
342 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006

Fast 160-Bits GF (P) Elliptic Curve Crypto
 Hardware of High-Radix Scalable Multipliers

Adnan Abdul-Aziz Gutub
Computer Engineering Department, King Fahd University of Petroleum & Minerals, SA

Abstract: In this paper, a fast hardware architecture for elliptic curve cryptography computation in Galois Field, GF (p), is
proposed. The architecture is implemented for 160-bits, as its data size to handle. The design adopts projective coordinates to
eliminate most of the required GF (p) inversion calculations replacing them with several multiplication operations. The
hardware is intended to be scalable, which allows the hardware to compute long precision numbers in a repetitive way. The
design involves four parallel scalable multipliers to gain the best speed. This scalable design was implemented in different
versions depending on the area and speed. All scalable implementations were compared with an available FPGA design. The
proposed scalable hardware showed interesting results in both area and speed. It also showed some area-time flexibility to
accommodate the variation needed by different crypto applications.

Keywords: Modulo multipliers, elliptic curve cryptography, scalable hardware designs.

Received September 24, 200 5; accepted August 1, 2005

1. Introduction
Public Key Cryptography (PKC) is becoming very
important for today’s computer applications security.
Most of the systems that use PKC for data encryption
and digital signature involve RSA [19]. By time, the
number of bits (key size) used in RSA is increasing,
making the computation process very lengthy and
unpractical which motivated for the use of Elliptic
Curve Cryptography (ECC) as a promising substitute
[20].

ECC has been proposed independently by Koblitz
[7] and Miller [10]. ECC is based on the discrete
logarithm problem providing equal security to RSA for
a far shorter key size. “A typical example of the size in
bits of the keys used in different public key systems,
with a comparable level of security (against known
attacks), is that a 160-bit ECC key is equivalent to
RSA with a modulus of 1024-bits” [15]. This
advantage of ECC is being recognized in many
standards [18]. The Elliptic Curve Digital Signature
algorithm is now included in the ISO/IEC 15946 draft
standards. Other standards that include elliptic curves
as part of their specifications are the IEEE P1363
(http://grouper.ieee.org/groups/1363), the ATM Forum
(http://www.atmforum.com/meetings/rich_bios.html),
and the internet engineering task force (http://www.
ietf.cnri.reston.va.us).

ECC systems can be implemented in software as
well as hardware. Hardware is preferred due to its
better speed and security [14, 15, 16, 17]. Software on
the other hand, provides flexibility in the choice of the
key size [6], which will be gained by our hardware
using special multipliers named scalable multipliers

that will be clarified la ter. Hardware processes provide
more security. For crypto applications, the security
improves when the computations are handled in
hardware instead of software. Software based systems
can be terminated and/or trespassed by intruders easier
than hardware, which risk the entire security of the
application [9].

ECC computations' complexity depends on the
efficiency, speed of elliptic curve scalar
multiplications, and finite field that is defined over.
ECC is normally defined in one of Galois Fields GF
(p) or GF (2m) [2]. The focus in this paper is on GF (p)
since it is more complex and lengthy than GF (2m) due
to its carry propagation problem [3].

It is well-known that GF (p) ECC involve point
adding operations over an elliptic curve which require
a division (or inversion) operation. This inversion
operation is the most expensive and complex
calculation over GF (p) [3]. We avoid most of the
inversion computations by a substitution of several
multiplications, replacing the elliptic curve points as
projective coordinate points similar to the research
work presented in [2, 11, 14, 15]. There are several
projective coordinate systems candidates. The choice
thus far has been based on selecting the system that has
the least number of parallel multiplication steps, since
multiplication over GF (p) is a common operation and
the next most time consuming process - after inversion
- in ECC. We choose the projective coordinates system
depending on its inherent parallelism to four parallel
multipliers as proven in [5].

In this paper, we use Tenca’s high-radix scalable
GF (p) multiplier proposed in [22]. Scalable multipliers
benefit the trade-offs between area and time, compared

Fast 160-Bits GF (P) Elliptic Curve Crypto Hardware of High-Radix Scalable Multipliers 343

to conventional GF (p) multipliers, giving the hardware
designer the priority option between area and time as
required by the crypto-application. The scalable
multiplier calculation is based on Montgomery
modular multiplication method [12]. Normal GF (p)
multiplication involves division by the modulus.
Division, however, is a very expensive operation (more
complex than inversion) [4]. Montgomery in [12]
proposed an algorithm to perform modular
multiplication that replaces the usual complex division
with division by two, which is easily performed in the
binary representation of numbers. The cost behind
using Montgomery’s method is paid in some extra
computations to represent the numbers into
Montgomery domain and vice-versa. Once the
numbers are transformed into Montgomery domain, all
operations (addition, subtraction, multiplication, and
inversion) are performed in this domain. The result is
then converted back to the original integer values.

