
308 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006

Regression Test Selection for Trusted
Database Applications

Ramzi A. Haraty and Wissam Chehab
Division of Computer Science and Mathematics, Lebanese American University, Lebanon

Abstract: Regression testing is any type of software testing, which seeks to uncover regression bugs. Regression bugs occur as
a consequence of program changes. Regression testing must be conducted to confirm that recent program changes have not
harmfully affected existing features and new tests must be created to test new features. Testers might rerun all test cases
generated at earlier stages to ensure that the program behaves as expected. However, as a program evolves the regression test
set grows larger, old tests are rarely discarded, and the expense of regression testing grows. Repeating all previous test cases
in regression testing after each major or minor software revision or patch is often impossible due to time pressure and budget
constraints. This paper presents algorithms for regression testing for trusted database applications. Our proposed algorithms
automate an important portion of the regression testing process, and they operate more efficiently than most other regression
test selection algorithms. The algorithms are more general than most other techniques. They handle regression test selection
for single procedures and for groups of interacting procedures. They also handle all language constructs and all types of
program modifications for procedural languages.

Keywords: Regression testing, trusted applications.

Received April 8, 2005; accepted July 26, 2005

1. Introduction
The purpose of regression testing is to isolate and
perform only re-testable-type tests. This requires the
ability to recognize reusable tests and obsolete tests.
The isolation process is known as Regression Test
Selection (RTS). Analyses for RTS attempt to
determine if a modified program, when run on a
specific test, will have the same behavior as before,
without actually running the new program. The RTS
analysis confronts a price/performance tradeoff. A
more precise analysis might be able to eliminate
more tests, but could take much longer to run.
Most research literature addresses one or both of

two problems [9]: How to select regression tests from
an existing test suite (the RTS problem)? And how to
determine the portions of a modified program that
should be re-tested (the coverage identification
problem)?
There are three main philosophies to RTS in the

literature [11]:

1. Minimization: Approaches seek to satisfy
structural coverage criteria by identifying a
minimal set of tests that must be rerun to cover
changed code.

2. Coverage: Approaches are also based on coverage
criteria, but do not require minimization. Instead,
they seek to select all tests that exercise changed
or affected program components.

3. Safe: Methods attempt instead to select every test that
will cause the modified program to produce different
output than original program.

Rothermel and Harrold [12] proposed the following
criteria for regression testing:

1. Inclusiveness: It measures the extent to which a
method chooses tests that will cause the modified
program to produce a different output.

2. Precision: How well the RTS avoids tests that will
not cause the modified program to produce different
output than the original program.

3. Efficiency: It measures the computational cost and
automatability, and thus practicality, of a selective
retest approach.

4. Generality: It measures the ability of a method to
handle realistic and diverse language constructs,
arbitrarily complex code modifications, and realistic
testing applications.

Estimates indicate that software maintenance activities
account for as much as two-thirds of the cost of software
production. One necessary but expensive maintenance
task is regression testing, performed on a modified
program to introduce confidence that changes that have
been made are correct, and have not adversely affected
unchanged portions of the program. An important
difference between regression testing and development
testing is that during regression testing an established set
of tests is available for reuse. One approach to reusing
tests, the retest all approach, chooses all such tests, but
this strategy may consume excessive time and resources.

Regression Test Selection for Trusted Database Applications 309

Although many techniques for selective retest
have been developed [1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 14,
16], there is no established basis for evaluation and
comparison of these techniques. Classifying selective
retest strategies for evaluation and comparison is
difficult because distinct philosophies lie behind the
existing approaches. Minimization approaches [4, 7,
13] assume that the goal of regression testing is to
reestablish satisfaction of some structural coverage
criterion, and aim to identify a minimal set of tests
that must be rerun to meet that criterion. Coverage
approaches [2, 3, 6, 9, 10, 14, 16], like minimization
approaches, rely on coverage criteria, but do not
require minimization. Instead, they assume that a sec-
ond but equally important goal of regression testing
is to rerun tests that could produce different output,
and they use coverage criteria as a guide in selecting
such tests.
Safe approaches [1, 8, 12] place less emphasis on

coverage criteria, and aim instead to select every test
that will cause the modified program to produce
different output than the original program.
The remainder of the paper is organized as

follows. Section 2 presents background work. Section
3 presents our algorithms. Section 4 discusses the
empirical results. Finally, section 5 concludes the
paper.

