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1. Introduction
Interactive games have become increasingly popular 
over the years.  At the same time, people’s 
expectations for the quality of games have been 
growing. One of the most famous real-time games of 
all time is Namco’s Pac-Man. It was so popular that it 
actually caused a Yen shortage in Japan shortly after 
its release in 1980. In the game, the player controls a 
character called Pac-Man who navigates a maze 
populated by four computer-controlled opponents, 
called ghosts. The player must eat pellets to score 
points while avoiding the ghosts, whose purpose is to 
hunt down and eliminate Pac-Man.  Initially, it was 
acceptable for computer opponents to base their 
behavior on simple, non-adaptive logic. For instance, 
the enemies in games such as Super Mario Bros. paced 
back and forth, regardless of the player’s movements. 
In more recent games, players have come to expect the 
opponents to respond intelligently to the player’s 
actions.

One approach to solving the problem of game 
intelligence is the application of fuzzy logic. Fuzzy 
logic is a logical system that works with data that does 
not have precisely defined values [11]. Fuzzy systems 
typically employ rules to translate vague terms, such as 
skill or comfort, into system outputs.  In the case of 
games, fuzzy rules can be used to determine computer-
controlled actions based on various player behaviors 
and system conditions.

For this paper, the classic game Pac-Man was 
chosen to demonstrate a fuzzy logic based artificial 
intelligence system. In earlier implementations of this 
game, the ghosts’ logic did not realistically adapt to the 
user’s skill and movements. For instance, ghosts didn’t 
move towards areas where Pac-Man needed to go to 
complete the level (i. e., areas with many pellets). 
While this could be done with classical logic, fuzzy 

logic provides a more elegant way for a system to deal 
with the often ambiguous data required to implement 
such behaviors. In addition, this type of system allows 
rules to be easily added to increase the opponents’ 
intelligence further.  For these reasons, fuzzy logic has 
been chosen as the basis for the intelligent control of 
the ghosts’ behavior.

The following sections of this paper will present the 
complete design and implementation of a fuzzy rule 
based version of Pac-Man. In section 2, the design of 
each of the three main tasks of the proposed system 
will be explained. The description will follow the flow 
of execution of the code through each task. Section 3 
will present the design details of the rules that govern 
the ghosts’ behavior. Next, section 4 will present the 
fuzzy linguistic variables for both the inputs and 
outputs of the fuzzy system. Section 5 will present the 
method of defuzzification and behavior selection. After 
that, section 6 will discuss the results observed in the 
implementation of the game along with a comparison 
to classical design methodologies. Finally, section 7 
will provide a few general comments and suggestions 
for future work.

1.1. Relations to Existing Work
Clearly, the fuzzy implementation of Pac-Man 
described in this paper is not the first use of fuzzy logic 
in a game control application. For a number of reasons, 
such as increases in microprocessor speed, the use of 
fuzzy logic (and other artificial intelligence techniques) 
has become increasingly common in recent years [9].  
Thus, it is important to understand the relationships 
between ideas presented in this paper and existing 
work.

The ghosts used in this system are examples of 
intelligent agents. Intelligent agents are autonomous 
entities that exhibit flexible behavior in pursuit of their 
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objectives [8, 22]. They have been used in a variety of 
applications, ranging from soccer-playing robots [2] to 
Internet commerce [23] to weather reports [14].  

Several different frameworks exist for the design 
and implementation of intelligent agents. Three of the 
most popular frameworks are Beliefs-Desires-
Intentions (BDI), Goals, Operators, Methods, and 
Selection (GOMS) rules, and Soar [10].  Each 
framework has a unique background and different
ways of managing information and behavior. For 
instance, GOMS is rooted in human-computer 
interaction, and BDI is based on logical theories of 
rational behavior.

The framework used in the fuzzy implementation of 
Pac-Man most closely resembles the BDI model [5]. 
The “beliefs” or knowledge of the intelligent ghost 
agents includes the location of other game entities and 
the performance of the player.  In this simple game, the 
primary “desire” or goal of the ghosts is to intercept 
the player. Finally, the “intentions” or courses of action 
of the ghosts include hunting Pac-Man, guarding 
pellets, and avoiding other ghosts.

The BDI-style framework was chosen for its relative 
simplicity. The intelligent agents in Pac-Man do not 
require a large rule base or complex human-like 
reasoning to perform their task.  Attempting to fit Soar 
or a GOMS model to this small game would have 
required significantly more work for little or no 
benefit.

Although many papers have been written regarding 
fuzzy logic and topics like game theory [7, 17, 21], 
only a few papers have dealt with fuzzy control in a 
real-time game. One such paper discusses the 
implementation of a game called BattleCity.net using 
intelligent fuzzy agents [13]. Like the fuzzy version of 
Pac-Man, BattleCity.net uses BDI-style intelligent 
agents that are governed by fuzzy rule-based logic. 
However, BattleCity.net lacks any human interaction, 
which is one of the important aspects of fuzzy game 
design explored in this paper.  Another difference is 
that BattleCity.net utilizes either an exhaustive rule 
base or one based on the debated Union-Rule 
Configuration (URC) [3, 4, 15], whereas the fuzzy rule 
base in Pac-Man (see section 3) does not have 
complete coverage of all possible combinations of 
fuzzy inputs. This was done to simplify the design and 
reduce the computational requirements, which grow 
exponentially with the number of fuzzy inputs if 
exhaustive coverage is used.