The scalable ECC design, in principal, can be
generalized to compute any number of key size bits.
However, it is modeled in this work for 160-bits. This
number of bits is specified to make the design
comparable to another similar hardware implemented
on FPGA by Ors [15], with the assumption that 160-
bits ECC gives equivalent security to 1024-bits RSA.

The paper is organized as follows. In section 2, some
elliptic curve background is presented followed by a
simple crypto demonstration of encryption and
decryption. Section 2 also outlines the elliptic curve
scalar multiplications algorithm giving some details on
the elliptic curve operations using projective
coordinates. Section 3 provides a description of the
proposed ECC hardware architecture with elaboration
on the scalable multiplier used. The section derives the
formulae to estimate the area and computation time of
the ECC architecture. Section 4 briefly introduces an
FPGA implementation as another available hardware
to compare with in terms of area and computation time
(speed). Finally, the conclusion of the paper is
presented as Section 5.

2. Elliptic Curves Over GF(P)
2.1. Elliptic Curve Theoretical Background
It will be assumed that the reader is familiar with the
arithmetic over elliptic curves. The reader is directed to
reference [2] for more details. In brief, the GF (p)
elliptic curve arithmetic is the usual mod p arithmetic.
The elliptic curve equation over GF (p) is:

y2 = x3 + ax + b

where p > 3, 4a3 + 27b2≠ 0, and x, y, a, b∈ GF (p).

There is also a single element named the point at
infinity or the zero point denoted ‘ϕ’. The point at
infinity is computed as the sum of any three points on

an elliptic curve that lie on a straight line. If a point on
the elliptic curve is to be added to another point on the
curve or to itself, some special elliptic curve addition
rules are applied as shown below:

(x1, y1) + (x2, y2) = (x3, y3)
x3 = λ2 - x1 - x2

y3 = λ (x1 – x3) - y1

Where λ is calculated as:

λ = (y2 - y1) / (x2 - x1); if x1 ≠ x2
or
λ = (3 (x1)2 + a) / (2y1); if x1 = x2 and x1 ≠ 0

Notes that if x1 = x2 then y1 = y2 and the elliptic curve
addition operation is known as point doubling [2].

Considering the squaring of a number as
multiplication, to add two different elliptic points in
GF (p) the required operations are: Six additions, one
inversion, and three multiplication computations. To
double a point the needed operations are: Four
additions, one inversion, and four multiplication
computations. Because the inversion operation is too
lengthy, as introduced earlier, the normal (x, y) affine
coordinate is converted to projection coordinates (X,
Y, Z) as will be discussed later in section 2.4.

2.2. Encryption and Decryption
Several ways can use elliptic curves for encryption and
decryption [2] where one method is given here as an
example. Users randomly chose a base point G = (x,
y), lying on the elliptic curve E. The plain text (the
original message to be encrypted) is coded into an
elliptic curve point Pm = (xm, ym). Each user selects a
secret key ‘s’ and generates his public key P = sG. For
example, user A’s private key is sA and his public key is
PA = sAG.

For any one to encrypt and send the message point
Pm to user A, the sender chooses a random integer r
and generate the ciphertext:

Cm = {rG, Pm + kPA }

The ciphertext pair of points uses A’s public key,
where only user A can decrypt the plaintext using his
private key.

To decrypt the ciphertext Cm, the first point in the
pair of Cm, rG, is multiplied by A’s private key to get
the point sA (rG). Then this point is subtracted from the
second point of Cm, the result will be the plaintext
point Pm. The complete decryption operations are:

(Pm + rPA) - sA (rG) = Pm + r (sAG) - sA (rG) = Pm

The most time consuming operation in the ECC
encryption and decryption procedure is finding the
multiples of the base point, G (the elliptic curve scalar
multiplications). The algorithm used to implement this
is discussed in the next subsection.

