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Abstract: In this paper, a fast hardware architecture for elliptic curve cryptography computation in Galois Field, GF (p), is 
proposed. The architecture is implemented for 160-bits, as its data size to handle. The design adopts projective coordinates to 
eliminate most of the required GF (p) inversion calculations replacing them with several multiplication operations. The 
hardware is intended to be scalable, which allows the hardware to compute long precision numbers in a repetitive way. The 
design involves four parallel scalable multipliers to gain the best speed. This scalable design was implemented in different 
versions depending on the area and speed. All scalable implementations were compared with an available FPGA design. The 
proposed scalable hardware showed interesting results in both area and speed. It also showed some area-time flexibility to 
accommodate the variation needed by different crypto applications.
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1. Introduction
Public Key Cryptography (PKC) is becoming very 
important for today’s computer applications security. 
Most of the systems that use PKC for data encryption 
and digital signature involve RSA [19]. By time, the 
number of bits (key size) used in RSA is increasing,
making the computation process very lengthy and 
unpractical which motivated for the use of Elliptic 
Curve Cryptography (ECC) as a promising substitute 
[20].

ECC has been proposed independently by Koblitz 
[7] and Miller [10]. ECC is based on the discrete 
logarithm problem providing equal security to RSA for 
a far shorter key size. “A typical example of the size in 
bits of the keys used in different public key systems, 
with a  comparable level of security (against known 
attacks), is that a 160-bit ECC key is equivalent to 
RSA with a modulus of 1024-bits” [15]. This 
advantage of ECC is being recognized in many 
standards [18]. The Elliptic Curve Digital Signature 
algorithm is now included in the ISO/IEC 15946 draft 
standards. Other standards that include elliptic curves 
as part of their specifications are the IEEE P1363 
(http://grouper.ieee.org/groups/1363), the ATM Forum 
(http://www.atmforum.com/meetings/rich_bios.html), 
and the internet engineering task force (http://www.
ietf.cnri.reston.va.us). 

ECC systems can be implemented in software as 
well as hardware. Hardware is preferred due to its 
better speed and security [14, 15, 16, 17]. Software on 
the other hand, provides flexibility in the choice of the 
key size [6], which will be gained by our hardware 
using special multipliers named scalable multipliers 

that will be clarified la ter. Hardware processes provide 
more security. For crypto applications, the security 
improves when the computations are handled in 
hardware instead of software. Software based systems 
can be terminated and/or trespassed by intruders easier 
than hardware, which risk the entire security of the 
application [9].

ECC computations' complexity depends on the 
efficiency, speed of elliptic curve scalar 
multiplications, and finite field that is defined over. 
ECC is normally defined in one of Galois Fields GF
(p) or GF (2m) [2]. The focus in this paper is on GF (p) 
since it is more complex and lengthy than GF (2m) due 
to  its carry  propagation problem [3].

It is well-known that GF (p) ECC involve point 
adding operations over an elliptic curve which require 
a division (or inversion) operation. This inversion 
operation is the most expensive and complex 
calculation over GF (p) [3]. We avoid most of the 
inversion computations by a substitution of several 
multiplications, replacing the elliptic curve points as
projective coordinate points similar to the research 
work presented in [2, 11, 14, 15]. There are several 
projective coordinate systems candidates. The choice 
thus far has been based on selecting the system that has 
the least number of parallel multiplication steps, since 
multiplication over GF (p) is a common operation and 
the next most time consuming process - after inversion 
- in ECC. We choose the projective coordinates system 
depending on its inherent parallelism to four parallel 
multipliers as proven in [5]. 

