
The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006 315

Real-Time Game Design of Pac-Man
Using Fuzzy Logic

Adnan Shaout, Brady King, and Luke Reisner
Department of Electrical and Computer Engineering, University of Michigan, USA

Abstract: This paper presents the design and implementation of a real-time fuzzy-based artificial intelligence system for an
interactive game. The chosen game is a remake of Pac-Man in which the opponents are BDI-style intelligent agents. The
components of the system and the methods used in fuzzifying the game’s rules and variables are discussed. In addition,
comparisons are drawn between the proposed fuzzy solution and other crisp and fuzzy approaches.

Keywords: Fuzzy logic, artificial intelligence, intelligent agents, real-time, interactive, game.

Received April 14, 2005; accepted July 12, 2005

1. Introduction
Interactive games have become increasingly popular
over the years. At the same time, people’s
expectations for the quality of games have been
growing. One of the most famous real-time games of
all time is Namco’s Pac-Man. It was so popular that it
actually caused a Yen shortage in Japan shortly after
its release in 1980. In the game, the player controls a
character called Pac-Man who navigates a maze
populated by four computer-controlled opponents,
called ghosts. The player must eat pellets to score
points while avoiding the ghosts, whose purpose is to
hunt down and eliminate Pac-Man. Initially, it was
acceptable for computer opponents to base their
behavior on simple, non-adaptive logic. For instance,
the enemies in games such as Super Mario Bros. paced
back and forth, regardless of the player’s movements.
In more recent games, players have come to expect the
opponents to respond intelligently to the player’s
actions.

One approach to solving the problem of game
intelligence is the application of fuzzy logic. Fuzzy
logic is a logical system that works with data that does
not have precisely defined values [11]. Fuzzy systems
typically employ rules to translate vague terms, such as
skill or comfort, into system outputs. In the case of
games, fuzzy rules can be used to determine computer-
controlled actions based on various player behaviors
and system conditions.

For this paper, the classic game Pac-Man was
chosen to demonstrate a fuzzy logic based artificial
intelligence system. In earlier implementations of this
game, the ghosts’ logic did not realistically adapt to the
user’s skill and movements. For instance, ghosts didn’t
move towards areas where Pac-Man needed to go to
complete the level (i. e., areas with many pellets).
While this could be done with classical logic, fuzzy

logic provides a more elegant way for a system to deal
with the often ambiguous data required to implement
such behaviors. In addition, this type of system allows
rules to be easily added to increase the opponents’
intelligence further. For these reasons, fuzzy logic has
been chosen as the basis for the intelligent control of
the ghosts’ behavior.

The following sections of this paper will present the
complete design and implementation of a fuzzy rule
based version of Pac-Man. In section 2, the design of
each of the three main tasks of the proposed system
will be explained. The description will follow the flow
of execution of the code through each task. Section 3
will present the design details of the rules that govern
the ghosts’ behavior. Next, section 4 will present the
fuzzy linguistic variables for both the inputs and
outputs of the fuzzy system. Section 5 will present the
method of defuzzification and behavior selection. After
that, section 6 will discuss the results observed in the
implementation of the game along with a comparison
to classical design methodologies. Finally, section 7
will provide a few general comments and suggestions
for future work.

1.1. Relations to Existing Work
Clearly, the fuzzy implementation of Pac-Man
described in this paper is not the first use of fuzzy logic
in a game control application. For a number of reasons,
such as increases in microprocessor speed, the use of
fuzzy logic (and other artificial intelligence techniques)
has become increasingly common in recent years [9].
Thus, it is important to understand the relationships
between ideas presented in this paper and existing
work.

The ghosts used in this system are examples of
intelligent agents. Intelligent agents are autonomous
entities that exhibit flexible behavior in pursuit of their

316 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006

objectives [8, 22]. They have been used in a variety of
applications, ranging from soccer-playing robots [2] to
Internet commerce [23] to weather reports [14].

Several different frameworks exist for the design
and implementation of intelligent agents. Three of the
most popular frameworks are Beliefs-Desires-
Intentions (BDI), Goals, Operators, Methods, and
Selection (GOMS) rules, and Soar [10]. Each
framework has a unique background and different
ways of managing information and behavior. For
instance, GOMS is rooted in human-computer
interaction, and BDI is based on logical theories of
rational behavior.

The framework used in the fuzzy implementation of
Pac-Man most closely resembles the BDI model [5].
The “beliefs” or knowledge of the intelligent ghost
agents includes the location of other game entities and
the performance of the player. In this simple game, the
primary “desire” or goal of the ghosts is to intercept
the player. Finally, the “intentions” or courses of action
of the ghosts include hunting Pac-Man, guarding
pellets, and avoiding other ghosts.

The BDI-style framework was chosen for its relative
simplicity. The intelligent agents in Pac-Man do not
require a large rule base or complex human-like
reasoning to perform their task. Attempting to fit Soar
or a GOMS model to this small game would have
required significantly more work for little or no
benefit.

Although many papers have been written regarding
fuzzy logic and topics like game theory [7, 17, 21],
only a few papers have dealt with fuzzy control in a
real-time game. One such paper discusses the
implementation of a game called BattleCity.net using
intelligent fuzzy agents [13]. Like the fuzzy version of
Pac-Man, BattleCity.net uses BDI-style intelligent
agents that are governed by fuzzy rule-based logic.
However, BattleCity.net lacks any human interaction,
which is one of the important aspects of fuzzy game
design explored in this paper. Another difference is
that BattleCity.net utilizes either an exhaustive rule
base or one based on the debated Union-Rule
Configuration (URC) [3, 4, 15], whereas the fuzzy rule
base in Pac-Man (see section 3) does not have
complete coverage of all possible combinations of
fuzzy inputs. This was done to simplify the design and
reduce the computational requirements, which grow
exponentially with the number of fuzzy inputs if
exhaustive coverage is used.