2. Background
Most work on regression testing addresses the fol-
lowing problem: Given program P, its modified
version P', and test set T used previously to test P,
find a way, making use of T, to gain sufficient
confidence in the correctness of P'. Solutions to the
problem typically consist of the following steps:

1. Identify the modifications that were made to P.
Some approaches assume the availability of a list
of modifications, perhaps created by a cooperating
editor that tracks the changes applied to P [11].
Other approaches assume that a mapping of code
segments in P to their corresponding segments in
P' can be obtained using algorithms that perform
slicing [15].

2. Select T' included in T, the set of tests to re-
execute on P'. This step may make use of the
results of step 1, coupled with test history
information that records the input, output, and
execution history for each test. An execution
history for a given test lists the statements or code
segments exercised by that test. For example,
Table 1 shows test history information for
procedure AVG.

3. Retest P' with T', establishing P' correctness
with respect to T'. Since we are concerned with
testing the correctness of the modified code in P',
we retest P' with each Ti Є T'. As tests in T' are

rerun, new test history information may be gathered
for them.

4. If necessary, create new tests for P'. When T' does
not achieve the required coverage of P', new tests
are needed. These may include functional tests
required by specification changes, and/or
structural tests required by coverage criteria.

5. Create T", a new test set history for P'. The new
test set includes tests from steps 2 and 4, and old
tests that were not selected, provided they remain
valid. New test history information is gathered for
tests whose histories have changed, if those histories
have not yet been recorded. Figure 1 shows the
solutions steps.

S1. Count = 0

S2. Fread (fileptr,n)

S3. While (not EOF) do

S4. If (n<0)

S5. Return(error)

Else

S6. Numarray[count]

S7. Count++

Endif

S8. Fread (fileptr,n)

Endwhile

S9. Avg = calcavg (numarray,count)
 Calcavg (numarray,count)

S10. Return(avg)

Figure 1. Solutions steps of the problem.

Table 1. AVG and its test history information.

Test
Number Input Output Execution History

T1 empty file 0 S1,S2,S3,S9,S10

T2 -1 Error Sl,S2,S3,S4,S5

T3 1 2 3 2 S1,S2,S3,S4,S6,S7,
S8,S3,...,S9,S10

3. Our Algorithm for Secure Regression
Testing

3.1. Observations
One critical necessary maintenance activity, security
regression testing, is performed on modified secure
interfaces to provide confidence that the software
behaves correctly and modifications have not adversely
impacted the system's security, in order that the trusted
code remains trused.
An important difference between regression testing

and development testing is that, during regression

310 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006

testing, an established suite of tests may be available
for reuse. One absurd security regression testing
strategy is to reruns all such tests, but this retestall
approach may consume inordinate time and
resources. On the other hand, selective security retest
techniques, attempt to reduce the time required to
retest a secure program by selectively reusing tests
and selectively retesting the modified program. These
techniques address two problems:

1. The problem of selecting tests from an existing
test suite, and

2. The problem of determining where additional tests
may be required.

Both of these problems are important. Our new
strategy presents an enhanced regression test
selection technique that is specifically tailored for
trusted applications. The approach constructs control
flow graphs for a secure procedure or program and its
modified version and use these graphs to select tests
that execute changed code from the original test suite.
The new strategy has several advantages over

other regular regression test selection techniques.
Unlike many techniques, our algorithms select tests
that may now execute new or modified statements
and tests that formerly executed statements that have
been deleted from the original program.
We prove that under certain conditions the

algorithms are safe, that is, they select every test from
the original test suite that can expose faults in the
modified program. Moreover, they are more precise
than other safe algorithms because they select fewer
such tests than those algorithms. Our algorithms
automate an important portion of the regression
testing process, and they operate more efficiently
than most other regression test selection algorithms.
Finally, our algorithms are more general than most
other techniques. They handle regression test
selection for single procedures and for groups of
interacting procedures. They also handle all language
constructs and all types of program modifications for
procedural languages. We have implemented our
algorithms and conducted empirical studies on
several subject programs and modified versions. The
results suggest that, in practice, the algorithms can
precisely and safely reduce in a significant way the
cost of regression testing of a modified program.