In this paper, we use Tenca’s high-radix scalable
GF (p) multiplier proposed in [22]. Scalable multipliers 
benefit the trade-offs between area and time, compared 
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to conventional GF (p) multipliers, giving the hardware 
designer the priority option between area and time as 
required by the crypto-application. The scalable 
multiplier calculation is based on Montgomery 
modular multiplication method [12]. Normal GF (p) 
multiplication involves division by the modulus. 
Division, however, is a very expensive operation (more 
complex than inversion) [4]. Montgomery in [12] 
proposed an algorithm to perform modular 
multiplication that replaces the usual complex division 
with division by two, which is easily performed in the 
binary representation of numbers. The cost behind 
using Montgomery’s method is paid in some extra 
computations to represent the numbers into 
Montgomery domain and vice-versa. Once the 
numbers are transformed into Montgomery domain, all 
operations (addition, subtraction, multiplication, and 
inversion) are performed in this domain. The result is 
then converted back to the original integer values. 

The scalable ECC design, in principal, can be 
generalized to compute any number of key size bits. 
However, it is modeled in this work for 160-bits. This 
number of bits is specified to make the design 
comparable to another similar hardware implemented 
on FPGA by Ors [15], with the assumption that 160-
bits ECC gives equivalent security to 1024-bits RSA. 

The paper is organized as follows. In section 2, some 
elliptic curve background is presented followed by a 
simple crypto demonstration of encryption and 
decryption. Section 2 also outlines the elliptic curve 
scalar multiplications algorithm giving some details on 
the elliptic curve operations using projective 
coordinates. Section 3 provides a description of the 
proposed ECC hardware architecture with elaboration 
on the scalable multiplier used. The section derives the 
formulae to estimate the area and computation time of 
the ECC architecture. Section 4 briefly introduces an 
FPGA implementation as another available hardware 
to compare with in terms of area and computation time 
(speed). Finally, the conclusion of the paper is 
presented as Section 5.

2. Elliptic Curves Over GF(P)
2.1. Elliptic Curve Theoretical Background
It will be assumed that the reader is familiar with the 
arithmetic over elliptic curves. The reader is directed to 
reference [2] for more details. In brief, the GF (p)
elliptic curve arithmetic is the usual mod p arithmetic. 
The elliptic curve equation over GF (p) is: 

y2 = x3 + ax + b

where p > 3, 4a3 + 27b2≠ 0, and x, y, a, b∈ GF (p).

There is also a single element named the point at 
infinity or the zero point denoted ‘ϕ’. The point at 
infinity is computed as the sum of any three points on 

an elliptic curve that lie on a straight line. If a point on 
the elliptic curve is to be added to another point on the 
curve or to itself, some special elliptic curve addition 
rules are applied as shown below:

(x1, y1) + (x2, y2) = (x3, y3)
x3 = λ2 - x1 - x2

y3 = λ (x1 – x3) -  y1

Where λ is calculated as:

λ = (y2 - y1) / (x2 - x1); if x1 ≠ x2
or
λ = (3 (x1)2 + a) / (2y1); if x1 = x2 and x1 ≠ 0

Notes that if x1 = x2 then y1 = y2 and the elliptic curve 
addition operation is known as point doubling [2].

Considering the squaring of a number as 
multiplication, to add two different elliptic points in 
GF (p) the required operations are: Six additions, one 
inversion, and three multiplication computations. To 
double a point the needed operations are: Four 
additions, one inversion, and four multiplication 
computations. Because the inversion operation is too 
lengthy, as introduced earlier, the normal (x, y) affine 
coordinate is  converted to projection coordinates (X,
Y, Z) as will be discussed later in section 2.4.

2.2. Encryption and Decryption
Several ways can use elliptic curves for encryption and 
decryption [2] where one method is given here as an 
example. Users randomly chose a base point G = (x,
y), lying on the elliptic curve E. The plain text (the 
original message to be encrypted) is coded into an 
elliptic curve point Pm = (xm, ym). Each user selects a 
secret key ‘s’ and generates his public key P = sG. For 
example, user A’s private key is sA and his public key is 
PA = sAG.

For any one to encrypt and send the message point 
Pm to user A, the sender chooses a random integer r
and generate the ciphertext:

Cm = {rG, Pm + kPA }

The ciphertext pair of points uses A’s public key, 
where only user A can decrypt the plaintext using his 
private key.

