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Abstract: This paper introduces several new techniques and algorithms to speed up the elliptic curve digital signature and 
reduce the size of the transited parameters. The basic idea is to use sparse elements for the curve coefficients and the first base 
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40-60 percent, and the public key parameters are reduced about 37-48 percent. 
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1. Introduction 
The main advantage of using the finite group of 
Elliptic Curve (EC) is that its discrete logarithm 
problem is believed to be harder than the discrete 
logarithm problem for the multiplication group of a 
finite field. There is no known sub-exponential 
algorithm that can be applied to the elliptic curve 
discrete logarithm problem. Another advantage that 
makes elliptic curves more attractive is the possibility 
of optimizing the arithmetic operations in the 
underlying field [6]. This has led to appearance of 
several elliptic curve cryptography products such as 
security builder, SSL plus, WTLS pus, TrustPoint 
etc. In addition many companies have purchased 
licenses to use EC codes and embed them in their 
products [4, 5, 7]. 

By using Elliptic Curve Cryptosystem ECC we 
can use smaller key size with the same level of 
cryptographic security for DSA or RSA, whereby we 
will get smaller public key certificates, faster 
implementation, lower power requirements and 
smaller hardware processors [15, 8]. Subsequently 
ECC can be applied to many systems and 
applications [17, 18]. 

Elliptic curve cryptography applications and 
protocols rely on the elliptic curve group operations 
such as adding, doubling and scalar multiplication, 
which will not be feasible unless a suitable elliptic 
curve finite group and efficient underlying finite field 
operations are used. Thus any enhancement in the 
underlying finite field operations will speed up all the 
EC applications [2, 16]. Our approach to enhance the 
operations is the high utilization of the sparse 
elements in GF(2n). Several new algorithms are 
introduced such as selecting random sparse elements 
algorithm, finding sparse base points, compressing 

and decompressing the sparse elements and sparse 
multiplication over a polynomial basis. The new 
algorithms improve the EC in three aspects namely: 
Speed up the curve coefficients multiplications, speed up 
the multiplication of the first base point coordinate and 
reduce the size of the transited parameters. This new 
approach does not reduce the security to the fact that the 
elliptic curves over GF(2n) with sparse coefficients are 
isomorphic to the curves which have coefficients 
selected randomly. Furthermore, although the base 
points are restricted to be sparse; the number of sparse 
base points is still very huge and provides the users with 
rich choices. The experiment shows that the result of this 
improvement varies from one protocol to another based 
on the rate of using the base point, the number of 
transited bits, the key size and the ratio of doubling to 
adding.  

The remainder of this paper is organized as follows. 
Section 2 presents the most efficient elliptic curves 
projective coordinate formulas. In section 3, we 
introduce the algorithms to select and to compress the 
sparse elements. Moreover, we discuss the abundance of 
the sparse points. Section 4 introduces the sparse 
multiplication over polynomial basis. Finally, in section 
5, we show the improvement in elliptic curve digital 
signature by using the suggested approaches.  
 
2. EC Projective Coordinate Operations  

In order to find the sum of two distinct points on the 
elliptic curve E over (GF(2n)) by using affine 
coordinates, one inverse and one multiplication are 
needed, but to double a point one inverse and two 
multiplications are required. Since the implementation of 
elliptic curve operation indicates that the inverse 
operation is still more expensive than a field 
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multiplication, where Hankerson and others show 
that the cost – ratio of the inversion to the 
multiplication over polynomial basis is 1-10 [3, 9, 
10]. Thus, the projective coordinates X, Y and Z on 
the curve y 2 + xy= x 3 + a2 x2 + a6 over GF(2n) are 
used to replace the inverse operation by 
multiplications such that [1]: 

Formula 1: (X1, Y1, 1) + (X2, Y2, Z2)= (X3, Y3, Z3), 
where 
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Formula 1 needs 9 field multiplications and 8 
temporary variables are required. López and Dahab 
introduce a new doubling formula which requires 5 
field multiplications as follows [11-13]: 
 
Formula 2: 2(X1, Y1, Z1 )= (X2, Y2, Z2 ), 
where  
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3. Sparse Elements 
This section introduces algorithms to select random 
curves have sparse coefficients and sparse base 
points. The complexity analysis for the suggested 
algorithms indicates that the time to generate sparse 
elements and base points is relatively ignored. 
Moreover, the reduction of the sparse element length 
is clarified. 
 
