
The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004 203

An Improved Implementation of Elliptic Curve

Digital Signature by Using Sparse Elements
Essam Al-Daoud

Computer Science Department, Zarka Private University, Jordan

Abstract: This paper introduces several new techniques and algorithms to speed up the elliptic curve digital signature and
reduce the size of the transited parameters. The basic idea is to use sparse elements for the curve coefficients and the first base
point coordinate. The implementation analysis shows that the addition formula calculations are improved about 40 percent.
The sparse elements are introduced with a compact representation, thus the digital signature calculations are speeded up about
40-60 percent, and the public key parameters are reduced about 37-48 percent.

Keywords: Elliptic curve cryptography, projective coordinate, sparse elements, elliptic curve digital signature.

Received July 14, 2003; accepted September 4, 2003

1. Introduction
The main advantage of using the finite group of
Elliptic Curve (EC) is that its discrete logarithm
problem is believed to be harder than the discrete
logarithm problem for the multiplication group of a
finite field. There is no known sub-exponential
algorithm that can be applied to the elliptic curve
discrete logarithm problem. Another advantage that
makes elliptic curves more attractive is the possibility
of optimizing the arithmetic operations in the
underlying field [6]. This has led to appearance of
several elliptic curve cryptography products such as
security builder, SSL plus, WTLS pus, TrustPoint
etc. In addition many companies have purchased
licenses to use EC codes and embed them in their
products [4, 5, 7].

By using Elliptic Curve Cryptosystem ECC we
can use smaller key size with the same level of
cryptographic security for DSA or RSA, whereby we
will get smaller public key certificates, faster
implementation, lower power requirements and
smaller hardware processors [15, 8]. Subsequently
ECC can be applied to many systems and
applications [17, 18].

Elliptic curve cryptography applications and
protocols rely on the elliptic curve group operations
such as adding, doubling and scalar multiplication,
which will not be feasible unless a suitable elliptic
curve finite group and efficient underlying finite field
operations are used. Thus any enhancement in the
underlying finite field operations will speed up all the
EC applications [2, 16]. Our approach to enhance the
operations is the high utilization of the sparse
elements in GF(2n). Several new algorithms are
introduced such as selecting random sparse elements
algorithm, finding sparse base points, compressing

and decompressing the sparse elements and sparse
multiplication over a polynomial basis. The new
algorithms improve the EC in three aspects namely:
Speed up the curve coefficients multiplications, speed up
the multiplication of the first base point coordinate and
reduce the size of the transited parameters. This new
approach does not reduce the security to the fact that the
elliptic curves over GF(2n) with sparse coefficients are
isomorphic to the curves which have coefficients
selected randomly. Furthermore, although the base
points are restricted to be sparse; the number of sparse
base points is still very huge and provides the users with
rich choices. The experiment shows that the result of this
improvement varies from one protocol to another based
on the rate of using the base point, the number of
transited bits, the key size and the ratio of doubling to
adding.

The remainder of this paper is organized as follows.
Section 2 presents the most efficient elliptic curves
projective coordinate formulas. In section 3, we
introduce the algorithms to select and to compress the
sparse elements. Moreover, we discuss the abundance of
the sparse points. Section 4 introduces the sparse
multiplication over polynomial basis. Finally, in section
5, we show the improvement in elliptic curve digital
signature by using the suggested approaches.

2. EC Projective Coordinate Operations

In order to find the sum of two distinct points on the
elliptic curve E over (GF(2n)) by using affine
coordinates, one inverse and one multiplication are
needed, but to double a point one inverse and two
multiplications are required. Since the implementation of
elliptic curve operation indicates that the inverse
operation is still more expensive than a field

204 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

multiplication, where Hankerson and others show
that the cost – ratio of the inversion to the
multiplication over polynomial basis is 1-10 [3, 9,
10]. Thus, the projective coordinates X, Y and Z on
the curve y 2 + xy= x 3 + a2 x2 + a6 over GF(2n) are
used to replace the inverse operation by
multiplications such that [1]:

Formula 1: (X1, Y1, 1) + (X2, Y2, Z2)= (X3, Y3, Z3),
where

21
2
2 YYZU +=

212 XXZS += , SZT 2= , 2
3 TZ =

13XZV = ,)(2
22

3 TaSUTUX +++=

CZZTUXVY 2
3333))((+++=

Formula 1 needs 9 field multiplications and 8
temporary variables are required. López and Dahab
introduce a new doubling formula which requires 5
field multiplications as follows [11-13]:

Formula 2: 2(X1, Y1, Z1)= (X2, Y2, Z2),
where

2
1

2
13 XZZ =

4
16

4
13 ZaXX +=

)(4
16

2
13233

4
163 ZaYZaXZZaY +++=

3. Sparse Elements
This section introduces algorithms to select random
curves have sparse coefficients and sparse base
points. The complexity analysis for the suggested
algorithms indicates that the time to generate sparse
elements and base points is relatively ignored.
Moreover, the reduction of the sparse element length
is clarified.

3.1. Select Random Sparse Coefficients
The first step to find a suitable elliptic curve is to
select random coefficients (a2 and a6) and the
selection is repeated until a prospective curve is
found. However, there is no security threat if the
coefficients are restricted to be sparse in GF(q).
Moreover the number of generated curves is still very
huge. Algorithm 1 is suggested to generate random
curves with sparse coefficients.

Algorithm 1: Generate random sparse coefficients in
 GF(q)
Input: The finite field GF(2n), s (the maximum

number of ones)
Output: The sparse elements a2 and a6 in GF(q)
1. j ← 0
2. For i= 1 to rand (s)

 v ← rand (n)
 If xv= 1 Then
 i ← i -1 (xv is the vth bit in the element x)

 Else xv= 1
3. If j= 0 then
 a2 ← x,
 j←1, x ← 0
 and goto step 2

 Else a6← x
4. Return a2 and a6.

3.2. The Upper Bound of Sparse Base Points

This subsection shows that even if the base point is
restricted to be sparse, the number of generated points is
still very huge.

Definition: Let G be a point on E (GF(2n)) represented in
the binary expand. Then the point G is sparse if and only
if the first coordinate has a few ones so that the number
of ones is less than 5 percent from the field size.
Moreover the point G is called sparse with s ones if the
maximum number of the ones in the first coordinate is s.

Theorem: Let E be any elliptic curve over GF(2n); then
the upper bound of the sparse points with s ones on E is

∑
=

−

=




 ∏ −

s

t

t

i
tin

1

1

0
!/)(2

Proof: Let x be any element in GF(q) and has t ones,
then x can be represented in

)!(!
!

tnt
n

t
n

−
=









 !/)(
1

0

tin
t

i










−= ∏

−

=

different ways. If the maximum number of the ones in
the x coordinate is s, then x can be represented in

∑
=

−

=




 ∏ −

s

t

t

i
tin

1

1

0
!/)(

different ways. Since the quadratic equation has two
solutions when x is in GF(q), then the upper bound for
the number of sparse points with s ones on E is

∑
=

−

=




 ∏ −

s

t

t

i
tin

1

1

0
!/)(2

The order of the selected elliptic curve must be prime

or nearly prime (the curve Ej has a nearly prime order if
#Ej= rj pj for small integer rj and large prime number pj,
where j is an integer), then the approximately average
number (if the test is run over many curves Ej) of
sparse base points with s ones is:

∑
=

−

=






 ∏ −

s

t

t

i
tdin

1

1

0
)!(/)(

where d is the average of rj . Thus, this number is large
enough to give the users rich choices, for example if n=
160 and s= 7 then the number of sparse base points are

An Improved Implementation of Elliptic Curve Digital Signature by Using Sparse Elements 205

nearly 1017. However there is no security threat
known in case if many users choose the same base
point.

3.3. Selecting a Sparse Base Point

Algorithm 2 is suggested to find a random sparse
base point P, with s ones for any nearly prime elliptic
curve over GF(2n), where P has a large prime order.