Another paper describes the design of intelligent 
game characters using principles derived from 
behavior-based control of mobile robots [19].  The 
authors present a fuzzy rule-based system for dictating 
the behavior of enemy and non-enemy characters, 
similar to the fuzzy implementation of Pac-Man. 
However, their fuzzy system uses the Takagi-Sugeno 
model [20], whereas the one detailed in this paper is 
based on the Mamdani model [11]. Additionally, the 

authors do not present a method for tuning behavior 
selection like the weighting system described in 
section 5 of this paper.

2. Design Overview
Like many real-time systems, the design of the 
proposed system was broken into several (three) tasks 
or threads [12]. The first task is the initialization and 
timing thread. The purpose of this thread is to initialize 
the game, run the main menu, and then handle the 
scheduling of the control thread. The second task is the 
input thread. The sole purpose of this task is to read 
user input from the keyboard as quickly as possible. 
The final task is the control thread, which executes 
most of the game logic. These three tasks run in 
parallel to produce a fully functioning system.

2.1. Initialization and Timing Thread Design
The first function the initialization thread will execute 
is the loading of levels.  Levels will be read from text 
files with file name of the format “levelxx.txt,” where 
“xx” is a number between 1 and 99.  Consequently, the 
loading of levels can occur in a loop in which a file 
open attempt is made on “levelxx.txt,” where “xx” 
starts at 1 and is repeatedly incremented by 1.

To store each level, a level class is defined. The 
class has variables to store the initial x and y 
coordinates for the ghosts and Pac-Man, the initial 
direction for Pac-Man, the x and y level size, the total 
number of pellets, and the level map. The level map is 
implemented as a two-dimensional vector of 
characters. A vector of level objects is used to store all 
the levels read from the text files.

Once all of the available levels have been loaded 
(and assuming there were no errors in the process), the 
next function of the initialization thread is to display 
the main menu. The main menu allows the player to 
select a level of difficulty, start a game, or exit the 
game. The menu is implemented via text input and 
output in the standard console. The pseudocode shown 
in Figure 1 demonstrates the flow of the main menu.

The next step of the initialization thread is to 
initialize the global variables used by the system.  The 
number of lives, number of ghosts, time between game 
updates, and ghost behavior weights are set based on a 
selected difficulty level (easy, medium, or hard).  
Additionally, the score is set to zero and all variables 
used in the calculation of the fuzzy logic variables are 
set to their initial values.

Next, the other two system threads (input and 
control) are created. This is done with two calls to the 
CreateThread function. The “starting address” 
parameters of the CreateThread calls are set to the 
functions for the input and control threads.

At this point, the initialization and timing thread is 
ready to begin its scheduling duty for the control 
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thread. The control thread must be run at a fixed 
periodic rate to handle the game logic. Each period is 
referred to as one “tick” of the game. For the fuzzy 
implementation of Pac-Man, it was decided that the 
control thread should be executed every 250 ms, 375 
ms, or 500 ms for the easy, medium, and hard 
difficulty levels, respectively. Since the timing for 
thread scheduling provided by Windows is only 
accurate to approximately +/-50 ms, a combination of 
Windows thread scheduling and busy waiting is used.  
Busy waiting utilizes the Windows performance 
counter for highly accurate timing. The pseudocode 
shown in Figure 2 illustrates the scheduling of the 
control thread.

Now that the thread has reached its scheduling 
portion, it does not need to perform any more 
initialization. Thus, the timing thread remains in the 
loop shown in Figure 2 until the program exits.

Difficulty = MEDIUM;  // Default
While (true)

Output (“Press ‘s’ [start], ‘d’ [change  difficulty], or 
‘q’ [quit]”);

Output (“Current difficulty:”, Difficulty);
Read input char from user;
If (char == ‘s’) then

Exit Loop;
Else If (char == ‘d’) then

Output (“Press 1 [Easy], 2 [Medium], or 3 
[Hard]”);
Read input char from user;
Translate char and store in Difficulty;
Output (“Difficulty changed to:”,Difficulty);
Continue;

Else If (char == ‘q’) then
Exit Game;

End If;
End While;

Figure 1. Pseudocode for the main menu.

2.2. Input Thread
The input thread is responsible for reading input from 
the keyboard during game execution. Characters from 
the keyboard are read using a blocking I/O function. 
Standard C++ requires the “enter” key to be pressed 
for input to be accepted. This is unsatisfactory because 
users expect their input to be accepted when any key is 
pressed. Thus, the input console is configured to accept 
input after each individual key is pressed. Also, it is 
desired to prevent the input from being echoed on the 
screen. This is accomplished by using the 
SetConsoleMode function [16] with arguments to 
disable the “line input” and “echo input” options of the 
standard C++ input console.