3.1. Select Random Sparse Coefficients  
The first step to find a suitable elliptic curve is to 
select random coefficients (a2 and a6) and the 
selection is repeated until a prospective curve is 
found. However, there is no security threat if the 
coefficients are restricted to be sparse in GF(q). 
Moreover the number of generated curves is still very 
huge. Algorithm 1 is suggested to generate random 
curves with sparse coefficients.  
 
Algorithm 1: Generate random sparse coefficients in     
                     GF( q) 
Input: The finite field GF(2n), s (the maximum 

number of ones) 
Output: The sparse elements a2 and a6 in GF(q)  
1.  j ← 0 
2. For  i= 1 to rand (s) 

   v ← rand (n ) 
            If xv= 1 Then 
                i ← i -1  (xv is the vth bit  in the element x) 

     Else xv= 1 
3. If   j= 0 then  
        a2 ← x, 
        j←1, x ← 0  
       and goto step 2 

 Else a6← x    
4. Return a2 and a6.  

 
3.2. The Upper Bound of Sparse Base Points  

This subsection shows that even if the base point is 
restricted to be sparse, the number of generated points is 
still very huge. 
 

Definition: Let G be a point on E (GF(2n)) represented in 
the binary expand. Then the point G is sparse if and only 
if the first coordinate has a few ones so that the number 
of ones is less than 5 percent from the field size. 
Moreover the point G is called sparse with s ones if the 
maximum number of the ones in the first coordinate is s. 
 
Theorem: Let E be any elliptic curve over GF(2n); then 
the upper bound of the sparse points with s ones on E is   
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Proof: Let x be any element in GF(q) and has t ones, 
then x can be represented in 
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different ways. If the maximum number of the ones in 
the x coordinate is s, then x can be represented in  
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different ways. Since the quadratic equation has two 
solutions when x is in GF(q), then the upper bound for 
the number of sparse points with s ones on E is   
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The order of the selected elliptic curve must be prime 

or nearly prime (the curve Ej has a nearly prime order if 
#Ej= rj pj for small integer rj and large prime number pj, 
where j is an integer), then the approximately average 
number (if the test is run over many curves Ej)   of 
sparse base points with s ones is: 
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where d is the average of rj . Thus, this number is large 
enough to give the users rich choices, for example if n= 
160 and s= 7 then the number of sparse base points are 
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nearly 1017. However there is no security threat 
known in case if many users choose the same base 
point.  
 
3.3. Selecting a Sparse Base Point  

Algorithm 2 is suggested to find a random sparse 
base point P, with s ones for any nearly prime elliptic 
curve over GF(2n), where P has a large prime order. 
 
Algorithm 2: Choosing Random sparse base point       

    with s ones. 
Input: An elliptic curve E over GF(q), the curve    

 order rk, and the maximum number of ones s. 
Output: A sparse base point with s ones. 
1. For  i=1 to rand (s) 
2.         v ← rand (n ) 
3.        If xv= 1 Then 
               i ← i -1 (xv is the vth bit in  the element x) 
          Else xv= 1 
4. End For 
5. Find the coordinate y by solving the     
    quadratic equation, if y does not exist   go to       
    step 1 else set y to one solution of the quadratic    
    equation (randomly). 
6.    G← (x ,y) 
7.   P ← k G 
8.   If P= O then go to step 1 
9.   Q ← r G 
10. If Q≠ O then  
                   output “wrong order” and stop 
11. Output G. 

 
  The complexity of the previous algorithm is equal to 
the complexity of standard algorithm to generate 
random base points. 
 
3.4. Compact Sparse Elements Representation 

To utilize the sparse field elements in the real 
communication and implementation; Algorithms 3 
and 4 are introduced to compress and decompress 
any sparse element with s ones in relatively ignored 
time. 
 