344 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006

2.3. Scalar Multiplication Algorithm
The ECC scalar multiplication algorithm used for
calculating the multiples of an elliptic point, can be
expressed by finding nP from P. This operation is
based on a binary scalar multiplication method, known
to be efficient and practical to implement in hardware
[2, 3, 6, 20, 21]. This binary method algorithm is
shown below:

Binary Algorithm

Define k: Number of bits in n; and ni : ith bit of n
Input: P (a point on the elliptic curve)
Output: Q = nP (another point on the elliptic curve)

1. If nk-1 = 1, then Q := P else Q := 0;
2. For i = k - 2 down to 0;
3. Q := Q + Q;
4. If ni = 1 then Q := Q +P ;
5. End for
6. Return Q;

Basically, the binary algorithm scans the bits of n
and doubles the point Q k-times. Whenever, a
particular bit of n is found to be one, an extra operation
of point addition (Q + P) is needed. Every point
addition or point doubling requires the three modulo
operations of multiplication, inversion, and
addition/subtraction as clarified earlier in Section 2.1.

2.4. Projective Coordinates
The projective coordinates are used to eliminate the
need for performing the lengthy inversion similar to
the crypto processor idea presented in [2, 11, 14, 15].
For elliptic curve defined over GF (p), two different
forms of formulas are found [2, 11] for point addition
and doubling. One form projects (x, y) = (X / Z2, Y / Z3)
[2], while the second projects (x, y) = (X / Z, Y / Z)
[11]. Both projection methods were visualized and
studied in [5]. The dependency within all formulae
showed that both projective coordinate forms can be
parallelized to the maximum possibility when using
four multipliers, but with different critical path stages
(different number of multiplication cycles steps). The
results in [5] showed that projective coordinate (x,
y) = (X / Z, Y / Z) is faster than (x, y) = (X / Z2, Y /Z3)
with the same hardware. The parallel data flow graph
of the projection (x, y) = (X / Z, Y / Z) that is suitable
for our design is shown in Figures 1 and 2, for elliptic
curve point addition and doubling, respectively.

The number of computations of point additions and
point doubling depend on the binary value of n and its
number of bits k (see the binary algorithm in section
2.3). In fact, the number of point doubling is always
equal to k, while the point additions depend on the
number of bits that are one. Using the average
assumption that half the bits of n are ones, the number
of point additions is half the number of bits, k/2.

Projection (x, y) = (X / Z2, Y / Z3) has on the average
6.5k multiplication cycles, whereas the (x, y) = (X / Z,
Y / Z) has on the average 5k multiplications [5].

Obviously, projection (x, y) = (X / Z, Y / Z) would
be the projection of choice for our implementation.
Remark a further benefit to implement the projective
coordinate (x, y) = (X / Z,Y / Z) is the 100% utilization
of the four multipliers in all multiplication cycles, as
seen in Figures 1 and 2, which is not the case of the
projection (x, y) = (X / Z2,Y / Z3) [5].

Figure 1. Projecting (x, y) to (X / Z, Y / Z) adding two points
dataflow.

3. Modelling the Proposed Architecture
Many interesting crypto architectures have been
proposed in the literature, such as [14, 15]. The usual
method in these designs is to adopt serial computations
at both the algorithmic level by using a single
multiplier, as well as at the arithmetic level by using a
serial multiplier. The reason behind serial multiplier
and sequential operation is the thought that they
provide the lowest area for large word lengths as
needed for secure cryptography (i. e., 160 bits [2]).
This classical approach shows the way to the reduction
of area but with very slow speed that is moreover
fixed. The new architecture proposed in this paper has
four parallel multipliers, an adder/subtractor, registers
and a controller, as shown in Figure 3. The design is
straight implemented as the dependency graphs shown
in Figures 1 and 2. Its controller is constructed of a
state machine to direct the flow of data to conduct the

Y1Z2 Y2Z1 X2Z1 X1Z2

λ2 λ1

Z2

Y1 Z2 Y2 Z1 X2 Z1 X1 Z2

λ5-λ4 λ1+λ2 λ1-λ2

λ4 λ5

λ6 λ3

Z2λ3 λ6
2 Z1Z2 λ3

2

Z1
Z2

λ3

λ7

λ1λ3
2 Z2λ3

3 Z1Z2λ6
2 λ7λ3

2

λ1 λ7

λ6
2Z1Z2-λ7λ3

2

λ3
2X1Z2 -λ8

λ8

Y1Z2λ3
3 Z1Z2λ3

3 λ9λ6 λ3λ8

Y1 Z1 λ6 λ9 λ8

λ3

λ6λ9-λ3
3λ1Z2

Z3 Y3 X3

Fast 160-Bits GF (P) Elliptic Curve Crypto Hardware of High-Radix Scalable Multipliers 345

required projective point operation depending on the
binary algorithm (described previously in section 2.3).