Another paper describes the design of intelligent
game characters using principles derived from
behavior-based control of mobile robots [19]. The
authors present a fuzzy rule-based system for dictating
the behavior of enemy and non-enemy characters,
similar to the fuzzy implementation of Pac-Man.
However, their fuzzy system uses the Takagi-Sugeno
model [20], whereas the one detailed in this paper is
based on the Mamdani model [11]. Additionally, the

authors do not present a method for tuning behavior
selection like the weighting system described in
section 5 of this paper.

2. Design Overview
Like many real-time systems, the design of the
proposed system was broken into several (three) tasks
or threads [12]. The first task is the initialization and
timing thread. The purpose of this thread is to initialize
the game, run the main menu, and then handle the
scheduling of the control thread. The second task is the
input thread. The sole purpose of this task is to read
user input from the keyboard as quickly as possible.
The final task is the control thread, which executes
most of the game logic. These three tasks run in
parallel to produce a fully functioning system.

2.1. Initialization and Timing Thread Design
The first function the initialization thread will execute
is the loading of levels. Levels will be read from text
files with file name of the format “levelxx.txt,” where
“xx” is a number between 1 and 99. Consequently, the
loading of levels can occur in a loop in which a file
open attempt is made on “levelxx.txt,” where “xx”
starts at 1 and is repeatedly incremented by 1.

To store each level, a level class is defined. The
class has variables to store the initial x and y
coordinates for the ghosts and Pac-Man, the initial
direction for Pac-Man, the x and y level size, the total
number of pellets, and the level map. The level map is
implemented as a two-dimensional vector of
characters. A vector of level objects is used to store all
the levels read from the text files.

Once all of the available levels have been loaded
(and assuming there were no errors in the process), the
next function of the initialization thread is to display
the main menu. The main menu allows the player to
select a level of difficulty, start a game, or exit the
game. The menu is implemented via text input and
output in the standard console. The pseudocode shown
in Figure 1 demonstrates the flow of the main menu.

The next step of the initialization thread is to
initialize the global variables used by the system. The
number of lives, number of ghosts, time between game
updates, and ghost behavior weights are set based on a
selected difficulty level (easy, medium, or hard).
Additionally, the score is set to zero and all variables
used in the calculation of the fuzzy logic variables are
set to their initial values.

Next, the other two system threads (input and
control) are created. This is done with two calls to the
CreateThread function. The “starting address”
parameters of the CreateThread calls are set to the
functions for the input and control threads.

At this point, the initialization and timing thread is
ready to begin its scheduling duty for the control

Real-Time Game Design of Pac-Man Using Fuzzy Logic 317

thread. The control thread must be run at a fixed
periodic rate to handle the game logic. Each period is
referred to as one “tick” of the game. For the fuzzy
implementation of Pac-Man, it was decided that the
control thread should be executed every 250 ms, 375
ms, or 500 ms for the easy, medium, and hard
difficulty levels, respectively. Since the timing for
thread scheduling provided by Windows is only
accurate to approximately +/-50 ms, a combination of
Windows thread scheduling and busy waiting is used.
Busy waiting utilizes the Windows performance
counter for highly accurate timing. The pseudocode
shown in Figure 2 illustrates the scheduling of the
control thread.

Now that the thread has reached its scheduling
portion, it does not need to perform any more
initialization. Thus, the timing thread remains in the
loop shown in Figure 2 until the program exits.

Difficulty = MEDIUM; // Default
While (true)

Output (“Press ‘s’ [start], ‘d’ [change difficulty], or
‘q’ [quit]”);

Output (“Current difficulty:”, Difficulty);
Read input char from user;
If (char == ‘s’) then

Exit Loop;
Else If (char == ‘d’) then

Output (“Press 1 [Easy], 2 [Medium], or 3
[Hard]”);
Read input char from user;
Translate char and store in Difficulty;
Output (“Difficulty changed to:”,Difficulty);
Continue;

Else If (char == ‘q’) then
Exit Game;

End If;
End While;

Figure 1. Pseudocode for the main menu.

2.2. Input Thread
The input thread is responsible for reading input from
the keyboard during game execution. Characters from
the keyboard are read using a blocking I/O function.
Standard C++ requires the “enter” key to be pressed
for input to be accepted. This is unsatisfactory because
users expect their input to be accepted when any key is
pressed. Thus, the input console is configured to accept
input after each individual key is pressed. Also, it is
desired to prevent the input from being echoed on the
screen. This is accomplished by using the
SetConsoleMode function [16] with arguments to
disable the “line input” and “echo input” options of the
standard C++ input console.

Once a key is pressed, the input thread immediately
stores the input in a buffer accessible by the control
thread. No processing is done on the input within the

input thread. Any future input will overwrite the
current contents of the buffer.

// Get the start time:
QueryPerformanceCounter (&start_time);
While(true)

// Suspend the timing thread:
Sleep (tick_period - 60ms);
Do // Busy waiting

QueryPerformanceCounter (¤t_time);
While (current_time - start_time<tick_period);
ResumeThread (control_thread);
start_time += tick_period;

End While;
Figure 2. Pseudocode for scheduling the control thread.

2.3. Control Thread
The control thread is the heart of the game. All the
data-processing and decision-making is done in the
control thread, which is a large infinite loop. The first
part of the control thread checks if a new level needs to
be initialized. This happens when a level ends or a new
game has begun. Specifically, a level ends when the
number of remaining pellets is equal to zero.