Algorithm 3:  Compression of any sparse element in       
                     GF(2n), where    n ≤ 256 
Input: Sparse element x. 
Output:  Compressed representation array C.    
1. m ← 1  
2. For i=1 to n 
          If  xi≠ 1 then continue 

Cm= i 
 m ← m + 1 

3. Return C 
Algorithm 4: Decompression of compact 
representation   

Input: Compressed representation array C with length s. 
Output: Sparse element x 
1. For i=1 to s 

   t← Cm 
          xt ← 1 
2.  Return x 
 

   Since the discrete problem for elliptic curves with field 
size less than 256 is sufficient for the current 
applications and at least for next few years; discussion 
will be restricted to this field size, but it can be extended 
easily to any other field size. Thus each element in the 
array C (which forms the compact representation for a 
sparse element) can be represented in 8 bits, so the size 
of the array C is (8s). Table 1 shows the reduction rate of 
the sparse elements.  
 

Table 1. The reduction rate of the sparse elements. 
 

  
4. Sparse Multiplication Over Polynomial 

Basis 
The field multiplication is the most time consuming 
operation for adding two elliptic curves points 
particularly in the projective coordinate. Therefore this 
section shows the great improvement whenever sparse 
field elements are used over polynomial basis. 

Algorithm 5 [12] is used to find first the polynomial 
multiplication and then the result is reduced by the 
irreducible polynomial f(x). The following notations are 
used; if a(x) is element in GF(2n) then  a(x) is associated 
with the binary vector  a= (an-1, . . . , a2, a1, a0), w is the 
word size , t is the number of  words  that are necessary  
to represent the vector a, thus the array 

A= (A[t-1], . . . , A[2], A[1], A[0]) 
 
where A[h] is the hth  word in the vector a, if 

C= (C[m], . . . , C[1], C[0]) 
 
then the truncated vector  is 

C{ j}= (C[m], . . . , C[ j+1], C[j]) 
 

Algorithm 5: Polynomial multiplications (Right to left). 
Input: The polynomials a(x) and b(x)  in GF(2n).  
Output: c(x)= a(x) . b(x).  
1. C ← 0 
2. For k= 0 to w-1 do 

 For j= 0 to t –1 do 
         If  the k th  bit of A[j] is 1 then 
            add B to C{j} 
 If  k ≠  w-1  then  
     C←  C x 

3. Return c 

Field 
Size (n) s Conventional Compact Reduction 

Rate 
131 6 131 48 63.4 
163 7 163 56 65.7 
191 5 191 40 79.1 
239 5 239 40 83.3 
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The previous algorithm needs w-1 shift operations 
and nearly n/2 addition operations. Algorithm 6 is 
suggested to compute the sparse elements 
multiplication in the polynomial basis representation. 
 
Algorithm 6:  Sparse polynomial multiplications. 
Input: The array A with length s (the  compressed 

representation of a(x) ) and the  polynomial  
b(x)    in GF(2m). 

Output: c(x)= a(x) . b(x).   
1. For i=1 to  s 

 T= b<< (Ai –1) 
  c= c ⊕ T 

2. Return c 
 

    The number of left shift and bit wise additions in 
the previous algorithm is equal to the number of ones 
in the sparse elements. To simplify the calculations, 
assume that the left shift cost is equal to the addition 
operations. Then Table 2 summarize the 
improvement by using sparse multiplication 
algorithm over the general field multiplication in 
algorithm 5 for word size w= 32. 
 
Table 2. Comparison between the multiplications of sparse and 
random field elements in polynomial basis.  
 

Field 
Size (n) 

Algorithm (5) 
#Operations 

Algorithm (6)  
s = 6 

#Operations 

The Cost  
Ratio 

 
131 97 12 8.03 
163 113 12 9.41 
191 127 12 10.58 
211 137 12 11.41 
239 151 12 12.58 

if a2, a6 and the first coordinate of the base point are 
sparse, then formula 1 can be implemented with only 
5 general field multiplications and 4 sparse elements 
multiplication. While formula 2 can be implemented 
with only 3 general field multiplications and 2 sparse 
elements multiplication.  

 
5. The Improvement in EC Digital 

Signature 
The digital signature is an important algorithm that 
relies on public key technology, therefore any 
enhancement in the signature generation or signature 
verification will have impact on the e-commerce, e-
payments and other applications. The curve and base 
point generation is the first step to implement a 
digital signature based on elliptic curve 
cryptography; the second is generating the keys 
which are used to sign a message and verify the 
signature. These steps can be described as follows [3, 
14]: 

EC and Base Point Generation: The first party A 
does the following: 

1. Select a suitable elliptic curve E  defined over GF(q),  
2. Select a base point P∈ E(GF(q)) of order l , where l is 

the elliptic curve order. 
 