Algorithm 2: Choosing Random sparse base point

 with s ones.
Input: An elliptic curve E over GF(q), the curve

 order rk, and the maximum number of ones s.
Output: A sparse base point with s ones.
1. For i=1 to rand (s)
2. v ← rand (n)
3. If xv= 1 Then
 i ← i -1 (xv is the vth bit in the element x)
 Else xv= 1
4. End For
5. Find the coordinate y by solving the
 quadratic equation, if y does not exist go to
 step 1 else set y to one solution of the quadratic
 equation (randomly).
6. G← (x ,y)
7. P ← k G
8. If P= O then go to step 1
9. Q ← r G
10. If Q≠ O then
 output “wrong order” and stop
11. Output G.

 The complexity of the previous algorithm is equal to
the complexity of standard algorithm to generate
random base points.

3.4. Compact Sparse Elements Representation

To utilize the sparse field elements in the real
communication and implementation; Algorithms 3
and 4 are introduced to compress and decompress
any sparse element with s ones in relatively ignored
time.

Algorithm 3: Compression of any sparse element in
 GF(2n), where n ≤ 256
Input: Sparse element x.
Output: Compressed representation array C.
1. m ← 1
2. For i=1 to n
 If xi≠ 1 then continue

Cm= i
 m ← m + 1

3. Return C
Algorithm 4: Decompression of compact
representation

Input: Compressed representation array C with length s.
Output: Sparse element x
1. For i=1 to s

 t← Cm
 xt ← 1
2. Return x

 Since the discrete problem for elliptic curves with field
size less than 256 is sufficient for the current
applications and at least for next few years; discussion
will be restricted to this field size, but it can be extended
easily to any other field size. Thus each element in the
array C (which forms the compact representation for a
sparse element) can be represented in 8 bits, so the size
of the array C is (8s). Table 1 shows the reduction rate of
the sparse elements.

Table 1. The reduction rate of the sparse elements.

4. Sparse Multiplication Over Polynomial

Basis
The field multiplication is the most time consuming
operation for adding two elliptic curves points
particularly in the projective coordinate. Therefore this
section shows the great improvement whenever sparse
field elements are used over polynomial basis.

Algorithm 5 [12] is used to find first the polynomial
multiplication and then the result is reduced by the
irreducible polynomial f(x). The following notations are
used; if a(x) is element in GF(2n) then a(x) is associated
with the binary vector a= (an-1, . . . , a2, a1, a0), w is the
word size , t is the number of words that are necessary
to represent the vector a, thus the array

A= (A[t-1], . . . , A[2], A[1], A[0])

where A[h] is the hth word in the vector a, if

C= (C[m], . . . , C[1], C[0])

then the truncated vector is

C{ j}= (C[m], . . . , C[j+1], C[j])

Algorithm 5: Polynomial multiplications (Right to left).
Input: The polynomials a(x) and b(x) in GF(2n).
Output: c(x)= a(x) . b(x).
1. C ← 0
2. For k= 0 to w-1 do

 For j= 0 to t –1 do
 If the k th bit of A[j] is 1 then
 add B to C{j}
 If k ≠ w-1 then
 C← C x

3. Return c

Field
Size (n) s Conventional Compact Reduction

Rate
131 6 131 48 63.4
163 7 163 56 65.7
191 5 191 40 79.1
239 5 239 40 83.3

206 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

The previous algorithm needs w-1 shift operations
and nearly n/2 addition operations. Algorithm 6 is
suggested to compute the sparse elements
multiplication in the polynomial basis representation.

Algorithm 6: Sparse polynomial multiplications.
Input: The array A with length s (the compressed

representation of a(x)) and the polynomial
b(x) in GF(2m).

Output: c(x)= a(x) . b(x).
1. For i=1 to s

 T= b<< (Ai –1)
 c= c ⊕ T

2. Return c

 The number of left shift and bit wise additions in
the previous algorithm is equal to the number of ones
in the sparse elements. To simplify the calculations,
assume that the left shift cost is equal to the addition
operations. Then Table 2 summarize the
improvement by using sparse multiplication
algorithm over the general field multiplication in
algorithm 5 for word size w= 32.

