>84152</zip>
<contract>true</contract>
</currentRow>
</data>
</XPRowSet>

The common structure of node with left–sibling,
parent and right-sibling pointers is straightforward.
The data organization has two advantages. First,
simply evaluating this query and get access to the
blocks with data we need. Second, direct pointer
allows us passing from one node to its neighbors
almost for free.

5. The Temporal XML Data Model
In our XML document model, we associate two time
dimensions: Valid time and transaction time (bi-
temporal). The valid time of data denotes the time(s)
when the data is true for the modeled entity. In the
valid time dimension, which is now commonly used to
indicate that a fact is currently valid. For instance,
valid time interval states that a fact has been true. The
transaction time represents the evolution of data and
the time instants at which data is in the system. While a

valid time interval is generally supplied by the user, a
transaction time interval is supplied by the system and
the end time associated with the data in the system
until it is subjected to any updating.

6. Xparser
Algorithm

Input: Query.
Output: Resultset.
For each query perform the following steps.

1. Check whether table is available as XML document.
2. If available in data cache then do

Lexical analysis ()
Syntax analysis ()
Get the metadata value and retrieve the
corresponding values from the XML document
by applying anyone of the operation complete
match, projection, overlap and mismatch.
Go to step 5.

3. If not available in data cache then
DatabaseServerTable()
Query the corresponding database
Return the resultset.

4. Translate the data to XML document if not already
exists or append the data to the existing document,
care should be taken to avoid redundancy.

5. Return the resultset to the user.

7. XML Caching
The optimized query processor acts as a middleware to
transfer data between the user and the database. XP
upon receiving the query checks for the availability of
the document corresponding to the table in the SQL
query statement. In this approach, there is no need to
convert the SQL query to XQuery to query the XML
document. The XP takes care of all and it directly
maps the SQL query to the XML document.

The middleware components are query optimizer,
query distribution manager, and query cache manager.

• Query Optimizer: Which connects and co-ordinates
the user interface, query cache manager and query
distribution manager.

• Query Cache Manager: Which checks for the
availability. If available then it checks for the
operation complete match, projection, overlapping
using the Xparser by querying the XML document.
Upon mismatch transfers the control to the database
through query optimizer. If any updating is done,
historical database is updated and the XML
document is removed the data cache since we are
using query based cache replacement strategy. If
cache overflows then we use aging as second
replacement strategy.

An Optimizing Query Processor with an Efficient Caching Mechanism for Distributed Databases 235

• Query Distribution Manager: Contains the various
databases it interacts with and also the tables in the
various databases. When the user queries it, checks
with this table to find the availability of table in the
database. If it finds the table name in this table it
sends the query to the corresponding database
server. The table is shown below:

<config>
<data>
<database>
<table_name>value1</table_name>
<table_name>value2</table_name>
<server>servername1</server>
<class>driver class </class>
<conn>location </conn>
</database>
</data>
</config>
<?xml version="1.0" ?>
- <config>
- <data>- <database>
<table_name>authors</table_name>
<table_name>master</tablename>
<table_name>Northwind</table_name>
<server>Sql Server</server>
<class>net.sourceforge.jtds.jdbc.Driver
</class>
<conn>jdbc:jtds:sqlserver://localhost/pubs;user=sa;
</conn>
</database>

8. Performance Evaluation
In this section, we present the experiment results to
show the performance.

The time taken for the different queries to access
data from distributed database and the retrieval of data
from XML cache is observed. The performance of
XML cache vs database was assessed and the results
analysed. The time taken to process a query from XML
cache decreases as the number of records increases is
shown in Figure 2.

The following are the advantages of using XML in
the implementation:

• Standard format for multiple applications.
• Data transformation across application.
• Disconnected database access.
• Reducing the database size according to the client

side requirement.
• Reduced retrieval time.

9. Conclusion and Future Work
Providing an efficient way to query distributed data
source has become an important issue. There has been
lot of researches on processing database in distributed
environment. In this paper, we presented an XML

database system and an Xparser suitable for the
implementation of data analysis applications dealing
with distributed heterogeneous data source and
multiquery workloads. It uses a common optimization
query processing model whose ability is to take
advantage of data and computation reuse opportunities
in the presence of application specific operators. A step
is taken for developing temporal XML. We conducted
experiments to show its performance in terms of
execution time.

QOPS Performance

0

20

40

60

80

100

1 7 15 23 40 450 1644 4500

no of records

ti
m
e
ta
ke

n(
m
s)

database cache

Figure 2. Time taken to process a query from XML cache
decreases.

Further work in this direction will be the inclusion
of forecasting the knowledge discovery methods for
effective temporal reasoning and the provision of
learning capabilities to improve the intelligence of the
system. Certainly, more sophisticated compiler
optimisation techniques can be employed to
automatically identify and describe the reuse. We will
test the performance of our caching mechanism with
real world data to prove its efficiency.

References
[1] Andrade H., Kurc T., Sussman A., and Saltz J.,

“Efficient Execution of Multiple Query
Workloads in Data Analysis Applications,” in
Proceedings of 2001 ACM/IEEE Super
Computing Conference, November 2001.