The improvement in our crypto-architecture, other
than the multipliers architectural parallelism (seen in
Figures 1 and 2), is in the basic GF (p) multiplier. The
designs proposed in [14, 16] use multiplier hardware
that is limited by the number of bits they are meant to
be for, if the number of bits are needed to be increased
for any application reason, the complete hardware is to
be replaced. Furthermore, if the number of bits is much
less than the intention of the VLSI design, the
unneeded bits will be considered as zeros and they will
be included in the computation casing the same delay
exactly as if all bits are essential. These weaknesses
made-up our choice of adopting special scalable
multipliers instead of conventional ones.

3.1. Scalable Multipliers
An arithmetic unit is called scalable if it can be reused
or replicated in order to generate long precision results
independently of the data path precision for which the
unit was originally designed. To speed up the
multiplication operation, various dedicated multiplier
modules were developed. These designs operate over
fixed finite fields. For example, the multiplier designed
for 155-bits [1] cannot be used for any other field of
higher degree. When a need for multiplication of larger
precision appears, a new multiplier must be designed.

Figure 2. Projecting (x, y) to (X / Z, Y / Z) doubling a point
dataflow.

Another way to avoid redesigning the module is to
use software implementations and fixed precision
multipliers. However, software implementations (other
than their security problem) are inefficient in utilizing
inherent concurrency of the multiplication because of

the inconvenient pipeline structure of the
microprocessors being used. Furthermore, software
implementations on fixed digit multipliers are more
complex and require excessive effort in coding.

Therefore, a scalable hardware module specifically
tailored to take advantage of the concurrency of the
multiplication algorithm becomes extremely attractive
[22]. Also computation of elliptic point doubling,
addition and the algorithm of computing multiples of
the base point is such that the multiplication of one
stage must be completed before starting the
multiplication of the subsequent stage. Therefore,
pipelining the digits to further stages is not applicable,
even if fast digit serial multipliers are used, the
throughput of such multipliers can not be exploited
since the next multiplication operation can not begin
until the multiplication operations in the previous stage
has fully completed.

Another benefit of this scalable multiplier is the
flexibility in its hardware modeling stage. It provides
an area range that provides the capability to fit in very
limited hardware areas such as smart cards [13], of
course, with the price compensated from the number of
clock cycles to complete the ECC computation. This
trade-off between area and speed can be achieved by
reducing the bits per word size and/or the number of
stages that makes the scalable multipliers. The reader
can go through paper [22] for more information on the
scalable multiplier used and its details.

Figure 3. Proposed 160-bits scalable architecture.

3.2. Proposed Hardware Area
The exact area of any design depends on the
technology and minimum feature size. For technology
independence, we use the number of gates as an
equivalent area measure [4].

A modeling package from Mentor Graphic,
Leonardo, takes the VHDL design code to generate the
hardware gate count (area) and longest path delay
(clock period) [22]. The target technology was set to
AMI0.5 slow (0.5µm CMOS) provided in the ASIC
Design Kit (ADK) from the same company [8]. Note
that the ADK is generated for academic reasons and
cannot be thoroughly compared to technologies
developed for commercial ASICs. However, it

Y1 X1 Y1 Z1 X1 3X1 Z1 aZ1

Y1X1 Y1Z1 3X1
2 aZ1

2

3X1
2 + aZ1

2

λ2

λ1
Y1

Y1X1λ2 Y1λ2 λ2
2 λ1

2

λ1
2-8λ3

λ4

λ3

4λ3-λ4

λ4

λ5λ1 (Y1λ2)2 8λ2
3 2λ4λ2

8λ3

λ1 8λ2

λ5

2λ2

λ5λ1-8(Y1λ2)2

Y3 Z3 X3

346 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006

provides contrast method to study the different
hardware designs.