Once a key is pressed, the input thread immediately 
stores the input in a buffer accessible by the control 
thread.  No processing is done on the input within the 

input thread. Any future input will overwrite the 
current contents of the buffer.

// Get the start time:
QueryPerformanceCounter (&start_time);
While(true)

// Suspend the timing thread:
Sleep (tick_period - 60ms);
Do  // Busy waiting

QueryPerformanceCounter (&current_time);
While (current_time - start_time<tick_period);
ResumeThread (control_thread);
start_time += tick_period;

End While;
Figure 2. Pseudocode for scheduling the control thread.

2.3. Control Thread
The control thread is the heart of the game. All the 
data-processing and decision-making is done in the 
control thread, which is a large infinite loop. The first 
part of the control thread checks if a new level needs to 
be initialized. This happens when a level ends or a new 
game has begun. Specifically, a level ends when the 
number of remaining pellets is equal to zero.

To initialize a level, the level needs to be loaded and 
configured. To accomplish this, the level is copied out 
of the level vector and into a global object that 
represents the current level. In addition, all the 
characters are placed at their starting locations. 
Specifically, Pac-Man’s starting location (x, y), the 
ghosts’ starting location (x, y), and Pac-Man’s starting 
direction are initialized to the values stored in the level 
object. Furthermore, the pathfinding algorithm 
(described below) and the number of remaining pellets 
on the level is initialized.

The next part of the control thread processes the 
input acquired from the player via the input thread. The 
control thread creates a copy of the current contents of 
the input buffer to ensure the contents are not changed 
during processing.  If a directional key is pressed (‘a’, 
‘s’, ‘d’, ‘w’ for left, down, right, and up, respectively), 
this direction is translated into the new direction for 
Pac-Man to travel.  If the ‘l’ key is pressed, the number 
of remaining pellets is set to zero to force a level 
change. Finally, if ‘q’ is pressed or Pac-Man has no 
remaining lives, the game quits with a message 
showing player’s final score.

After processing the input, the control thread checks 
if Pac-Man is “powered up.”  Pac-Man becomes 
temporarily powered up after eating special “power 
pellets,” which enable him to eat the ghosts.  If Pac-
Man is powered up, the power time is decremented 
once for the current control cycle.  Otherwise, the 
number of ghosts eaten during the last “powered up” 
period is reset.

The next part of the control thread calculates the 
ghosts’ and Pac-Man’s new positions on the game grid. 
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Pac-Man’s new position is based on the player input 
captured during the first part of the thread.  For a given 
direction, the code checks first if the move is valid.  A 
move is invalid if the target location is a wall. If the 
move is valid, the code sets Pac-Man’s new position to 
the valid location. If the move is invalid, Pac-Man’s 
new position is set to the same position in which he 
currently resides.

At this point, the ghosts’ directions have already 
been set during the previous game tick based on the 
fuzzy controller. The code that does this is located near 
the end of the control thread.  During that section of 
code, which will be discussed later, the validity of the 
ghosts’ movements is checked. Therefore, the positions 
of the ghosts are updated at the current time without 
checking for validity.

After the new positions have been calculated, the 
code checks for a collision between Pac-Man and a 
ghost.  A collision occurs under either of the following 
conditions:

• Pac-Man and a ghost now occupy the same location 
on the game grid.

• Pac-Man and a ghost have swapped positions.

If a collision has occurred, flags are set to indicate the 
collision and which ghost has been hit.

The next block of code handles pellet consumption. 
The execution of this section is conditional on the fact 
that Pac-Man has not died (i. e., Pac-Man has not 
collided with a ghost, or he has but is “powered up”). 
If Pac-Man’s new position contains a regular pellet or 
power pellet, the pellet is eaten. This requires 
graphically overwriting the pellet on the current level 
map with a blank space, decrementing the total number 
of remaining pellets, increasing Pac-Man’s score, and 
playing the “pellet eaten” sound effect. In addition, if 
the pellet is a power pellet, Pac-Man’s “powered up” 
time is set to 30 game ticks.  The sound effect is played 
via the PlaySound function of the Windows API [16].  
To provide low priority, asynchronous sound 
generation, the following parameters are passed to the 
PlaySound function: SND_NODEFAULT, 
SND_NOSTOP, SND_NOWAIT, and SND_ASYNC.

After handling pellet consumption, the code takes 
care of ghost consumption.  Specifically, if a collision 
is made while Pac-Man is “powered up,” the “ate 
ghost” sound effect is played, the score is increased, 
and the ghost that was eaten is reset to its initial 
location on the game grid.  The sound is played in the 
same fashion as the “pellet eaten” sound described 
above, but the SND_NOSTOP and SND_NOWAIT 
options are omitted to increase its priority over the 
“pellet eaten” sound effect.