To initialize a level, the level needs to be loaded and
configured. To accomplish this, the level is copied out
of the level vector and into a global object that
represents the current level. In addition, all the
characters are placed at their starting locations.
Specifically, Pac-Man’s starting location (x, y), the
ghosts’ starting location (x, y), and Pac-Man’s starting
direction are initialized to the values stored in the level
object. Furthermore, the pathfinding algorithm
(described below) and the number of remaining pellets
on the level is initialized.

The next part of the control thread processes the
input acquired from the player via the input thread. The
control thread creates a copy of the current contents of
the input buffer to ensure the contents are not changed
during processing. If a directional key is pressed (‘a’,
‘s’, ‘d’, ‘w’ for left, down, right, and up, respectively),
this direction is translated into the new direction for
Pac-Man to travel. If the ‘l’ key is pressed, the number
of remaining pellets is set to zero to force a level
change. Finally, if ‘q’ is pressed or Pac-Man has no
remaining lives, the game quits with a message
showing player’s final score.

After processing the input, the control thread checks
if Pac-Man is “powered up.” Pac-Man becomes
temporarily powered up after eating special “power
pellets,” which enable him to eat the ghosts. If Pac-
Man is powered up, the power time is decremented
once for the current control cycle. Otherwise, the
number of ghosts eaten during the last “powered up”
period is reset.

The next part of the control thread calculates the
ghosts’ and Pac-Man’s new positions on the game grid.

318 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006

Pac-Man’s new position is based on the player input
captured during the first part of the thread. For a given
direction, the code checks first if the move is valid. A
move is invalid if the target location is a wall. If the
move is valid, the code sets Pac-Man’s new position to
the valid location. If the move is invalid, Pac-Man’s
new position is set to the same position in which he
currently resides.

At this point, the ghosts’ directions have already
been set during the previous game tick based on the
fuzzy controller. The code that does this is located near
the end of the control thread. During that section of
code, which will be discussed later, the validity of the
ghosts’ movements is checked. Therefore, the positions
of the ghosts are updated at the current time without
checking for validity.

After the new positions have been calculated, the
code checks for a collision between Pac-Man and a
ghost. A collision occurs under either of the following
conditions:

• Pac-Man and a ghost now occupy the same location
on the game grid.

• Pac-Man and a ghost have swapped positions.

If a collision has occurred, flags are set to indicate the
collision and which ghost has been hit.

The next block of code handles pellet consumption.
The execution of this section is conditional on the fact
that Pac-Man has not died (i. e., Pac-Man has not
collided with a ghost, or he has but is “powered up”).
If Pac-Man’s new position contains a regular pellet or
power pellet, the pellet is eaten. This requires
graphically overwriting the pellet on the current level
map with a blank space, decrementing the total number
of remaining pellets, increasing Pac-Man’s score, and
playing the “pellet eaten” sound effect. In addition, if
the pellet is a power pellet, Pac-Man’s “powered up”
time is set to 30 game ticks. The sound effect is played
via the PlaySound function of the Windows API [16].
To provide low priority, asynchronous sound
generation, the following parameters are passed to the
PlaySound function: SND_NODEFAULT,
SND_NOSTOP, SND_NOWAIT, and SND_ASYNC.

After handling pellet consumption, the code takes
care of ghost consumption. Specifically, if a collision
is made while Pac-Man is “powered up,” the “ate
ghost” sound effect is played, the score is increased,
and the ghost that was eaten is reset to its initial
location on the game grid. The sound is played in the
same fashion as the “pellet eaten” sound described
above, but the SND_NOSTOP and SND_NOWAIT
options are omitted to increase its priority over the
“pellet eaten” sound effect.

At this point, the display is updated. First, the
current score and lives are printed to the screen via the
console. Next, the current level map is printed using
the pseudocode shown in Figure 3. Next, Pac-Man is
displayed at his current location provided he has not

died during the current iteration of the control thread.
The SetConsoleCurrentPosition function is used to set
the cursor to the current location of Pac-Man, and the
character corresponding to Pac-Man’s current direction
is printed. Next, each ghost is displayed in the same
fashion as Pac-Man, but with their own unique
characters. Finally, if Pac-Man has died, a death
message is printed at the bottom of the screen.

For (each row of the map)
For (each column of the map)

Output (current map character);
End For;

Output (new line);
End For;

Figure 3. Pseudocode for the output of the level map.

The next portion of the control thread plays the
“game start” sound effect if a new game was just
started. This sound is played in the same fashion as the
“ate ghost” sound effect. Following the “game start”
sound effect, the decision logic for ghost movement is
executed. The first step of this process is to determine
if any of the ghosts are at an intersection. If a ghost has
three or more non-blocked paths, a decision must be
made as to which path the ghost should follow.
Otherwise, the ghost will continue along the path it
was previously following.

The ghost decision logic is conditional upon the
state of Pac-Man. If Pac-Man is not “powered up,” the
fuzzy system (see sections 3 through 5) is employed to
select one of four behaviors. The behavior is then used
to determine the direction that the ghost will move
during the next iteration of the control thread.
However, if Pac-Man is powered up (i. e., his “power
pellet time” is greater than 0), the ghosts will always
attempt to avoid Pac-Man.

If the fuzzy controller selects the “hunting” behavior
for a ghost, the A* algorithm is employed to find the
direction of the shortest path to Pac-Man [6, 18]. The
pseudocode shown below in Figure 4 illustrates the A*
shortest path algorithm. Note that the “Source” is the
ghost and the “Target” is Pac-Man.

If the fuzzy system selects the “defense” behavior
for a ghost, the ghost must move in a direction that will
take him towards the area of the map with the highest
pellet density. To find this area, the following
calculations are done:

• Divide the map into 9 overlapping sections based on
combinations of the following fractions of the x size
and y size of the level map:

0 to ½, ¼ to ¾, and ½ to 1

• Sum the total number of pellets in each section.
• Select the section with the highest number of

pellets.