The scalable multiplier is the unit to make the
difference between our proposed design and any other.
Thus the scalable multiplier is considered the main
factor in calculating the speed and area. The high-radix
scalable multiplier area depends on the number of
stages (NS) and the bits per word size (BPW). Varying
NS and BPW provide different scalable designs with
different areas [22], the area of any scalable multiplier
can be approximated as:

AreaScalable-Multiplier ≈ 92 * BPW * NS + 269 * NS -9.42 *
BPW - 35.5

This area of scalable multiplier is multiplied by four
and summed to the areas of the adder/subtractor, the
controller and the registers, to compute the total
hardware area as shown below:

Hardware Area = 4 * AreaScalable-Multiplier + AreaAdder +
Areacontroller + AreaRegisters

The areas of the adder / subtractor and registers depend
on the design maximum number of bits used, nmax
=160 - bits.

3.3. Proposed Hardware Computation Time
The total computation time is the product of three
terms: The average number of multiplication steps, the
number of clock cycles each multiplication takes, and
the clock period of the VLSI hardware. The number of
clock cycles each multiplication takes depends on the
relation between two factors, the number of words
(NW) and the number of stages (NS). The high-radix
scalable multiplier cycles is estimated in [22] as:

Number-of-Clock-Cycles per Multiplication (NCC) =
nmax / (3 * NS) * (2 * NS + 1) + NW + 1, If NW ≤
2 * NS or nmax / (3 * NS) * (NW + 1) +2 * NS, If
NW > 2 * NS

The clock period (tp) generated by the CAD tool
(Leonardo) in [22] changes according to NS and BPW
as listed in Table 1. Table 1 does not show tp for NS
between 9 and 15 since they show insignificant
difference unimportant to report.

The average number of multiplication steps (MS) in
our proposed design is estimated as:

MS = 5k = 5 * nmaz

As clarified earlier in section 2.4. This makes the total
hardware computation time formulated as:

Total Time = NCC * tp * MS

3.4. Scalable Hardware Area-Time Tradeoff
Depending on the importance of speed and area, the
design considered necessary is chosen. In fact, as we

pay in terms of area, we generally gain in speed. But is
the speed gained worth the area paid. To estimate an
evaluation standard that relates between area and time
two figure of merit estimations are developed, namely,
AT (Area × Time), and AT2 (Area × Time2). The aim
is to have the design with low AT or AT2. The value of
AT assumes area and speed have the same priority
weight, while AT2 gives speed the most priority.
Figure 4, shows the AT values of several scalable
hardware designs for 160-Bits data size. It is clear that
the cost increase as the design NS increase, which
indicates that choosing the smallest hardware with one
stage (NS = 1) is the best for all sizes of words.
However, surprisingly observed, that the best design
(cost-point-of-view) is with the word size of sixteen
(BPW = 16) and not smaller.

Table 1. High-radix scalable multiplier clock cycle periods
(nanoseconds).

Bit Per Word (BPW)
NS 8 16 32 64 128
1 10.7 10.3 13.1 18.9 20.2
2 10.8 12.1 14.4 20.5 30.4
3 10.9 12.5 15.7 23
4 11 12.9 17 25.4
5 11.1 12.7 17.6
6 11.1 13.5 18.2
8 11.2 14.9 19.2
9 11.2 15.1
15 11.3 15.5
20 11.4
26 13

Figure 5 shows the AT2 values with respect to the
number of bits per word (BPW) for all the designs built
for nmax=160-bits. The best AT2 values changes
extraordinarily with both BPW and NS parameters, i.e.
not following a normal logical rule. The best AT2

scalable designs according to BPW are listed in Table
2. If the designer had the scalable multiplier stage
designed for BPW of 8 bits, the best number of stages
is 9, assuming area is not important compared to speed
as AT2. If the design is intended to handle 16-bits at a
time (BPW=16), the number of stages should be 20.

Figure 4. AT of several versions of 160-bits scalable designs.

Fast 160-Bits GF (P) Elliptic Curve Crypto Hardware of High-Radix Scalable Multipliers 347

Figure 5. AT2 of versions of the 160-bits scalable designs.

Table 2. Best AT2 scalable designs according to BPW.
BPW 8 16 32 64 128
NS 9 20 3 3 1

4. Comparison With an Available 160-Bits
FPGA Implementation

The proposed scalable hardware is compared with
another published hardware implementation presented
by Ors in 2003 [15]. Ors designed an FPGA hardware
to perform ECC in GF (p) for data size of 160-bits. The
FPGA hardware consists of special operational blocks
for memory, Montgomery multiplication, modular
addition/subtraction, and a controller of finite state
machines to organize the ECC flow operations. The
FPGA design uses projective coordinate arithmetic,
similar to our scalable hardware, to avoid inversion
complexity. The critical path of the FPGA design is
determined by the multiplier, which is based on a
systolic array structure built specifically for crypto
applications. It has been reported that the FPGA
implementation have been built in an area equivalent to
115,520 gates with longest path delay of 10.952
nanoseconds. Its average computation time has been
estimated to 14.414 milliseconds using our same
average computation time method (number of point
additions half the number of doubling) [15].