At this point, the display is updated.  First, the 
current score and lives are printed to the screen via the 
console.  Next, the current level map is printed using 
the pseudocode shown in Figure 3. Next, Pac-Man is 
displayed at his current location provided he has not 

died during the current iteration of the control thread. 
The SetConsoleCurrentPosition function is used to set 
the cursor to the current location of Pac-Man, and the 
character corresponding to Pac-Man’s current direction 
is printed.  Next, each ghost is displayed in the same 
fashion as Pac-Man, but with their own unique 
characters.  Finally, if Pac-Man has died, a death 
message is printed at the bottom of the screen.

For (each row of the map)
For (each column of the map)

Output (current map character);
End For;

Output (new line);
End For;

Figure 3. Pseudocode for the output of the level map.

The next portion of the control thread plays the 
“game start” sound effect if a new game was just 
started.  This sound is played in the same fashion as the 
“ate ghost” sound effect. Following the “game start” 
sound effect, the decision logic for ghost movement is 
executed. The first step of this process is to determine 
if any of the ghosts are at an intersection. If a ghost has 
three or more non-blocked paths, a decision must be 
made as to which path the ghost should follow. 
Otherwise, the ghost will continue along the path it 
was previously following.

The ghost decision logic is conditional upon the 
state of Pac-Man. If Pac-Man is not “powered up,” the 
fuzzy system (see sections 3 through 5) is employed to 
select one of four behaviors.  The behavior is then used 
to determine the direction that the ghost will move 
during the next iteration of the control thread. 
However, if Pac-Man is powered up (i. e., his “power 
pellet time” is greater than 0), the ghosts will always 
attempt to avoid Pac-Man.  

If the fuzzy controller selects the “hunting” behavior 
for a ghost, the A* algorithm is employed to find the 
direction of the shortest path to Pac-Man [6, 18].  The 
pseudocode shown below in Figure 4 illustrates the A* 
shortest path algorithm.  Note that the “Source” is the 
ghost and the “Target” is Pac-Man.

If the fuzzy system selects the “defense” behavior 
for a ghost, the ghost must move in a direction that will 
take him towards the area of the map with the highest 
pellet density. To find this area, the following 
calculations are done:

• Divide the map into 9 overlapping sections based on 
combinations of the following fractions of the x size 
and y size of the level map:

0 to ½, ¼ to ¾, and ½ to 1

• Sum the total number of pellets in each section.
• Select the section with the highest number of 

pellets.
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• Return the coordinates of the middle pellet in that 
section:

• The middle pellet is found by traversing the 
pellets in that section from left to right, top to 
bottom and stopping when the number of pellets 
encountered is half the total number of pellets in 
that section.

The A* algorithm is then used to determine the 
direction of the shortest path to the returned pellet. 
This is the direction the ghost is assigned to take.

If the fuzzy algorithm selects the “shy ghost” 
behavior for a ghost, the ghost needs to move away 
from the closest ghost. The following calculations are 
done to determine the required direction:

• Calculate the city-block distance between the source 
ghost and the other ghosts.

• Select the ghost that is closest to the source ghost.
• Determine the differences in x and y location 

between the source ghost and the closest ghost.
• If the x difference is greater than the y difference:
• If the square in the x direction from the source 

ghost away from the closest ghost is not blocked, 
return the direction from the source ghost to that 
square.

• Else if the square in the y direction from the 
source ghost away from the closest ghost is not 
blocked, return the direction from the source 
ghost to that square.

• Else return one of the two remaining directions 
(whichever leads to a path that is not blocked).

• Else the y difference is greater than the x difference:
• If the square in the y direction from the source 

ghost away from the closest ghost is not blocked, 
return the direction from the source ghost to that 
square.

• Else if the square in the y direction from the 
source ghost away from the closest ghost is not 
blocked, return the direction from the source 
ghost to that square.

• Else return one of the two remaining directions 
(whichever leads to a path that is not blocked).

If the fuzzy controller selects the “random” behavior 
for a ghost, the ghost is supposed to move about the 
level randomly. This is accomplished by using a 
random number generator to select one of the four 
directions randomly. If that direction is blocked, the 
other directions are iterated through until a non-
blocked path is found.

If Pac-Man is “powered up,” the ghost decision 
logic must move the ghost away from Pac-Man. The 
same algorithm that is used for the “shy ghost” 
behavior is used to accomplish this task. The only 
differences are that there is no need to find the “closest 
ghost,” and the “closest ghost” is replaced with Pac-
Man.

If the fuzzy controller selects the “random” behavior 
for a ghost, the ghost is supposed to move about the 
level randomly. This is accomplished by using a 
random number generator to select one of the four 
directions randomly. If that direction is blocked, the 
other directions are iterated through until a non-
blocked path is found.

If Pac-Man is “powered up,” the ghost decision 
logic must move the ghost away from Pac-Man. The 
same algorithm that is used for the “shy ghost” 
behavior is used to accomplish this task. The only 
differences are that there is no need to find the “closest 
ghost,” and the “closest ghost” is replaced with Pac-
Man.