Real-Time Game Design of Pac-Man Using Fuzzy Logic 319

• Return the coordinates of the middle pellet in that
section:

• The middle pellet is found by traversing the
pellets in that section from left to right, top to
bottom and stopping when the number of pellets
encountered is half the total number of pellets in
that section.

The A* algorithm is then used to determine the
direction of the shortest path to the returned pellet.
This is the direction the ghost is assigned to take.

If the fuzzy algorithm selects the “shy ghost”
behavior for a ghost, the ghost needs to move away
from the closest ghost. The following calculations are
done to determine the required direction:

• Calculate the city-block distance between the source
ghost and the other ghosts.

• Select the ghost that is closest to the source ghost.
• Determine the differences in x and y location

between the source ghost and the closest ghost.
• If the x difference is greater than the y difference:
• If the square in the x direction from the source

ghost away from the closest ghost is not blocked,
return the direction from the source ghost to that
square.

• Else if the square in the y direction from the
source ghost away from the closest ghost is not
blocked, return the direction from the source
ghost to that square.

• Else return one of the two remaining directions
(whichever leads to a path that is not blocked).

• Else the y difference is greater than the x difference:
• If the square in the y direction from the source

ghost away from the closest ghost is not blocked,
return the direction from the source ghost to that
square.

• Else if the square in the y direction from the
source ghost away from the closest ghost is not
blocked, return the direction from the source
ghost to that square.

• Else return one of the two remaining directions
(whichever leads to a path that is not blocked).

If the fuzzy controller selects the “random” behavior
for a ghost, the ghost is supposed to move about the
level randomly. This is accomplished by using a
random number generator to select one of the four
directions randomly. If that direction is blocked, the
other directions are iterated through until a non-
blocked path is found.

If Pac-Man is “powered up,” the ghost decision
logic must move the ghost away from Pac-Man. The
same algorithm that is used for the “shy ghost”
behavior is used to accomplish this task. The only
differences are that there is no need to find the “closest
ghost,” and the “closest ghost” is replaced with Pac-
Man.

If the fuzzy controller selects the “random” behavior
for a ghost, the ghost is supposed to move about the
level randomly. This is accomplished by using a
random number generator to select one of the four
directions randomly. If that direction is blocked, the
other directions are iterated through until a non-
blocked path is found.

If Pac-Man is “powered up,” the ghost decision
logic must move the ghost away from Pac-Man. The
same algorithm that is used for the “shy ghost”
behavior is used to accomplish this task. The only
differences are that there is no need to find the “closest
ghost,” and the “closest ghost” is replaced with Pac-
Man.

If (Target == Source) then
Return INVALID;
Add Source to Open List (GCost = 0, HCost = cityblock
dist fromSource to Target,
Parent = Null)
While (Open List is not empty)

Current = Item in Open List with lowest (GCost +
HCost)

If (Current == Target) then
Break;
End If;
For (each of 4 squares adjacent to Current)
If (square is not a wall) then
If (square not already on Open List) then

Add square to Open List (
GCost = Current GCost + 1,
HCost = cityblock dist from square to Target,
Parent = Current)

Else
If (Current GCost + 1 <

GCost of square on Open List) then
GCost of square on Open List =Current GCost
+ 1;

End If;
End If;

End If;
End For;

Move Current from Open List to Closed List;
End While;

If (Open List is empty) then
Return INVALID;

End If;
Retrace Path from Current to Source;
Return direction from Source to the best path to Current;

Figure 4. Pseudocode for the A* shortest path algorithm.

If the fuzzy controller selects the “random” behavior
for a ghost, the ghost is supposed to move about the
level randomly. This is accomplished by using a
random number generator to select one of the four
directions randomly. If that direction is blocked, the

320 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006

other directions are iterated through until a non-
blocked path is found.

If Pac-Man is “powered up,” the ghost decision
logic must move the ghost away from Pac-Man. The
same algorithm that is used for the “shy ghost”
behavior is used to accomplish this task. The only
differences are that there is no need to find the “closest
ghost,” and the “closest ghost” is replaced with Pac-
Man.

3. Behaviors and Fuzzy Rules
In order for the ghosts to act more intelligently, four
different behaviors for the ghosts were chosen. Each
individual ghost chooses his behavior based upon a
fuzzy logic model that is similar to the popular
Mamdani model [11]. The model will be described
below.

The first behavior implemented is the “hunting”
approach. In this behavior, the ghost will actively seek
Pac-Man using the A* path finding algorithm [6, 18].
The second behavior is the “defense” approach. For
this behavior, the ghost will defend the area that has
the most pellets, thereby ensuring that Pac-Man must
come near the ghost to complete a level. The third
behavior is the “shy ghost” approach. In this behavior,
a ghost will move in a direction that will take it away
from a nearby ghost. This behavior ensures that ghosts
will spread out and cover the entire level. Finally, the
“random” approach is chosen when no other method is
a preferred choice. In this approach, a ghost will
randomly move about the level.

Each of these behaviors has a set of fuzzy rules that
contribute to the likelihood of choosing that behavior.
The inputs to the rules are a number of linguistic terms
that are derived from player performance and game
conditions. The definitions of the linguistic terms will
be given in section 4.