3.2. Algorithm for Secure Regression Testing
Our algorithm SelectTests as shown in Figure 2,
takes a procedure P, its changed version P', and the
test history for P, and returns T', the subset of tests
from T that could possibly expose errors if run on P.
The algorithm constructs CDG's for P and P', and
then calls procedure Compare with the entry nodes E
and E' of the two CDG's. Compare is a recursive
procedure. Given any two CDG nodes N and N',

Compare method marks these nodes "visited", and then
determines whether the children of these nodes are
equivalent. If any two children are not equivalent, a
difference between P and P' has been encountered. In
this case, the only tests of P that may have traversed the
change in P are those that traversed N in P. Thus,
Compare returns all tests known to have traversed N. If,
on the other hand, the children of N and N' are equiva-
lent, Compare calls itself on all pairs of equivalent non--
visited predicate or region nodes that are children of N
and N', and returns the union of the tests (if any)
required to test changes under these children.

Algorithm SelectTests
Input: procedure P, changed version P',

and test set T
Output: test set T'
Begin

Construct CDG and CDG', CDG's of P and P'
Let E and E' be entry nodes of CDG and CDG'
T' = Compare (E, E')

End
Procedure Compare
Input: N and N': nodes in CDG and CDG'
Output: test set T'
Begin

Mark N and N' "visited"
If the children of N and N' differ return
(all tests attached to N) else

T' = NULL
For each region or predicate child node of N
not yet "visited" do

Find C', the corresponding child of N' T'
= T' U Compare(C, C')

End (* for *)
End (* if *)

End
Figure 2. The SelectTests algorithm.

4. Empirical Results
We have implemented a security regression testing tool
as a support system. The objective of the support system
is to prove the validity and applicability of the concepts
and strategies presented earlier. The developed system
helps testers and application maintainer understand the
secure applications, identify code changes, support
software and requirements updates, enhance, and detect
change effects. It helps create a testing environment to
select test cases to be rerun when a change is made to
the trused application using our 3-phase regression
testing methodology.
We use a prototype of a grant revoke application. We

propose a random number of modifications to the
application. Then, we study modifications using our
maintenance tool and report the regions and the test
cases that should be rerun according to the regression
testing strategy implemented in the tool. The

Regression Test Selection for Trusted Database Applications 311

experimental work is done on a PC, running Pentium
IV 3.2 GHz, 512 MB RAM, and using the PC version
of progress.
The application is a grant revoke secure

application as shown in Figure 3, which contains
most of the language constructs, statement, and
controls that we have studied. The variables
identified in the trusted system can be identified as
follows:

• PrivName: The type of object privilege that can be
granted (all, select, insert, update, delete).

• Grantor: User granting an object privilege.
• Grantee: User being granted an object privilege.
• GranteeType: The type of grantee for a particular
grant operation as defined in the first sentence of
grant object privelege requirement, and a grantee
can be a user, role, or public.

• Selected object: Object selected for a particular
grant operation.

• Grantedobject: Object for which grant privelege
have previously been granted (identified through
grant option).

• Object owner: The owner of the object.

((grantor_owns_object)
OR
(has_grantable_obj_privs))
AND
(grantor != grantee)
AND
(granteeType = user
OR (granteeType = role
AND
granteeRoleID =
valid_roleID)
OR granteeType =
PUBLIC)
AND
(selectedObjPriv = ALL
OR selectedObjPriv =
UPDATE
OR selectedObjPriv =
SELECT
OR selectedObjPriv =
INSERT
OR selectedObjPriv =
DELETE)

(NOT (grantor_owns_object))
AND
(NOT (has_grantable_obj_privs))
AND
(grantor != grantee)
AND (granteeType = user
OR (granteeType = role
AND
granteeRoleID = valid_roleID))
AND
(selectedObjPriv = ALL
OR selectedObjPriv = UPDATE
OR selectedObjPriv = SELECT
OR selectedObjPriv = INSERT
OR selectedObjPriv = DELETE)

grant_obj_priv_OK =
True

grant_obj_priv_OK = False

Figure 3. Behavioral specifications for “granting object
privilege” capability.