[2] Andrade H., Kurc T., Sussman A., and Saltz J.,
“Exploiting Functional Decomposition for
Efficient Parallel Processing of Multiple Data
Analysis Queries,” in Proceedings of 2002 IEEE
International Parallel and Distributed
Processing Symposium, April 2002.

[3] Andrade H., Kurc T., Sussman A., and Saltz J.,
“Optimizing the Execution of Multiple Analysis
Queries on Parallel and Distributed
Environments,” IEEE Transactions on Parallel
and Distributed Systems, vol. 15, no. 6, pp. 520-
532, June 2004.

[4] Andrade H., Kurc T., Sussman A., Borovikov E,
and Saltz J., “On Cache Replacement Policies for
Sensing Mixed Data Intensive Query
Workloads,” in Proceedings of the 2nd Workshop
Caching Coherence and Consistency, June 2002.

236 The International Arab Journal of Information Technology, Vol. 3, No. 3, July 2006

[5] Dumas ET AL, “TEMPOS: A Platform for
Developing Temporal Applications on Top of
Object DBMS,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no.
3, pp. 354-574, March 2004.

[6] Fomichev A., “XML Storing and Processing
Techniques,” in Proceedings of the Spring Young
Researcher’s Colloquim on Database and
Information Systems (SYRCoDIS), Russia, 2004.

[7] Fong J. and Bloor C., “Converting Relational
Database into XML Document,” Technical
Report, Francis Pang Department of Computer
Science, City University Hong Kong, Hong
Kong, 2001.

[8] Kinno A., Yukitomo H., and Nakayama T., “An
Efficient Caching Mechanism for XML Content
Adaptation” in Proceedings of the 10th

International Multimedia Modelling Conference
(MMM’04), IEEE, 2004.

[9] Liu J. and Millist V., “Query Translation from
XSLT to SQL,” in Proceedings of the 7th

International Database Engineering and
Applications Symposium (IDEAS’03), IEEE,
2003.

[10] Nervag K., “The Vagabond Approach to Logging
and Recover Recovery in Transaction-Time
Temporal Object Database Systems” IEEE
Transactions on Knowledge and Data
Engineering, vol. 16, no. 4, pp. 504-519, April
2004.

[11] Slivinskas G., “A MiddleWare Approach to
Temporal Query Processing,” PhD Dissertation,
Faculty of Engineering and Science, Aalborg
University Denmark, 2001.

[12] Snodgrass R. T. “Semantics of Time Varying
Attributes and Their Use for Temporal Database
Design,” IEEE Transactions on Knowledge and
Data Engineering, pp. 366-377, 1997.

[13] Snodgrass R. T., “Temporal Statement
Modifiers,” ACM Transactions on Database
Systems, vol. 25, no. 4, pp. 407-456, December
2000.

[14] Snodgrass R. T., “Transitioning Temporal
Support in TSQL2 to SQL3,” IEEE Transactions
on Knowledge and Data Engineering in
Temporal Databases: Research and Practice,
vol. 26, no. 2, pp. 615-663, 1998.

[15] Zhang D., “An Aggregation Computation Over
Complex Objects” PhD Dissertation, University
of California Riverside, August 2002.

Selvaraj Prabha obtained her BE in
computer science and engineering
from Kongu Engineering College,
Perundurai in 1998, and her ME in
computer science and engineering
from Anna University, Chennai in
2005. She has worked as a lecturer in

KS Rangasamy College of Engineering, Tiruchengode
till 2003. She has been working as a senior lecturer in
the Department of Information Technology in RMK
Engineering College Kavarapettai, Gummidipundi. Her
research interests include database systems, system
modelling and compiler design.

Arputharaj Kannan has
completed his BS degree in
mathematics from Madurai Kamaraj
University in 1979, his Master
degree in mathematics from
Annamalai University in 1986, his
ME degree in computer science and

engineering from College of Engineering Guindy,
Anna University in 1991, and his PhD in intelligent
temporal databases from the Faculty of Electrical
Engineering, Anna University in September 2000. He
worked as a computer programmer in Bhabha Atomic
Research Centre (BARC), Bombay from 1981 to 1989.
He worked as a lecturer in the School of Computer
Science and Engineering, Anna University from 1991
to 2000. Since 2000, he worked as an assistant
professor in the Department of Computer Science and
Engineering, Anna University, Chennai. He published
11 research papers in national and international
journals, and also published more than 30 research
papers in national and international conferences. His
research interests include artificial intelligence,
database systems, software engineering, intelligent
agents and pattern recognition.

Palaniappan Anandha Kumar has
completed his BE in electronics and
communication engineering from
University of Madras, Chennai and ME
in computer science and engineering
from Bharathiar University,
Coimbatore in 1994 and 1997,

respectively. Since 1998, He has been working as a
lecturer in the Department of Computer science and
Engineering, College of Engineering, Guindy, Anna
University, Chennai. Currently, he is pursuing his PhD in
computer science and engineering. His research interests
include image processing, computer graphics, artificial
intelligence, telemedicine, artificial neural networks, and
robotics.