The following list of rules contributes to the
“hunting” behavior:
• If (pacman_near AND skill_good) then

hunting_behavior
• If (pacman_near AND skill_med AND pellet_med)

then hunting_behavior
• If (pacman_near AND skill_med AND pellet_long)

then hunting_behavior
• If (pacman_med AND skill_good AND pellet_long)

then hunting_behavior
• If (pacman_med AND skill_med AND pellet_long)

then hunting_behavior
• If (pacman_far AND skill_good AND pellet_long)

then hunting_behavior

The following rules relate to the “defense” behavior:

• If (pacman_far AND skill_bad AND ghost_far
AND pellet_short) then defense_behavior

• If (pacman_far AND skill_bad AND ghost_far
AND pellet_med) then defense_behavior

• If (pacman_far AND skill_bad AND ghost_med
AND pellet_short) then defense_behavior

• If (pacman_far AND skill_bad AND ghost_med
AND pellet_med) then defense_behavior

• If (pacman_far AND skill_med AND ghost_far
AND pellet_short) then defense_behavior

• If (pacman_med AND skill_bad AND ghost_far
AND pellet_short) then defense_behavior

The following rules are associated with the “shy ghost”
behavior:

• If (pacman_far AND skill_bad AND ghost_near
AND pellet_short) then shy_ghost_behavior

• If (pacman_far AND skill_bad AND ghost_near
AND pellet_med) then shy_ghost_behavior

• If (pacman_far AND skill_bad AND ghost_med
AND pellet_short) then shy_ghost_behavior

• If (pacman_far AND skill_bad AND ghost_med
AND pellet_med) then shy_ghost_behavior

• If (pacman_far AND skill_med AND ghost_near
AND pellet_short) then shy_ghost_behavior

• If (pacman_med AND skill_bad AND ghost_near
AND pellet_short) then shy_ghost_behavior

The following rule is related to the “random” behavior:

If NOT (hunting_behavior) AND NOT (shy_ghost_
behavior) AND NOT (defense_behavior) then
random_behavior

Note that all of the previous rules take into account
(directly or indirectly) a “skill” term. This variable
refers to the player’s skill, which is defined in terms of
good skill, medium skill, and bad skill. The three skill
levels are actually formed from another set of fuzzy
rules. These intermediate rules must be calculated
before the ghosts’ behavior can be calculated. The
following fuzzy rules are used to define the player skill
variables:

• If (time_life_short OR pellet_rate_bad) then
skill_bad

• If (time_life_medium OR pellet_rate_medium) then
skill_medium

• If (time_life_long AND pellet_rate_good) then
skill_good

For all of the fuzzy rules, the AND term refers to fuzzy
intersection [11]. This is often implemented as the
minimum or product operator. For this system, the
minimum operator was chosen because it produces
larger outputs for inputs within the range [0, 1]. The
OR term used in the fuzzy rules refers to fuzzy
disjunction. As in many fuzzy systems, the maximum
operator was chosen for fuzzy disjunction.

Real-Time Game Design of Pac-Man Using Fuzzy Logic 321

4. Fuzzy Linguistic Terms
As seen in the rules listed in the previous section, the
system makes use of many linguistic variables. The
linguistic variables can be divided into three classes:
Distance, time, and rate. Note that the player skill
terms are formed from rules using linguistic variables
from one of the three classes.

The levels in the implementation of the game are
based on a two-dimensional grid. Some of the
linguistic terms are based on the size of the current
level map, called “level_size.” This quantity is defined
as the maximum x dimension of the level plus the
maximum y dimension of the level.

4.1. Distance Variables
There are two types of distance variables. The first
type is the distance between Pac-Man and each of the
ghosts, while the second is the distance between every
possible pair of ghosts. The distance metric used in the
system is the Manhattan or city-block distance scheme.
This metric was chosen because its calculation is not
computationally complex and it works well with two-
dimensional grid-based structures.

There are three linguistic variable types for distance:
Near, medium, and far. All of these variables are
related to the size of the current level map.
Membership functions are used to map the city-block
distances into these fuzzy variables. These membership
functions are simple linear functions (e. g., triangle and
ramped-step) of the city-block distances. The same
membership functions are used for the Pac-Man-to-
ghost and ghost-to-ghost distances, which are defined
as shown in Figure 5.

0

0.2

0.4

0.6

0.8

1

0 level_size/3 level_size*(2/3) level_size
x

µ(x) Near
Medium
Far

Figure 5. Membership functions for distance.

4.2. Time Variables
Two types of time variables are used in the proposed
system. The first type is a measurement of the amount
of time since Pac-Man has eaten a pellet and the
second is the average period of time that Pac-Man has
gone without losing a life. The unit of time used by the
system is a fixed-length “tick.” Each tick represents
one cycle of player and ghost movements. The actual
amount of time represented by a tick is between 250
ms and 500 ms, depending on the selected level of
difficulty. The tick was chosen as the time unit rather

than real-world time because all game logic (fuzzy and
crisp) occurs on discrete ticks.

As with distance, there are three linguistic variable
types for time: Short, medium, and long. The
membership functions for these time types are based
on simple triangle and ramped-step functions. The
thresholds for the functions are derived from the base
time, which is the shortest possible time it would take
Pac-Man to travel from a corner of the level to the
opposite corner. Since Pac-Man can move one square
per tick, the base time is equal to the level size. Using
these facts, the membership functions for pellet time
and average lifetime are defined as shown in Figure 6
and Figure 7.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 base_time*(2/3) base_time*(4/3)
x

µ(x)

Short
Medium
Long

Figure 6. Membership functions for pellet time.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 base_time*3 base_time*6

x

µ(x)

Short
Medium
Long

Figure 7. Membership functions for average lifetime.

4.3. Rate Variables
There is only one type of rate variables used in the
proposed system, called the pellet rate. The pellet rate
represents the ratio of the number of pellets eaten to
the number of ticks that have passed since the game
started. Since Pac-Man can only eat one pellet per tick,
one would assume that the pellet rate would be a
monotonic decreasing value. However, the system
provides additional “bonus” pellets when a large
number of pellets are eaten in a row, which makes it
possible for the pellet rate to increase over time.