EC Key Generation:   

1. Select an integer t in the interval [1, l - 1]. 
2. Compute the point Q= t P.  
A's public key is (a2, a6, P, l, Q) and A's private key is t. 
 
EC Signature Generation: To sign a message m, A does 
the following: 

1. Select an integer k in the interval [1, l - 1]. 
2. Compute G= kP= (x1, y1).  
3. Compute the first signature component r= x1 mod l. 

(Here x1 is the first coordinate in the point G.) If         
r= 0, go to step 1. 

4. Compute k -1 mod l and e= h(m). 
5. Compute s= k -l {e + t r} mod l, where h is any Secure 

Hash   Algorithm. 
6. If s= 0, then go to step 1. 
The signature for the message m is the pair of integers 
(r, s). 
 
EC   Signature Verification: To verify A signature (r, s): 

1.  Obtain a copy of A's public key (a2, a6, P, l, Q). 
2.  Verify that r and s are integers in the interval [1, 

l - 1]. 
3.  Compute w= s-1 mod l and f = h(m). 
4.  Compute u1= f w mod l. 
5.  Compute u2= r w mod l. 
6.  Compute u1P + u2Q= (x0, y0) and v= x0 mod l. 
7. Accept the signature if and only if v= r. 
If a2, a6 and the first coordinate of the base point P are 
sparse, then by using the suggested approach and 
algorithms; the number of public key bits will be 
reduced to (24s + 2n + 2) from  (5n +2) for the standard 
setting. Subsequently reducing the necessary time for 
sending and receiving the EC digital signatures. Table 3 
shows the percentage of the bits reduction in the public 
digital signature parameters. 
 

Table 3. The reduction rate of the bits by using the new approach. 
 

Field 
Size (n) s PK 

Standard 
PK 

Compact 
Reduction 

Rate 
131 6 657 408 37.8 
163 7 817 496 39.2 
191 5 957 504 47.3 
211 5 1057 544 48.5 
239 6 1197 624 47.8 

 
Assume that the curve order l, t, k, u1 and u2 are equal 

to the field size n, d is the ratio of doubling to adding. If 
the Formula 1 is used for adding and Formula 2 is used 
for doubling, then number of multiplications over 
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GF(2n) for the signature generation and key 
generation are given by the equation 
 

Number of Multiplications= 5*(The number of 
doubling)+9*(The number of adding) 
 

So 
               #mult=5n+9(n/d)= n (5+9/d)                   (1) 
 

and the verification: 
                      #mult= n(10 +  18/d )                        (2) 
 

while the number of multiplications for the signature 
generation and key generation by using the new 
approach are reduced to 

#mult= n(3 general field + 2 sparse +5/d general      
                field +4/d sparse                                      (3) 
 

and the verification process are reduced to  
 

#mult= n(6 general field + 4 sparse +13/d general    
            field +5/d sparse )                                    (4) 

 
Thus the improvement in digital signature is  

(1-multiplication cost of (1)/ cost of (3)) * 100 
 
and the improvement in the verification is  

(1-multiplication cost of (2)/ cost of (4)) * 100 
 

  By using the data in Table 2 we can consider that 
the sparse multiplication is approximately 10 times 
faster than the general field multiplication, therefore 
the improvement in the key generation, the signature 
generation, and the verification process are shown in 
Table 4. 
 
Table 4. The improvement in the digital signature by using the 
new approach. 
 

 
6. Conclusion  
To satisfy efficient computations and 
communications, several algorithms are introduced 
such as selecting random sparse elements algorithm, 
finding sparse base points, compressing and 
decompressing the sparse elements, sparse 
multiplication over polynomial basis. The new 
approaches and algorithms lead to enhance the digital 
signature implementation about 40-60 percent, high 
reduction in the public key parameters by 37-48 
percent and did not sacrifice in the elliptic curve 
cryptography security. Therefore, the elliptic curve 
application as e-cash and e-commerce can be 
implemented with better performance using the 
suggested approach. 
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