If  (Target == Source) then
Return INVALID;
Add Source to Open List (GCost =  0, HCost = cityblock 
dist fromSource to Target,
Parent = Null)
While (Open List is not empty)

Current = Item in Open List with lowest (GCost + 
HCost)

If  (Current == Target) then
Break;
End If;
For (each of 4 squares adjacent to Current)
If (square is not a wall) then
If (square not already on Open List) then

Add square to Open List (
GCost = Current GCost + 1,
HCost = cityblock dist from square to Target,
Parent = Current)

Else
If (Current GCost + 1 <

GCost of square on Open List) then
GCost of square on Open List =Current GCost 
+ 1;

End If;
End If;

End If;
End For;

Move Current from Open List to Closed List;
End While;

If (Open List is empty) then
Return INVALID;

End If;
Retrace Path from Current to Source;
Return direction from Source to the best path to Current;

Figure 4.  Pseudocode for the A* shortest path algorithm.

If the fuzzy controller selects the “random” behavior 
for a ghost, the ghost is supposed to move about the 
level randomly. This is accomplished by using a 
random number generator to select one of the four 
directions randomly. If that direction is blocked, the 



320 The International Arab Journal of Information Technology,   Vol. 3,   No. 4,   October 2006

other directions are iterated through until a non-
blocked path is found.

If Pac-Man is “powered up,” the ghost decision 
logic must move the ghost away from Pac-Man. The 
same algorithm that is used for the “shy ghost” 
behavior is used to accomplish this task. The only 
differences are that there is no need to find the “closest 
ghost,” and the “closest ghost” is replaced with Pac-
Man.

3. Behaviors and Fuzzy Rules
In order for the ghosts to act more intelligently, four 
different behaviors for the ghosts were chosen.  Each 
individual ghost chooses his behavior based upon a 
fuzzy logic model that is similar to the popular 
Mamdani model [11]. The model will be described 
below.

The first behavior implemented is the “hunting” 
approach.  In this behavior, the ghost will actively seek 
Pac-Man using the A* path finding algorithm [6, 18]. 
The second behavior is the “defense” approach.  For 
this behavior, the ghost will defend the area that has 
the most pellets, thereby ensuring that Pac-Man must 
come near the ghost to complete a level. The third 
behavior is the “shy ghost” approach. In this behavior, 
a ghost will move in a direction that will take it away 
from a nearby ghost. This behavior ensures that ghosts 
will spread out and cover the entire level. Finally, the 
“random” approach is chosen when no other method is 
a preferred choice. In this approach, a ghost will 
randomly move about the level.

Each of these behaviors has a set of fuzzy rules that 
contribute to the likelihood of choosing that behavior. 
The inputs to the rules are a number of linguistic terms 
that are derived from player performance and game 
conditions. The definitions of the linguistic terms will 
be given in section 4.  

The following list of rules contributes to the 
“hunting” behavior:
• If (pacman_near AND skill_good) then 

hunting_behavior
• If (pacman_near AND skill_med AND pellet_med)

then hunting_behavior
• If (pacman_near AND skill_med AND pellet_long)

then hunting_behavior
• If (pacman_med AND skill_good AND pellet_long)

then hunting_behavior
• If (pacman_med AND skill_med AND pellet_long)

then hunting_behavior
• If (pacman_far AND skill_good AND pellet_long)

then hunting_behavior

The following rules relate to the “defense” behavior:

• If (pacman_far AND skill_bad AND ghost_far 
AND pellet_short) then defense_behavior

• If (pacman_far AND skill_bad AND ghost_far 
AND pellet_med) then defense_behavior

• If (pacman_far AND skill_bad AND ghost_med 
AND pellet_short) then defense_behavior

• If (pacman_far AND skill_bad AND ghost_med 
AND pellet_med) then defense_behavior

• If (pacman_far AND skill_med AND ghost_far 
AND pellet_short) then defense_behavior

• If (pacman_med AND skill_bad AND ghost_far 
AND pellet_short) then defense_behavior

The following rules are associated with the “shy ghost” 
behavior:

• If (pacman_far AND skill_bad AND ghost_near 
AND pellet_short) then shy_ghost_behavior

• If (pacman_far AND skill_bad AND ghost_near 
AND pellet_med) then shy_ghost_behavior

• If (pacman_far AND skill_bad AND ghost_med 
AND pellet_short) then shy_ghost_behavior

• If (pacman_far AND skill_bad AND ghost_med 
AND pellet_med) then shy_ghost_behavior

• If (pacman_far AND skill_med AND ghost_near 
AND pellet_short) then shy_ghost_behavior

• If (pacman_med AND skill_bad AND ghost_near 
AND pellet_short) then shy_ghost_behavior

The following rule is related to the “random” behavior:

If NOT (hunting_behavior) AND NOT (shy_ghost_
behavior) AND NOT (defense_behavior) then 
random_behavior