Similar to the other variables, there are three
linguistic variable types defined for the pellet rate:
Bad, medium, and good. However, the membership
functions for each of the three types are defined a bit
differently from the other variables in the system. The
“good” pellet rate’s membership function is directly
calculated as the number of pellets eaten divided by the
number of ticks that have passed since the game
started. To prevent the pellet rate from exceeding the
range [0, 1], the maximum value is always clipped to

322 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006

1. The “bad” pellet rate’s membership function is the
fuzzy complement of the good pellet rate, i. e., (1-
good pellet rate). The “medium” pellet rate’s
membership function is essentially a triangle function
with its peak at a pellet rate of 0.5. Figure 8 provides a
graphical representation of the membership functions.

5. Defuzzification, Weighting, and
Behavior Selection

In order to select a single behavior from the fuzzy
calculations, the outputs from the fuzzy rules must be
defuzzified. The defuzzified value for each behavior is
calculated as follows. First, the individual fuzzy
outputs of each fuzzy rule are calculated. Then the
outputs of each set of fuzzy rules that relate to a
specific behavior are combined via the disjunction
operator (maximum). The result is a defuzzified output
value for each behavior that is in the range [0, 1]. This
method was chosen because it produces acceptable
results and is less computationally complex than other
defuzzification methods, such as centroid or average
maximum.

Once the output value is determined for each
behavior, it is multiplied by a weighting factor. The
weighting factor is chosen by the programmer and
allows certain behaviors to be given preference over
others. For instance, if it is desired that a ghost act
more aggressively, the “hunting” approach’s output
can be multiplied by a bigger weight. Alternatively, if
the goal is to make the game easier, a ghost’s tendency
to move randomly can be increased by multiplying the
defuzzified output of the “random” behavior by a
larger weight.

For the fuzzy implementation of Pac-Man, three sets
of weighting factors were developed. Each set is
associated with a level of difficulty that the player can
select. On the easy difficulty level, less weight is given
to hunting Pac-Man. On the harder difficulty levels, the
weights are configured so the ghosts are more likely to
hunt Pac-Man than to choose other behaviors.

After the outputs have been defuzzified and
weighted, it is necessary to choose a particular
behavior. For proposed system, the maximum of the
final outputs of the four behaviors is selected as the
behavior a ghost will follow. For example, given the
conditions shown in Table 1, the “hunting” approach
would be chosen.

0
0.2
0.4
0.6
0.8
1

0 0.5 1 1.5
x (Pellets eaten / Time elapsed)

µ(x)

Bad

Medium

Good

Figure 8. Membership functions for pellet consumption rate.

6. Results
The timing was excellent on a 500 MHz Pentium 3 PC
that was used to run the system. Most game cycles
occurred within +/-2 ms of the desired cycle time, and
almost all occurred within +/-10 ms. On occasion, the
game cycle time would be up to +/-60 ms from the
desired time, but this is mostly unavoidable. Windows
is not a hard-real time operating system, and the game
has to share CPU cycles with numerous background
tasks of equal priority. For this reason, the proposed
system can be classified as a soft real-time rather than
firm or hard real-time [12]. Even though the timings
were occasionally overshot, there were no perceptible
changes in game speed.

The execution time for one cycle of the control
thread (which includes all the fuzzy calculations) was
measured on a 500 MHz Pentium 3 PC. The average
value was approximately 40 ms +/-5 ms. Given that the
control threads runs once every 250 ms, 375 ms, or 500
ms depending on the difficulty level, it is possible to
calculate the system’s CPU utilization. This is shown
below in Table 2.

Table 1. Behavior selection example.

Behavior Defuzzified
Output Weight Final

Output
Hunting
Approach 0.5 4 2

Defense
Approach 1 1 1

Shy Ghost
Approach 0.2 1 0.2

Random
Approach 0.1 2 0.2

Table 2. CPU utilization on a 500 MHz Pentium 3 PC.
Difficulty
Level

CPU
Utilization

Easy 8 %
Medium 10.7 %
Hard 16 %

During the initial testing, some minor issues with
the adaptation of the ghosts to the player’s
performance were found. Fortunately, it was trivial to
revise some of the rules, membership functions, and
weights to achieve the desired reactions. For example,
in early testing it was found that the definition for poor
player skill was far too strict. This caused the ghosts to
hunt Pac-Man more than desired, even on the easier
difficulty levels. By changing the definition of the
fuzzy rule for skill_bad, it was possible to bring the
ghosts to a level of difficulty that better matched the
player’s performance and selected difficulty. Tweaks
such as these are common in game design and do not
indicate a weakness in the fuzzy logic system.

The final implemented system was tested with 10
different players of various skill levels who provided
their feedback on the experience. While this is a
subjective method of testing, it is the only way to
gauge the performance of a system that depends solely

Real-Time Game Design of Pac-Man Using Fuzzy Logic 323

on player perception. In other words, the main goal of
testing is to investigate if the players “feel” that the
ghosts act and respond in an intelligent fashion.

The testing procedure consisted of having each
person play several rounds of both the fuzzy
implementation of Pac-Man and the original version of
Pac-Man. For the fuzzy version of the game, all three
difficulty levels were tested to evaluate how changing
the weighting parameters of the fuzzy behavioral logic
would impact the performance and perceived
intelligence of the ghosts. At the end, each player was
asked to rate each game in several categories on a scale
of 1 to 10, where 1 is the lowest and 10 is highest. The
average score of each game in each category is
presented below in Table 3. Please note that because
the original version of Pac-Man has only one difficulty
level, only one score is given for difficulty (under
“Medium”).

Table 3. Player ratings of fuzzy vs. original Pac-Man.