To decrypt the ciphertext Cm, the first point in the 
pair of Cm, rG, is multiplied by A’s private key to get 
the point sA (rG). Then this point is subtracted from the 
second point of Cm, the result will be the plaintext 
point Pm. The complete decryption operations are: 

(Pm + rPA) - sA (rG) = Pm + r (sAG) - sA (rG) = Pm

The most time consuming operation in the ECC 
encryption and decryption procedure is finding the 
multiples of the base point, G (the elliptic curve scalar
multiplications). The algorithm used to implement this 
is discussed in the next subsection.
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2.3. Scalar Multiplication Algorithm
The ECC scalar multiplication algorithm used for 
calculating the multiples of an elliptic point, can be 
expressed by finding nP from P. This operation is 
based on a binary scalar multiplication method, known 
to be efficient and practical to implement in hardware 
[2, 3, 6, 20, 21]. This binary method algorithm is 
shown below:

Binary Algorithm

Define k: Number of bits in n; and ni  : ith bit of n 
Input: P (a point on the elliptic curve)
Output: Q = nP (another point on the elliptic curve)

1. If nk-1 = 1, then Q := P else Q := 0;
2. For i = k - 2 down to 0;
3. Q := Q + Q;
4.  If ni = 1 then Q := Q +P ; 
5.   End for
6.   Return Q;

Basically, the binary algorithm scans the bits of n 
and doubles the point Q k-times. Whenever, a 
particular bit of n is found to be one, an extra operation 
of point addition (Q + P) is needed. Every point 
addition or point doubling requires the three modulo 
operations of multiplication, inversion, and 
addition/subtraction as clarified earlier in Section 2.1. 

2.4. Projective Coordinates
The projective coordinates are used to eliminate the 
need for performing the lengthy inversion similar to 
the crypto processor idea presented in [2, 11, 14, 15]. 
For elliptic curve defined over GF (p), two different 
forms of formulas are found [2, 11] for point addition 
and doubling. One form projects (x, y) = (X / Z2, Y / Z3) 
[2], while the second projects (x, y) = (X / Z, Y / Z)
[11]. Both projection methods were visualized and 
studied in [5]. The dependency within all formulae 
showed that both projective coordinate forms can be 
parallelized to the maximum possibility when using 
four multipliers, but with different critical path stages 
(different number of multiplication cycles steps). The 
results in [5] showed that projective coordinate (x,
y) = (X / Z, Y / Z) is faster than (x, y) = (X / Z2, Y /Z3) 
with the same hardware. The parallel data flow graph 
of the projection (x, y) = (X / Z, Y / Z) that is suitable 
for our design is shown in Figures 1 and 2, for elliptic 
curve point addition and doubling, respectively.

The number of computations of point additions and 
point doubling depend on the binary value of n and its
number of bits k (see the binary algorithm in section 
2.3). In fact, the number of point doubling is always 
equal to k, while the point additions depend on the 
number of bits that are one. Using the average 
assumption that half the bits of n are ones, the number
of point additions is half the number of bits, k/2. 

Projection (x, y) = (X / Z2, Y / Z3) has on the average 
6.5k multiplication cycles, whereas the (x, y) = (X / Z,
Y / Z) has on the average 5k multiplications [5].

Obviously, projection (x, y) = (X / Z, Y / Z) would 
be the projection of choice for our implementation. 
Remark a further benefit to implement the projective 
coordinate (x, y) = (X / Z,Y / Z) is the 100% utilization 
of the four multipliers in all multiplication cycles, as 
seen in Figures 1 and 2, which is not the case of the 
projection (x, y) = (X / Z2,Y / Z3) [5].

Figure 1. Projecting (x, y) to (X / Z, Y / Z) adding two points 
dataflow.