Note that all of the previous rules take into account 
(directly or indirectly) a “skill” term. This variable 
refers to the player’s skill, which is defined in terms of 
good skill, medium skill, and bad skill. The three skill 
levels are actually formed from another set of fuzzy 
rules. These intermediate rules must be calculated 
before the ghosts’ behavior can be calculated. The 
following fuzzy rules are used to define the player skill 
variables:

• If (time_life_short OR pellet_rate_bad) then 
skill_bad

• If (time_life_medium OR pellet_rate_medium) then 
skill_medium

• If (time_life_long AND pellet_rate_good) then 
skill_good

For all of the fuzzy rules, the AND term refers to fuzzy 
intersection [11]. This is often implemented as the 
minimum or product operator. For this system, the 
minimum operator was chosen because it produces 
larger outputs for inputs within the range [0, 1]. The 
OR term used in the fuzzy rules refers to fuzzy 
disjunction. As in many fuzzy systems, the maximum 
operator was chosen for fuzzy disjunction.
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4. Fuzzy Linguistic Terms
As seen in the rules listed in the previous section, the 
system makes use of many linguistic variables. The 
linguistic variables can be divided into three classes: 
Distance, time, and rate. Note that the player skill 
terms are formed from rules using linguistic variables 
from one of the three classes.

The levels in the implementation of the game are 
based on a two-dimensional grid. Some of the 
linguistic terms are based on the size of the current 
level map, called “level_size.” This quantity is defined 
as the maximum x dimension of the level plus the 
maximum y dimension of the level.

4.1. Distance Variables
There are two types of distance variables. The first 
type is the distance between Pac-Man and each of the 
ghosts, while the second is the distance between every 
possible pair of ghosts. The distance metric used in the 
system is the Manhattan or city-block distance scheme. 
This metric was chosen because its calculation is not 
computationally complex and it works well with two-
dimensional grid-based structures.

There are three linguistic variable types for distance: 
Near, medium, and far. All of these variables are 
related to the size of the current level map. 
Membership functions are used to map the city-block 
distances into these fuzzy variables. These membership 
functions are simple linear functions (e. g., triangle and 
ramped-step) of the city-block distances. The same 
membership functions are used for the Pac-Man-to-
ghost and ghost-to-ghost distances, which are defined 
as shown in Figure 5.
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Figure 5. Membership functions for distance.

4.2. Time Variables
Two types of time variables are used in the proposed 
system. The first type is a measurement of the amount 
of time since Pac-Man has eaten a pellet and the 
second is the average period of time that Pac-Man has 
gone without losing a life. The unit of time used by the 
system is a fixed-length “tick.” Each tick represents 
one cycle of player and ghost movements. The actual 
amount of time represented by a tick is between 250 
ms and 500 ms, depending on the selected level of 
difficulty. The tick was chosen as the time unit rather 

than real-world time because all game logic (fuzzy and 
crisp) occurs on discrete ticks.

As with distance, there are three linguistic variable 
types for time: Short, medium, and long. The 
membership functions for these time types are based 
on simple triangle and ramped-step functions. The 
thresholds for the functions are derived from the base 
time, which is the shortest possible time it would take 
Pac-Man to travel from a corner of the level to the 
opposite corner.  Since Pac-Man can move one square 
per tick, the base time is equal to the level size. Using 
these facts, the membership functions for pellet time 
and average lifetime are defined as shown in Figure 6 
and Figure 7.
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Figure 6. Membership functions for pellet time.
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Figure 7. Membership functions for average lifetime.

4.3. Rate Variables
There is only one type of rate variables used in the 
proposed system, called the pellet rate. The pellet rate 
represents the ratio of the number of pellets eaten to 
the number of ticks that have passed since the game 
started. Since Pac-Man can only eat one pellet per tick, 
one would assume that the pellet rate would be a 
monotonic decreasing value. However, the system 
provides additional “bonus” pellets when a large 
number of pellets are eaten in a row, which makes it 
possible for the pellet rate to increase over time.

Similar to the other variables, there are three 
linguistic variable types defined for the pellet rate: 
Bad, medium, and good. However, the membership 
functions for each of the three types are defined a bit 
differently from the other variables in the system.  The 
“good” pellet rate’s membership function is directly 
calculated as the number of pellets eaten divided by the 
number of ticks that have passed since the game 
started.  To prevent the pellet rate from exceeding the 
range [0, 1], the maximum value is always clipped to 
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1. The “bad” pellet rate’s membership function is the 
fuzzy complement of the good pellet rate, i. e., (1- 
good pellet rate). The “medium” pellet rate’s 
membership function is essentially a triangle function 
with its peak at a pellet rate of 0.5.  Figure 8 provides a 
graphical representation of the membership functions.