4.1. Area Comparison
The areas of different scalable designs and the FPGA
one are compared in Figure 6. The area of the FPGA
hardware does not relate to the BPW value, however, it
is shown as a constant line in Figure 6 to complete the
area comparison study. Observe that most scalable
hardware designs are having area smaller than the
FPGA one. The cases of the FPGA implementation to
have better area are when the number of stages is large,
i. e., NS > 20, and the BPW > 8, which is unrealistic to
implement.

Figure 6. Area comparison of different 160-bits designs.

4.2. Speed Comparison
The computation time of several different scalable
designs is shown in Figure 7 compared to the ECC
FPGA design. All the designs are assumed to operate
for nmax = 160 - bits. The FPGA single multiplier
design is very slow compared to all parallel scalable
ones. For example, the FPGA hardware needs almost
double the time of the parallel designs with NS = 1. It
needs more than triple the time of all other scalable
designs. In fact, the FPGA hardware needs about ten
times the time of the scalable hardware with the large
number of stages, such as when NS = 20. However,
this large NS may be impractical to implement because
of its large area, as mentioned earlier.

Note the affect of increasing the BPW number for
each NS scalable design. As BPW goes high in most of
the designs, the total computation time start increasing.
This indicates that it is not necessarily by increasing
the BPW, time reduces, in fact, the time may increase.
This extra hardware will cause extra computation
delay.

5. Conclusion
This paper presents scalable hardware models of a
procedure used in the computation of 160-bits elliptic
curve cryptography. The models act as if the inverse
operation is converted into consecutive multiplication
steps using a method known as projective coordinates,
projecting (x, y) to (X / Z,Y / Z). The proposed
hardware architectures implement the ECC procedures
into four parallel multipliers that enjoy 100%
utilization.

An important comment about the implementation of
our proposed architecture is that we propose to use

348 The International Arab Journal of Information Technology, Vol. 3, No. 4, October 2006

scalable multipliers which depend on digit serial
multiplications. Digit serial computation is more
suitable for the elliptic curve crypto algorithm
discussed above since the computation of elliptic point
doubling, addition and the algorithm of computing
multiples of the base point is such that the
multiplication of one stage must be completed before
starting the multiplication of the subsequent stage.
Therefore, even if a pipelined bit-parallel multipliers is
used, the throughput of such a multiplier can not be
exploited since the next multiplication operation can
not commence until the multiplication operations in the
previous stage has completed. The scalable multiplier
used is flexible to give different hardware versions of
the same basic multiplier depending on the number of
stages (NS) and the number of bits per word (BPW)
each stage is handling.

The proposed design is compared to an available
FPGA implementation showing interesting area and
speed results.

Figure 7. Total time comparison of different 160-bits designs.

Acknowledgments
Thanks are due to Professor Ibrahim M. K. for his
valuable suggestions. Thanks to King Fahd University
of Petroleum and Minerals, KFUPM-Dhahran, for its
support.

References
[1] Agnew G. B., Mullin R. C., and Vanstone S. A.,

“An Implementation of Elliptic Curve
Cryptosystems Over F2155,” IEEE Journal on
Selected Areas in Communications, vol. 11, no.
5, pp. 804-813, June 1993.

[2] Blake I., Seroussi G., and Smart N., Elliptic
Curves in Cryptography, Cambridge University
Press, New York, 1999.

[3] Crutchley D. A., “Cryptography and Elliptic
Curves,” Master Thesis, Faculty of Mathematics,
University of Southampton, England, May 1999.

[4] Ercegovac M. D., Lang T., and Moreno J. H.,
Introduction to Digital Systems, John Wiley &
Sons, New York, 1999.

[5] Gutub A., and Ibrahim M. K., “High Radix
Parallel Architecture for GF (P) Elliptic Curve
Processor,” in Proceedings of IEEE Conference
on Acoustics, Speech, and Signal Processing
(ICASSP'2003), Hong Kong, pp. 625-628, April
2003.