3. Modelling the Proposed Architecture
Many interesting crypto architectures have been 
proposed in the literature, such as [14, 15]. The usual 
method in these designs is to adopt serial computations 
at both the algorithmic level by using a single 
multiplier, as well as at the arithmetic level by using a 
serial multiplier. The reason behind serial multiplier 
and sequential operation is the thought that they 
provide the lowest area for large word lengths as 
needed for secure cryptography (i. e., 160 bits [2]). 
This classical approach shows the way to the reduction 
of area but with very slow speed that is moreover 
fixed. The new architecture proposed in this paper has 
four parallel multipliers, an adder/subtractor, registers 
and a controller, as shown in Figure 3. The design is 
straight implemented as the dependency graphs shown 
in Figures 1 and 2. Its controller is constructed of a 
state machine to direct the flow of data to conduct the 
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required projective point operation depending on the 
binary algorithm (described previously in section 2.3). 

The improvement in our crypto-architecture, other 
than the multipliers architectural parallelism (seen in 
Figures 1 and 2), is in the basic GF (p) multiplier. The 
designs proposed in [14, 16] use multiplier hardware 
that is limited by the number of bits they are meant to 
be for, if the number of bits are needed to be increased 
for any application reason, the complete hardware is to 
be replaced. Furthermore, if the number of bits is much 
less than the intention of the VLSI design, the 
unneeded bits will be considered as zeros and they will 
be included in the computation casing the same delay 
exactly as if all bits are essential. These weaknesses 
made-up our choice of adopting special scalable 
multipliers instead of conventional ones.

3.1. Scalable Multipliers
An arithmetic unit is called scalable if it can be reused 
or replicated in order to generate long precision results 
independently of the data path precision for which the 
unit was originally designed. To speed up the 
multiplication operation, various dedicated multiplier 
modules were developed. These designs operate over 
fixed finite fields. For example, the multiplier designed 
for 155-bits [1] cannot be used for any other field of 
higher degree. When a need for multiplication of larger 
precision appears, a new multiplier must be designed.

Figure 2. Projecting (x, y) to (X / Z, Y / Z) doubling a point 
dataflow. 

Another way to avoid redesigning the module is to 
use software implementations and fixed precision 
multipliers. However, software implementations (other 
than their security problem) are inefficient in utilizing 
inherent concurrency of the multiplication because of 

the inconvenient pipeline structure of the 
microprocessors being used. Furthermore, software 
implementations on fixed digit multipliers are more 
complex and require excessive effort in coding. 

Therefore, a scalable hardware module specifically 
tailored to take advantage of the concurrency of the 
multiplication algorithm becomes extremely attractive 
[22]. Also computation of elliptic point doubling, 
addition and the algorithm of computing multiples of 
the base point is such that the multiplication of one 
stage must be completed before starting the 
multiplication of the subsequent stage. Therefore,
pipelining the digits to further stages is not applicable,
even if fast digit serial multipliers are used, the 
throughput of such multipliers can not be exploited 
since the next multiplication operation can not begin 
until the multiplication operations in the previous stage 
has fully completed.

Another benefit of this scalable multiplier is the 
flexibility in its hardware modeling stage. It provides 
an area range that provides the capability to fit in very 
limited hardware areas such as smart cards [13], of 
course, with the price compensated from the number of 
clock cycles to complete the ECC computation. This 
trade-off between area and speed can be achieved by 
reducing the bits per word size and/or the number of 
stages that makes the scalable multipliers. The reader 
can go through paper [22] for more information on the 
scalable multiplier used and its details.

Figure 3. Proposed 160-bits scalable architecture.

3.2. Proposed Hardware Area
The exact area of any design depends on the 
technology and minimum feature size. For technology 
independence, we use the number of gates as an 
equivalent area measure [4]. 

A modeling package from Mentor Graphic, 
Leonardo, takes the VHDL design code to generate the 
hardware gate count (area) and longest path delay 
(clock period) [22]. The target technology was set to 
AMI0.5 slow (0.5µm CMOS) provided in the ASIC 
Design Kit (ADK) from the same company [8]. Note 
that the ADK is generated for academic reasons and 
cannot be thoroughly compared to technologies 
developed for commercial ASICs. However, it 
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provides contrast method to study the different 
hardware designs.