Criterion Fuzzy
Pac-Man

Original
Pac-Man

Difficulty on “Easy” 2.3 N/A
Difficulty on “Medium” 5.4 7.8
Difficulty on “Hard” 9.1 N/A
Ghost Predictability 8.2 6.4
Ghost Adaptability 9.0 2.8
Ghosts Feel Human? 6.3 3.7

Fun 7.1 6.5
Overall Impression 7.8 6.6

It can be seen from Table 3 that for most categories,
the fuzzy version of Pac-Man game compares
favorably to the original. In particular, notice that
players rated the ghosts in the fuzzy version as more
adaptable and more human-like. It is also interesting to
note that players felt the ghosts in the fuzzy system
were more predictable. This is due to the fact the
ghosts were designed as intelligent, rational entities,
meaning they tend to demonstrate logical behaviors
that humans would expect.

As the game was being tested, the ghosts’ actions
and defuzzified output values for behavior were
observed. In general, the ghosts seemed to respond
appropriately to the current conditions and adapt to
player trends. The players also responded positively to
the game, stating that they felt the ghosts adapted and
acted intelligently while maintaining a reasonable level
of difficulty.

One example of the adaptation of the ghosts was
seen when a player who had chosen the medium
difficulty level was doing very well. The ghosts first
responded by more actively hunting the player. Once
the ghosts had succeeded in eliminating the player
twice in rapid succession, the ghosts chose other
behaviors that were not as aggressive towards the
player. In another example on the highest difficulty
level, the ghosts chose to guard areas where the pellet

density was greatest. Once Pac-Man moved close
enough to a ghost, the ghost began to hunt the player,
demonstrating a believable intelligence.

6.1. Comparison with Non-Fuzzy Techniques
Game artificial intelligence can be designed without
the use of fuzzy techniques. For example, most
versions of Pac-Man, including the original, used crisp
control mechanisms [1]. The deterministic logic that
controlled the ghosts caused them to react consistently
in predictable ways to player action. They did not learn
from previous player performance and consequently
adjust the level of difficulty. To create the illusion of
intelligence, the original implementation of Pac-Man
had special (crisp) rules for each of the four ghosts. For
instance, certain ghosts would try to approach Pac-Man
from different sides. Although this allowed the ghosts
to behave more “realistically,” it undoubtedly added to
the size and complexity of the code.

Using fuzzy logic can rectify many of the
deficiencies in the original Pac-Man while maintaining
code simplicity. One such improvement that fuzzy
logic provides is adaptability to player performance. In
the proposed system, fuzzy linguistic variables are
used to capture information about player trends. For
example, the game records the pellet consumption rate
and the average time between player deaths. Since this
information can be used when determining the ghosts’
behavior, the decisions that ghosts make are based on
player actions over a period of time rather than at a
specific instant. This means that even if an identical
setup of ghosts and Pac-Man occurs in two different
games, the ghosts will most likely react differently due
to differences in past player performance.

Another benefit of a fuzzy control system is that it is
easy to change or add rules that govern ghost behavior.
The presented fuzzy framework allows rules to be
altered or created and then integrated into the control
logic with a change in only a single line of code. New
fuzzy variables can also be created with relatively little
work. It is even possible to define completely new
behaviors for the ghosts, complete with their own sets
of fuzzy rules. For example, a “huddle” behavior that
would cause a ghost to move towards other ghosts
could easily be created. Furthermore, this could be
added without affecting the code and rules for the
previously defined behaviors.

Fuzzy logic provides the proposed system with a
simplicity that would be difficult to achieve with crisp
logic. Any change to a crisp system could require the
re-ordering or replacement of conditional statements or
the re-scaling of variables. In the presented fuzzy
system, rules can be changed independently, and all
variables are always scaled to a common range (i. e.,
[0, 1]). An example of this simplicity can be seen in
the behavior weighting. If it is desired to make the
ghosts prefer a certain behavior to others, it is only

324 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006

necessary to modify the single weight value for that
behavior. To change the behavior preferences in a crisp
system, conditional statements would probably need to
be changed, and entire sections of code might need to
be moved.

7. Conclusion
Overall, the performance of the system is satisfying. In
fact, the fuzzy control of the ghosts worked better than
expected. The results indicated that the ghosts were
successful in conveying a believable intelligence to the
player. Their adaptation to the player’s level of skill
kept the game challenging without overwhelming the
player. In addition, once the system was created, it was
relatively simple to tweak the fuzzy rules and
parameters to modify the ghosts’ behaviors and levels
of difficulty.

There are a number of ways the system could be
improved in the future. For example, to enhance the
artificial intelligence of the ghosts, new behaviors
along with fuzzy rules and variables could be added.
To simplify dynamic modification of the ghosts’
preferences for certain behaviors, the weights could be
read from a text file during execution. There are also
more complex enhancements that could be made to the
system. For instance, genetic algorithms or neural
networks could be used to learn from the performance
of each player and modify the rule base in response. In
addition, an effort could be made to extract the core of
the presented fuzzy system and make it generic enough
to work with other types of games.

References
[1] Blair I., “Pac-Man,” Wikipedia,

http://en.wikipedia.org/wiki/Pac-Man, 2005.
[2] Bonarini A., “Evolutionary Learning,

Reinforcement Learning, and Fuzzy Rules for
Knowledge Acquisition in Agent-Based
Systems,” in Proceedings of the IEEE, vol. 89,
no. 9, pp. 1334-1346, 2001.

[3] Combs W. and Andrews J., “Combinatorial Rule
Explosion Eliminated by a Fuzzy Rule
Configuration,” IEEE Transactions on Fuzzy
Systems, vol. 6, no. 1, pp. 1-11, 1998.