A role is a gourp of related users, and the related
variables are: RoleId and the GranteeRoleId.

Granting Object Privilege (GOP):

A normal user (the grantor) can grant an object priv.
To another user, role or public (the grantee) only if:

a. The grantor owns the object.
b. The grantor has been granted the object privileges
with the grant_option.

Grantor_owns_object_relation:

Grantor_owns_object = true if grantor = objOwner else
= false.
Relation grantee_constraints:

There are three cases:

a. If the granteeType is user then the grantee is a user,
and to ensure that the grantee is granted privileges as
a user and not through the grantee’s role, the RoleId
must not be equal to granteeRoleId.

b. If the granteeType = role then the RoleId must be
valid and the granteeRoleId must be equal to RoleId.

c. If the granteeType is public (all users) then the other
vars could take any value.

Relation granted object privileges:

a. The selected object is the object for which the
privilege was granted (the selected object is the
granted object).

b. The privilege was granted with the option to grant
others the privilege (grant_option is true).

c. The owner of the object is not the grantor.
d. The owner of the object is not the grantee.

Relation GrantObjPriv:

1. GOP (A): Grantor can grant privilege to a grantee
because the grantor owns the object.

2. GOP (B): Grantor can grant privilege to a grantee
because the grantor has been granted object privileges
with Grant Option.

Also, the following situations must be verified: a)
Grantor is not the grantee, b) All possible combinations
of the GranteeType (user, role, public), and c) All
possible privileges on operations (all, update, select,
etc).
The difference between the true and false case for the

GrantObjPriv is that the true case establishes the
required conditions: The grantor_owns_object
relationship that is associated with GOP (A) where the
grantor owns the object, or the granted_obj_priv and
grantee constraints that is associated with GOP (B).
The false case establishes the conditions where the

grant operation fails: grantor is not the object owner, and
grantor has not been granted object privelege.

4.1. Results
To aquire and analyse empirical results, the tool was
used on the grant revoke trusted application and its
modified versions. Figure 4 presents the CDG table of
the application grant revoke.
The test history of the grant revoke secure application

is divided into groups of tests, each represents a class of
tests that reach a set of regions. The tests groups that
form the original test suit is represented by the table in
Figure 5.

312 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006

Node
#

LabelFather
Id

Loop
Id Value

1 Entry 0 0

2 Exit 1 0

3 P1 1 0 If grantor = SelectedObjOwner then do:

4 R1 3 0

5 S2 4 0 Grantor_owns_object = true.

6 S3 1 0 Def var f1 as logical.

7 S4 1 0 Def var f2 as logical.

8 S5 1 0 Def var f3 as logical.

9 S6 1 0 Def var f4 as logical.

10 P7 1 0 If selectedobjpriv = grantedobjpriv then do:

11 R2 10 0

12 S8 11 0 F1 = true.

13 P9 11 0 If selectedobj = grantedobj then do:

14 R3 13 0

15 S10 14 0 F2 = true.

16 P11 11 0 If selectedobjowner <> grantor then do:

17 R4 16 0

18 S12 17 0 F3 = true.

19 P13 17 0 If selectedobjowner <> grantee then do:

20 R5 19 0

21 S14 20 0 F4 = true.

22 P15 1 0 If grant_option and f1 and f2 and f3 and f4
then do:

23 R6 22 0

24 S16 23 0 Has_grantable_obj_privs = true.

25 S17 1 0 Define var f5 as logical.

26 S18 1 0 Define var f6 as logical.

27 S19 1 0 Define var f7 as logical.

28 S20 1 0 Define var f8 as logical.

29 S21 1 0 Define var f9 as logical.

30 S22 1 0 Define var f10 as logical.

31 S23 1 0 Define var valid_roleId as integer.

32 P24 1 0 If not ((grantor_owns_object) OR
(has_grantable_obj_privs)) then do:

33 R7 32 0

34 P25 33 0

If (selectedObjPriv = "ALL" OR
SelectedObjPriv = "UPDATE" OR
SelectedObjPriv = "SELECT" OR
SelectedObjPriv = "INSERT" OR
SelectedObjPriv = "DELETE") then do:

35 R8 34 0

36 S26 35 0 F5 = true.

37 P27 33 0
If (granteeType = "user" OR (granteeType
= "role" AND granteeRoleID = valid_roleid)
or Granteetype = "public") then do:

38 R9 37 0

39 S28 38 0 F6 = true.

40 P29 33 0 If (grantor <> grantee) then do:

41 R10 40 0

42 S30 41 0 F7 = true.

43 P31 1 0
If ((grantor_owns_object) OR
(has_grantable_obj_privs)) AND f7 AND f6
and f5 then do:

44 R11 43 0

45 S32 44 0 Grantt = true.

46 R12 43 0

47 S33 46 0 Grantt = false.

Figure 4. CDG table for initial grant revoke secure application.

Test Class
Execution

History/Traversed
Regions

T1Entry, R1

T2Entry, R2, R3

T3Entry, R2, R4, R5

T4Entry, R6

T5Entry, R7, R8

T6Entry, R7, R9

T7Entry, R7, R10

T8Entry, R11

T9Entry, R12

Figure 5. Original test suite table.

In Table 2, we present a summary of test cases
presented. We classify these results into two parts. In the
first part, we give the results of phase one of our
regression testing methodology for secure applications.
In the second part, we give the results of phase two,
which include a count of test case classes selected by our
tool.
Phase 1 results include a list of the following:

1. Directly affected regions.
2. Indirectly affected regions.

Phase 2 results include a list of the following:

1. Test case classes selected by our strategy.
2. Percentage of test case reduction as shown in Figure
6.

Table 2. Summary of results.

4.2. Discussion of Results
Using our new strategy in trusted regression testing, the
tool did a good test reduction and selection job. Out of
80 test vectors of the original test suite used to test the
trusted application, we had on average 39% of test cases
selected with average of 17 regions directly affected, and

Modification
Cases

Directly
Affected
Regions

Indirectly
Affected
Regions

Percentage
of Test
Case

Selections

Percenatage
of

Reduction

1..Modify
Statement 26 10 27 72.7

2. Add
Statement 6 5 16.5 83.25

3. Delete
Statement 20 9 33.16 67

4. Move
Statement 14 1 30.5 72.25

5.Modify
Predicate 16 7 33 66

6. Delete
Predicate 9 7 22 88

7. Add
Predicate 16 14 65.37 33.5

8. Move
Predicate 30 17 87 13

Regression Test Selection for Trusted Database Applications 313

9 regions indirectly affected. This ratio is greatly
affected by the number of modifications and the
distribution of test cases within the regions. The
number of affected regions per modifications
depends on the interaction level between the regions
in the trused application. On the other hand,
execution time was negligable, and this varies
according to the size of the trusted application.
We repeated each experiment five times for each

(base trusted program, modified version). The
experminetal results showed that our strategy reduced
the size of selected tests, and the overall savings were
promising.
In fact, our tool reduced test case by more than

60% on average comparing to select-all approach. On
the other hand, 60% reduction of test cases is equal to
days, hours, even weeks of testing effort. These
results show that our approach is precise, and
directed towards safety, and greater precision in
regression testing of trusted applications.

Figure 6. Percentage of test case reduction (total test cases = 40).

5. Conclusion and Future Work
In this paper, we presented regression testing
algorithms for trusted database applications that are
efficient and more general than other techniuqes. The
algorithms handle regression test selection for signle
procedures and groups of interacting procedures.
They handle language constructs and different types
of program modifications for procedural languages.
Future work includes using more components for

case studies, performing additional empirical results
to evaluate the effectiveness of our technique, and
applying a variety of code changes to our tool in a
production re-test environment.

References
[1] Agrawal H., Horgan J., Krauser E., and London

S., “Incremental Regression Testing,” in
Proceedings of the Conference on Software
Maintenance, pp. 348-357, September 1993.