5. Defuzzification, Weighting, and
Behavior Selection

In order to select a single behavior from the fuzzy 
calculations, the outputs from the fuzzy rules must be 
defuzzified. The defuzzified value for each behavior is 
calculated as follows. First, the individual fuzzy 
outputs of each fuzzy rule are calculated. Then the 
outputs of each set of fuzzy rules that relate to a 
specific behavior are combined via the disjunction 
operator (maximum). The result is a defuzzified output 
value for each behavior that is in the range [0, 1]. This 
method was chosen because it produces acceptable 
results and is less computationally complex than other 
defuzzification methods, such as centroid or average 
maximum.

Once the output value is determined for each 
behavior, it is multiplied by a weighting factor. The 
weighting factor is chosen by the programmer and 
allows certain behaviors to be given preference over 
others. For instance, if it is desired that a ghost act 
more aggressively, the “hunting” approach’s output 
can be multiplied by a bigger weight. Alternatively, if 
the goal is to make the game easier, a ghost’s tendency 
to move randomly can be increased by multiplying the 
defuzzified output of the “random” behavior by a 
larger weight.

For the fuzzy implementation of Pac-Man, three sets 
of weighting factors were developed. Each set is 
associated with a level of difficulty that the player can 
select. On the easy difficulty level, less weight is given 
to hunting Pac-Man. On the harder difficulty levels, the 
weights are configured so the ghosts are more likely to 
hunt Pac-Man than to choose other behaviors.

After the outputs have been defuzzified and 
weighted, it is necessary to choose a particular 
behavior. For proposed system, the maximum of the 
final outputs of the four behaviors is selected as the 
behavior a ghost will follow. For example, given the 
conditions shown in Table 1, the “hunting” approach 
would be chosen.
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Figure 8. Membership functions for pellet consumption rate.

6. Results
The timing was excellent on a 500 MHz Pentium 3 PC 
that was used to run the system.  Most game cycles 
occurred within +/-2 ms of the desired cycle time, and 
almost all occurred within +/-10 ms. On occasion, the 
game cycle time would be up to +/-60 ms from the 
desired time, but this is mostly unavoidable.  Windows 
is not a hard-real time operating system, and the game 
has to share CPU cycles with numerous background 
tasks of equal priority. For this reason, the proposed 
system can be classified as a soft real-time rather than 
firm or hard real-time [12]. Even though the timings 
were occasionally overshot, there were no perceptible 
changes in game speed.

The execution time for one cycle of the control 
thread (which includes all the fuzzy calculations) was 
measured on a 500 MHz Pentium 3 PC. The average 
value was approximately 40 ms +/-5 ms. Given that the 
control threads runs once every 250 ms, 375 ms, or 500 
ms depending on the difficulty level, it is possible to 
calculate the system’s CPU utilization.  This is shown 
below in Table 2.

Table 1. Behavior selection example.

Behavior Defuzzified
Output Weight Final

Output
Hunting
Approach 0.5 4 2

Defense
Approach 1 1 1

Shy Ghost
Approach 0.2 1 0.2

Random
Approach 0.1 2 0.2

Table 2. CPU utilization on a 500 MHz Pentium 3 PC.
Difficulty 
Level

CPU 
Utilization

Easy 8 %
Medium 10.7 %
Hard 16 %

During the initial testing, some minor issues with 
the adaptation of the ghosts to the player’s 
performance were found.  Fortunately, it was trivial to 
revise some of the rules, membership functions, and 
weights to achieve the desired reactions. For example, 
in early testing it was found that the definition for poor 
player skill was far too strict. This caused the ghosts to 
hunt Pac-Man more than desired, even on the easier 
difficulty levels. By changing the definition of the 
fuzzy rule for skill_bad, it was possible to bring the 
ghosts to a level of difficulty that better matched the 
player’s performance and selected difficulty. Tweaks 
such as these are common in game design and do not 
indicate a weakness in the fuzzy logic system. 

The final implemented system was tested with 10 
different players of various skill levels who provided 
their feedback on the experience. While this is a 
subjective method of testing, it is the only way to 
gauge the performance of a system that depends solely 
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on player perception.  In other words, the main goal of 
testing is to investigate if the players “feel” that the 
ghosts act and respond in an intelligent fashion.

The testing procedure consisted of having each 
person play several rounds of both the fuzzy 
implementation of Pac-Man and the original version of 
Pac-Man. For the fuzzy version of the game, all three 
difficulty levels were tested to evaluate how changing 
the weighting parameters of the fuzzy behavioral logic 
would impact the performance and perceived 
intelligence of the ghosts. At the end, each player was 
asked to rate each game in several categories on a scale 
of 1 to 10, where 1 is the lowest and 10 is highest. The 
average score of each game in each category is 
presented below in Table 3. Please note that because 
the original version of Pac-Man has only one difficulty 
level, only one score is given for difficulty (under 
“Medium”).

Table 3. Player ratings of fuzzy vs. original Pac-Man.