The scalable multiplier is the unit to make the 
difference between our proposed design and any other. 
Thus the scalable multiplier is considered the main 
factor in calculating the speed and area. The high-radix 
scalable multiplier area depends on the number of 
stages (NS) and the bits per word size (BPW). Varying 
NS and BPW provide different scalable designs with 
different areas [22], the area of any scalable multiplier 
can be approximated as:

AreaScalable-Multiplier ≈ 92 * BPW * NS + 269 * NS -9.42 *
BPW - 35.5

This area of scalable multiplier is multiplied by four 
and summed to the areas of the adder/subtractor, the 
controller and the registers, to compute the total 
hardware area as shown below:

Hardware Area = 4 * AreaScalable-Multiplier + AreaAdder + 
Areacontroller + AreaRegisters

The areas of the adder / subtractor and registers depend 
on the design maximum number of bits used, nmax
=160 - bits. 

3.3. Proposed Hardware Computation Time
The total computation time is the product of three 
terms: The average number of multiplication steps, the 
number of clock cycles each multiplication takes, and 
the clock period of the VLSI hardware. The number of 
clock cycles each multiplication takes depends on the 
relation between two factors, the number of words
(NW) and the number of stages (NS). The high-radix 
scalable multiplier cycles is estimated in [22] as:

Number-of-Clock-Cycles per Multiplication (NCC) = 
nmax / (3 * NS) * (2 * NS + 1) + NW + 1, If NW ≤ 
2 * NS or nmax / (3 * NS) * (NW + 1) +2 * NS, If 
NW > 2 * NS

The clock period (tp) generated by the CAD tool 
(Leonardo) in [22] changes according to NS and BPW 
as listed in Table 1. Table 1 does not show tp for NS
between 9 and 15 since they show insignificant 
difference unimportant to report.

The average number of multiplication steps (MS) in 
our proposed design is estimated as:

MS = 5k = 5 * nmaz

As clarified earlier in section 2.4. This makes the total 
hardware computation time formulated as:

Total Time = NCC *  tp * MS

3.4. Scalable Hardware Area-Time Tradeoff
Depending on the importance of speed and area, the 
design considered necessary is chosen. In fact, as we 

pay in terms of area, we generally gain in speed. But is 
the speed gained worth the area paid. To estimate an 
evaluation standard that relates between area and time 
two figure of merit estimations are developed,  namely, 
AT (Area × Time), and AT2 (Area × Time2). The aim 
is to have the design with low AT or AT2. The value of 
AT assumes area and speed have the same priority 
weight, while AT2 gives speed the most priority. 
Figure 4, shows the AT values of several scalable 
hardware designs for 160-Bits data size. It is clear that 
the cost increase as the design NS increase, which 
indicates that choosing the smallest hardware with one 
stage (NS = 1) is the best for all sizes of words. 
However, surprisingly observed, that the best design 
(cost-point-of-view) is with the word size of sixteen 
(BPW = 16) and not smaller.

Table 1. High-radix scalable multiplier clock cycle periods 
(nanoseconds).

Bit Per Word (BPW)
NS 8 16 32 64 128
1 10.7 10.3 13.1 18.9 20.2
2 10.8 12.1 14.4 20.5 30.4
3 10.9 12.5 15.7 23
4 11 12.9 17 25.4
5 11.1 12.7 17.6
6 11.1 13.5 18.2
8 11.2 14.9 19.2
9 11.2 15.1
15 11.3 15.5
20 11.4
26 13

Figure 5 shows the AT2 values with respect to the 
number of bits per word (BPW) for all the designs built 
for nmax=160-bits. The best AT2 values changes 
extraordinarily with both BPW and NS parameters, i.e. 
not following a normal logical rule. The best AT2

scalable designs according to BPW are listed in Table 
2.  If the designer had the scalable multiplier stage 
designed for BPW of 8 bits, the best number of stages 
is 9, assuming area is not important compared to speed 
as AT2. If the design is intended to handle 16-bits at a 
time (BPW=16), the number of stages should be 20. 