[2] Bates S. and Horwitz S., “Incremental Program
Testing Using Program Dependence Graphs,”

in Proceedings of the Annual ACM Symposium on
Principles of Programming Languages, January
1993.

[3] Benedusi, A. Cimitile, and De Carlini U., “Post-
Maintenance Testing Based on Path Change
Analysis,” in Proceedings of the Conference on
Software Maintenance, pp. 352-61, October 1988.

[4] Fischer K. F., Raji F., and Chruscicki A., “A
Methodology f or Retesting Modified Software,” in
Proceedings of the National Telecommunications
Conference, vol. B-6-3, pp. 1-6, November 1981.

[5] Harrold M. J. and Soffa M. L., “An Incremental
Approach to Unit Testing During Maintenance,” in
Proceedings of the Conference on Software
Maintenance, pp. 362-367, October 1988.

[6] Harrold M. J. and Soffa M. L., “Interprocedural
Data Flow Testing,” in Proceedings of the Third
Testing, Analysis and Verification Symposium, pp.
158-67, December 1989.

[7] Hartmann J. and Robson D. J., “Techniques for
Selective Revalidation,” IEEE Software, vol. 16,
no. 1, pp. 31-8, January 1990.

[8] Laski J. and Szemer W., “Identification of Program
Modifications and its Applications in Software
Maintenance,” in Proceedings of the Conference
on Software Maintenance, pp. 282-90, November
1992.

[9] Leung H. K. N. and White L. J., “A Study of
Integration Testing and Software Regression at the
Integration Level,” in Proceedings of the
Conference on Software Maintenance, pp. 290-
300, November 1990.

[10] Ostrand T. J. and Weyuker E. J., “Using Dataflow
Analysis for Regression Testing,” in Proceedings
of 6th Annual Pacific Northwest Software Quality
Conference, pp. 233-47, September, 1988.

[11] Rothermel G. and Harrold M. J., “A Comparison
of Regression Test Selection Techniques,”
Technical Report 114, Clemson University,
Clemson, SC, April 1993.

[12] Rothermel G. and Harrold M. J., “A Safe Efficient
Regression Test Selection Technique,” ACM
Transactions on Software Engeneering and
Methodology, vol. 6, no. 2 , April 1997.

[13] Sherlund B. and Korel B., “Modification Oriented
Software Testing,” in Proceedings of Quality
Week'1991, pp. 1-17, 1991.

[14] Taha A. B., Thebaut S. M., and Liu S. S., “An
Approach to Software Fault Localization and
Revalidation Based on Incremental Data Flow
Analysis,” in Proceedings of the 13th Annual
International Computer Software and Applications
Conference, pp. 527-34, September, 1989.

[15] Yang W., “Identifying Syntactic Differences
Between Two Programs,” Software Practice and
Experience, vol. 21, no. 7, pp. 739-55, July 1991.

Reduction Percentage

72.7

83.25

67
72.25

66

88

33.5
13

0

20

40

60

80

100

1

1.Modify Statement.

2. Add Statement.

3. Delete Statement

4. Move Statement.

5.Modify Predicate.

6. Delete Predicate.

7. Add Predicate.

8. Move Predicate.

314 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006

[16] Yau S. S. and Kishimoto Z., “A Method for
Revalidating Modified Programs in the
Maintenance Phase,” in Proceedings of the
Eleventh Annual International Computer
Software and Applications Conference
(COMPSAC'87), pp. 272-277, October 1987.

Ramzi A. Haraty is an associate
professor and the assistant dean of
the School of Arts and Sciences at
the Lebanese American University
in Beirut, Lebanon. He is also the
chief financial officer of the Arab
Computer Society. He received his

BSc and MSc degrees in computer science from
Minnesota State University, Minnesota, and his PhD
in computer science from North Dakota State
University, North Dakota. His research interests
include database management systems, artificial
intelligence, and multilevel secure systems
engineering. He has well over 80 journal and
conference paper publications. He is a member of
Association of Computing Machinery, Arab Computer
Society and International Society for Computers and
Their Applications.

Wissam Chehab is a Master of
computer science student at the
Lebanese American University in
Beirut, Lebanon. His research interests
include database management systems
and software engineering.