Criterion Fuzzy
Pac-Man

Original
Pac-Man

Difficulty on “Easy” 2.3 N/A
Difficulty on “Medium” 5.4 7.8
Difficulty on “Hard” 9.1 N/A
Ghost Predictability 8.2 6.4
Ghost Adaptability 9.0 2.8
Ghosts Feel Human? 6.3 3.7

Fun 7.1 6.5
Overall Impression 7.8 6.6

It can be seen from Table 3 that for most categories, 
the fuzzy version of Pac-Man game compares 
favorably to the original. In particular, notice that 
players rated the ghosts in the fuzzy version as more 
adaptable and more human-like. It is also interesting to 
note that players felt the ghosts in the fuzzy system 
were more predictable. This is due to the fact the 
ghosts were designed as intelligent, rational entities, 
meaning they tend to demonstrate logical behaviors 
that humans would expect.

As the game was being tested, the ghosts’ actions 
and defuzzified output values for behavior were 
observed. In general, the ghosts seemed to respond 
appropriately to the current conditions and adapt to 
player trends. The players also responded positively to 
the game, stating that they felt the ghosts adapted and 
acted intelligently while maintaining a reasonable level 
of difficulty.

One example of the adaptation of the ghosts was 
seen when a player who had chosen the medium 
difficulty level was doing very well. The ghosts first 
responded by more actively hunting the player. Once 
the ghosts had succeeded in eliminating the player 
twice in rapid succession, the ghosts chose other 
behaviors that were not as aggressive towards the 
player. In another example on the highest difficulty 
level, the ghosts chose to guard areas where the pellet 

density was greatest. Once Pac-Man moved close 
enough to a ghost, the ghost began to hunt the player, 
demonstrating a believable intelligence.

6.1. Comparison with Non-Fuzzy Techniques
Game artificial intelligence can be designed without 
the use of fuzzy techniques. For example, most 
versions of Pac-Man, including the original, used crisp 
control mechanisms [1]. The deterministic logic that 
controlled the ghosts caused them to react consistently 
in predictable ways to player action. They did not learn 
from previous player performance and consequently 
adjust the level of difficulty. To create the illusion of 
intelligence, the original implementation of Pac-Man 
had special (crisp) rules for each of the four ghosts. For 
instance, certain ghosts would try to approach Pac-Man 
from different sides. Although this allowed the ghosts 
to behave more “realistically,” it undoubtedly added to 
the size and complexity of the code.

Using fuzzy logic can rectify many of the 
deficiencies in the original Pac-Man while maintaining 
code simplicity. One such improvement that fuzzy 
logic provides is adaptability to player performance. In 
the proposed system, fuzzy linguistic variables are 
used to capture information about player trends.  For 
example, the game records the pellet consumption rate 
and the average time between player deaths.  Since this 
information can be used when determining the ghosts’ 
behavior, the decisions that ghosts make are based on 
player actions over a period of time rather than at a 
specific instant. This means that even if an identical 
setup of ghosts and Pac-Man occurs in two different 
games, the ghosts will most likely react differently due 
to differences in past player performance.

Another benefit of a fuzzy control system is that it is 
easy to change or add rules that govern ghost behavior. 
The presented fuzzy framework allows rules to be 
altered or created and then integrated into the control 
logic with a change in only a single line of code. New 
fuzzy variables can also be created with relatively little 
work. It is even possible to define completely new 
behaviors for the ghosts, complete with their own sets 
of fuzzy rules. For example, a “huddle” behavior that 
would cause a ghost to move towards other ghosts 
could easily be created. Furthermore, this could be 
added without affecting the code and rules for the 
previously defined behaviors.

Fuzzy logic provides the proposed system with a 
simplicity that would be difficult to achieve with crisp 
logic. Any change to a crisp system could require the 
re-ordering or replacement of conditional statements or 
the re-scaling of variables. In the presented fuzzy 
system, rules can be changed independently, and all 
variables are always scaled to a common range (i. e.,
[0, 1]). An example of this simplicity can be seen in 
the behavior weighting. If it is desired to make the 
ghosts prefer a certain behavior to others, it is only 
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necessary to modify the single weight value for that 
behavior. To change the behavior preferences in a crisp 
system, conditional statements would probably need to 
be changed, and entire sections of code might need to 
be moved.

7. Conclusion
Overall, the performance of the system is satisfying. In 
fact, the fuzzy control of the ghosts worked better than 
expected. The results indicated that the ghosts were 
successful in conveying a believable intelligence to the 
player. Their adaptation to the player’s level of skill 
kept the game challenging without overwhelming the 
player. In addition, once the system was created, it was 
relatively simple to tweak the fuzzy rules and 
parameters to modify the ghosts’ behaviors and levels 
of difficulty.

There are a number of ways the system could be 
improved in the future. For example, to enhance the 
artificial intelligence of the ghosts, new behaviors 
along with fuzzy rules and variables could be added. 
To simplify dynamic modification of the ghosts’ 
preferences for certain behaviors, the weights could be 
read from a text file during execution.  There are also 
more complex enhancements that could be made to the 
system. For instance, genetic algorithms or neural 
networks could be used to learn from the performance 
of each player and modify the rule base in response.  In 
addition, an effort could be made to extract the core of 
the presented fuzzy system and make it generic enough 
to work with other types of games.
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