Figure 4. AT of several versions of 160-bits scalable designs.
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Figure 5. AT2 of versions of the 160-bits scalable designs.

Table 2. Best AT2 scalable designs according to BPW.
BPW 8 16 32 64 128
NS 9 20 3 3 1

4. Comparison With an Available 160-Bits 
FPGA Implementation

The proposed scalable hardware is compared with 
another published hardware implementation presented 
by Ors in 2003 [15]. Ors designed an FPGA hardware 
to perform ECC in GF (p) for data size of 160-bits. The 
FPGA hardware consists of special operational blocks 
for memory, Montgomery multiplication, modular 
addition/subtraction, and a controller of finite state 
machines to organize the ECC flow operations. The 
FPGA design uses projective coordinate arithmetic, 
similar to our scalable hardware, to avoid inversion 
complexity. The critical path of the FPGA design is 
determined by the multiplier, which is based on a 
systolic array structure built specifically for crypto 
applications. It has been reported that the FPGA 
implementation have been built in an area equivalent to 
115,520 gates with longest path delay of 10.952 
nanoseconds. Its average computation time has been 
estimated to 14.414 milliseconds using our same 
average computation time method (number of point 
additions half the number of doubling) [15].

4.1. Area Comparison
The areas of different scalable designs and the FPGA 
one are compared in Figure 6. The area of the FPGA 
hardware does not relate to the BPW value, however, it 
is shown as a constant line in Figure 6 to complete the 
area comparison study. Observe that most scalable
hardware designs are having area smaller than the 
FPGA one. The cases of the FPGA implementation to 
have better area are when the number of stages is large, 
i. e., NS > 20, and the BPW > 8, which is unrealistic to 
implement. 

Figure 6. Area comparison of different 160-bits designs.

4.2. Speed Comparison
The computation time of several different scalable 
designs is shown in Figure 7 compared to the ECC 
FPGA design. All the designs are assumed to operate 
for nmax = 160 - bits. The FPGA single multiplier 
design is very slow compared to all parallel scalable 
ones. For example, the FPGA hardware needs almost 
double the time of the parallel designs with NS = 1. It 
needs more than triple the time of all other scalable 
designs. In fact, the FPGA hardware needs about ten 
times the time of the scalable hardware with the large 
number of stages, such as when NS = 20. However, 
this large NS may be impractical to implement because 
of its large area, as mentioned earlier.

Note the affect of increasing the BPW number for 
each NS scalable design. As BPW goes high in most of 
the designs, the total computation time start increasing. 
This indicates that it is not necessarily by increasing 
the BPW, time reduces, in fact, the time may increase. 
This extra hardware will cause extra computation 
delay.

5. Conclusion
This paper presents scalable hardware models of a 
procedure used in the computation of 160-bits elliptic 
curve cryptography. The models act as if the inverse 
operation is converted into consecutive multiplication 
steps using a method known as projective coordinates, 
projecting (x, y) to (X / Z,Y / Z). The proposed 
hardware architectures implement the ECC procedures 
into four parallel multipliers that enjoy 100% 
utilization. 

An important comment about the implementation of 
our proposed architecture is that we propose to use 
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scalable multipliers which depend on digit serial 
multiplications. Digit serial computation is more 
suitable for the elliptic curve crypto algorithm 
discussed above since the computation of elliptic point 
doubling, addition and the algorithm of computing
multiples of the base point is such that the 
multiplication of one stage must be completed before 
starting the multiplication of the subsequent stage. 
Therefore, even if a pipelined bit-parallel multipliers is 
used, the throughput of such a multiplier can not be 
exploited since the next multiplication operation can 
not commence until the multiplication operations in the 
previous stage has completed. The scalable multiplier 
used is flexible to give different hardware versions of 
the same basic multiplier depending on the number of 
stages (NS) and the number of bits per word (BPW) 
each stage is handling.

The proposed design is compared to an available 
FPGA implementation showing interesting area and 
speed results.

Figure 7. Total time comparison of different 160-bits designs.
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