[6] Hankerson D., Hernandez J., and Menezes A.,
“Software Implementation of Elliptic Curve
Cryptography Over Binary Fields,” in
Proceedings of Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2000),
Massachusetts, August 2000.

[7] Koblitz N., “Elliptic Curve Cryptosystems,”
Mathematics Computing, vol. 48, pp. 203-209,
1987.

[8] Mentor Graphics Co., ASIC Design Kit,
available at: http://www.mentor.com/partners/hep
/AsicDesignKit/dsheet/ami05databook.html.

[9] Michener J. R. and Mohan S. D., “Internet
Watch: Clothing the e-Emperor,” Computer:
Innovative Technology for Computer
Professionals, IEEE Computer Society, vol. 34,
no. 9, pp. 116-118, September 2001.

[10] Miller V., “Use of Elliptic Curves in
Cryptography,” in Proceedings of Advances in
Cryptology (Crypto), pp. 417-426, 1986.

[11] Miyaji A., “Elliptic Curves Over FP Suitable for
Cryptosystems,” in Proceedings of Advances in
Cryptology (AUSCRUPT’92), Australia,
December 1992.

[12] Montgomery P. L., “Modular Multiplication
Without Trail Division,” Mathematics of
Computation, vol. 44, no. 170, pp. 519-521, April
1985.

[13] Naccache D. and M'Raihi D., “Cryptographic
Smart Cards,” IEEE Micro, vol. 16, no. 3, pp. 14-
24, June 1996.

[14] Orlando G. and Paar C., “A Scalable GF (P)
Elliptic Curve Processor Architecture for
Programmable Hardware,” Cryptographic
Hardware and Embedded Systems (CHES 2001),
Paris, France, May 2001.

[15] Ors S. B., Batina L., Preneel B., and Vandewalle,
J., “Hardware Implementation of an Elliptic
Curve Processor Over GF (P),” in Proceedings
of the IEEE International Conference on
Application-Specific Systems, Architectures, and
Processors (ASAP’03), pp. 433-443, June 2003.

[16] Orton G. A., Roy M. P., Scott P. A., Peppard L.
E., and Tavares S. E., “VLSI Implementation of
Public-Key Encryption Algorithms,” in

Fast 160-Bits GF (P) Elliptic Curve Crypto Hardware of High-Radix Scalable Multipliers 349

Proceedings of Advances in Cryptology
(CRYPTO'86), pp. 277-301, August 1986.

[17] Paar C., Fleischmann P., and Soria-Rodriguez P.,
“Fast Arithmetic for Public-Key Algorithms in
Galois Fields with Composite Exponents,” IEEE
Transactions on Computers, vol. 48, no. 10,
October 1999.

[18] Raju G. V. S., and Akbani R., “Elliptic Curve
Cryptosystem and its Applications,” in
Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics,
vol. 2, pp. 1540 - 1543, October 2003.

[19] Rivest R. L., Shamir A., and Adleman L., “A
Method for Obtaining Digital Signatures and
Public-key Cryptosystems,” Communications of
the ACM, vol. 21, no. 2, pp. 120-126, 1978.

[20] Stallings W., Cryptography and Network
Security: Principles and Practice, Prentice Hall,
NJ, 1999.

[21] Stinson D. R., Cryptography: Theory and
Practice, CRC Press, Boca Raton, Florida, 1995.

[22] Tenca A. F., Todorov G., and Koc C. K., “High-
Radix Design of a Scalable Modular Multiplier,”
Cryptographic Hardware and Embedded Systems
(CHES'2001), Paris, France, pp. 185-201, May
2001.

Adnan Abdul-Aziz Gutub is a
faculty member in the Computer
Engineering Department at King
Fahd University of Petroleum and
Minerals (KFUPM), Saudi Arabia.
He received his BSc degree in
electrical engineering in 1995, his

MSc degree in computer engineering in 1998 both
from King Fahd University of Petroleum and Minerals,
and his PhD degree in 2002 from the Department of
Electrical and Computer Engineering at Oregon State
University in cryptographic hardware design. His
research interests include modeling, simulating, and
synthesizing VLSI hardware for computer arithmetic
operations. He worked on designing efficient
integrated circuits for the Montgomery inverse
computation in different finite fields. He has been
awarded the visiting internship for 2 months of
summer 2005 sponsored by British Council at Brunel
University to collaborate with Bio-Inspired Intelligent
System (BIIS) research group in a project to speed-up
a scalable modular inversion hardware architecture.