[4] Dick S. and Kandel A., and Combs W.,
“Comment on ‘Combinatorial Rule Explosion
Eliminated by a Fuzzy Rule Configuration’ [and
Reply],” IEEE Transactions on Fuzzy Systems,
vol. 7, no. 4, pp. 475-478, 1999.

[5] Georgeff M., Pell B., Pollack M., Tambe M., and
Wooldridge M., “The Belief-Desire-Intention
Model of Agency,” in Proceedings of the 5th

International Workshop on Intelligent Agents V,
Paris, France, pp. 1-10, 1998.

[6] Hart P., Nilsson N., and Raphael B., “A Formal
Basis for the Heuristic Determination of

Minimum Cost Paths,” IEEE Transactions on
Systems, Science, and Cybernetics, vol. 4, no. 2,
pp. 100-107, 1968.

[7] Ishibuchi H., Sakamoto R., and Nakashima T.,
“Learning Fuzzy Rules from Iterative Execution
of Games,” Fuzzy Sets and Systems, vol. 135, no.
2, pp. 213-240, 2003.

[8] Jennings N., “On Agent-Based Software
Engineering,” Artificial Intelligence, vol. 117, no.
2, pp. 277-296, 2000.

[9] Johnson D. and Wiles J., “Computer Games with
Intelligence,” in Proceedings of the IEEE
International Conference on Fuzzy Systems,
Melbourne, Australia, vol. 3, pp. 1355-1358,
2001.

[10] Jones R. and Wray R., “Comparative Analysis of
Frameworks for Knowledge-Intensive Intelligent
Agents,” AAAI Fall Symposium on Achieving
Human-Level Intelligence Through Integrated
Systems and Research, Arlington, Virginia, pp.
47-53, 2004.

[11] Langari R. and Yen J., Fuzzy Logic: Intelligence,
Control, and Information, Prentice Hall, New
Jersey, 1998.

[12] Laplante P., Real-Time Systems Design and
Analysis, Wiley-IEEE Press, New Jersey, 2004.

[13] Li Y., Musilek P., and Wyard-Scott L., “Fuzzy
Logic in Agent-Based Game Design,” in
Proceedings of the 2004 Annual Meeting of the
North American Fuzzy Information Processing
Society, Banff, Canada, vol. 2, pp. 734-739,
2004.

[14] Mathieson I., Dance S. , Padgham L., Gorman M.,
and Winikoff M., “An Open Meteorological
Alerting System: Issues and Solutions,” in
Proceedings of the 27th Australasian Computer
Science Conference, Dunedin, New Zealand, vol.
26, pp. 351-358, 2004.

[15] Mendel J., Liang Q., and Combs W., “Comments
on ‘Combinatorial Rule Explosion Eliminated by
a Fuzzy Rule Configuration’ [and Reply],” IEEE
Transactions on Fuzzy Systems, vol. 7, no. 3, pp.
369-373, 1999.

[16] Microsoft Corporation, “MSDN Home Page”,
available at: http://www.msdn.microsoft.com/,
July 19, 2004.

[17] Nishizaki I. and Sakawa M., “Fuzzy Cooperative
Games Arising from Linear Production
Programming Problems with Fuzzy Parameters,”
Fuzzy Sets and Systems, vol. 114, no. 1, pp. 11-
21, 2000.

[18] Patel A., “Amit's Thoughts on Path-Finding and
A-Star,” available at: http://theory.stanford.edu/
~amitp/GameProgramming/, 2004.

[19] Sanornoi N. and Sooraksa P., “Artificial
Intelligence Based on Fuzzy Behavior for Game
Programming,” in Proceedings of the 2004 ACM
SIGCHI International Conference on Advances

Real-Time Game Design of Pac-Man Using Fuzzy Logic 325

in Computer Entertainment Technology,
Singapore, pp. 277-279, 2004.

[20] Takagi T. and Sugeno M., “Fuzzy Identification
of Systems and Its Application to Modeling and
Control,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 15, no. 1, pp. 116-132,
1985.

[21] Vijay V., Chandra S., and Bector C., “Matrix
Games with Fuzzy Goals and Fuzzy Payoffs,”
Omega, vol. 33, no. 5, pp. 425-429, 2005.

[22] Wooldridge M. and Jennings N., “Intelligent
Agents: Theory and Practice,” Knowledge
Engineering Review, vol. 10, no. 2, pp. 115-152,
1995.

[23] Yager R., “Targeted E-commerce Marketing
Using Fuzzy Intelligent Agents,” IEEE
Intelligent Systems, vol. 15, no. 6, pp. 42-45,
2000.

Adnan Shaout obtained his BSc,
MSc and PhD in computer
engineering from Syracuse
University, Syracuse, NY, in 1982,
1983, 1987, respectively. He is a full
professor in Electrical and Computer
Engineering Department at the

University of Michigan, Dearborn. He has more than
20 years of experience in teaching and conducting
research in the electrical and computer engineering
fields at Syracuse University and the University of
Michigan, Dearborn. He has published over 90 papers
in topics related to electrical and computer engineering
fields. His research interests include applications of
fuzzy set theory, computer architecture, computer
arithmetic’s, real time systems and artificial
intelligence.

Brady King received his BSc in
computer engineering from
Lawrence Technological University
and MS in computer engineering
from the University of Michigan–
Dearborn. He is currently working
towards his PhD in the same field at

Wayne State University. His research interests include
intelligent systems, embedded systems, and biomedical
applications.

Luke Reisner is a lecturer at the
University of Michigan, Dearborn.
He received his BSc in computer
engineering, BSc in electrical
engineering, and his MSc in
computer engineering from the
University of Michigan, Dearborn.

Currently, he is preparing to enter the PhD program in
electrical and computer engineering at Wayne State
University with a graduate research assistantship. His
research interests include intelligent systems, digital
signal processing, and embedded systems.