Table 2. Comparison between the multiplications of sparse and
random field elements in polynomial basis.

Field
Size (n)

Algorithm (5)
#Operations

Algorithm (6)
s = 6

#Operations

The Cost
Ratio

131 97 12 8.03
163 113 12 9.41
191 127 12 10.58
211 137 12 11.41
239 151 12 12.58

if a2, a6 and the first coordinate of the base point are
sparse, then formula 1 can be implemented with only
5 general field multiplications and 4 sparse elements
multiplication. While formula 2 can be implemented
with only 3 general field multiplications and 2 sparse
elements multiplication.

5. The Improvement in EC Digital

Signature
The digital signature is an important algorithm that
relies on public key technology, therefore any
enhancement in the signature generation or signature
verification will have impact on the e-commerce, e-
payments and other applications. The curve and base
point generation is the first step to implement a
digital signature based on elliptic curve
cryptography; the second is generating the keys
which are used to sign a message and verify the
signature. These steps can be described as follows [3,
14]:

EC and Base Point Generation: The first party A
does the following:

1. Select a suitable elliptic curve E defined over GF(q),
2. Select a base point P∈ E(GF(q)) of order l , where l is

the elliptic curve order.

EC Key Generation:

1. Select an integer t in the interval [1, l - 1].
2. Compute the point Q= t P.
A's public key is (a2, a6, P, l, Q) and A's private key is t.

EC Signature Generation: To sign a message m, A does
the following:

1. Select an integer k in the interval [1, l - 1].
2. Compute G= kP= (x1, y1).
3. Compute the first signature component r= x1 mod l.

(Here x1 is the first coordinate in the point G.) If
r= 0, go to step 1.

4. Compute k -1 mod l and e= h(m).
5. Compute s= k -l {e + t r} mod l, where h is any Secure

Hash Algorithm.
6. If s= 0, then go to step 1.
The signature for the message m is the pair of integers
(r, s).

EC Signature Verification: To verify A signature (r, s):

1. Obtain a copy of A's public key (a2, a6, P, l, Q).
2. Verify that r and s are integers in the interval [1,

l - 1].
3. Compute w= s-1 mod l and f = h(m).
4. Compute u1= f w mod l.
5. Compute u2= r w mod l.
6. Compute u1P + u2Q= (x0, y0) and v= x0 mod l.
7. Accept the signature if and only if v= r.
If a2, a6 and the first coordinate of the base point P are
sparse, then by using the suggested approach and
algorithms; the number of public key bits will be
reduced to (24s + 2n + 2) from (5n +2) for the standard
setting. Subsequently reducing the necessary time for
sending and receiving the EC digital signatures. Table 3
shows the percentage of the bits reduction in the public
digital signature parameters.

Table 3. The reduction rate of the bits by using the new approach.

Field
Size (n) s PK

Standard
PK

Compact
Reduction

Rate
131 6 657 408 37.8
163 7 817 496 39.2
191 5 957 504 47.3
211 5 1057 544 48.5
239 6 1197 624 47.8

Assume that the curve order l, t, k, u1 and u2 are equal

to the field size n, d is the ratio of doubling to adding. If
the Formula 1 is used for adding and Formula 2 is used
for doubling, then number of multiplications over

An Improved Implementation of Elliptic Curve Digital Signature by Using Sparse Elements 207

GF(2n) for the signature generation and key
generation are given by the equation

Number of Multiplications= 5*(The number of
doubling)+9*(The number of adding)

So
 #mult=5n+9(n/d)= n (5+9/d) (1)

and the verification:
 #mult= n(10 + 18/d) (2)

while the number of multiplications for the signature
generation and key generation by using the new
approach are reduced to

#mult= n(3 general field + 2 sparse +5/d general
 field +4/d sparse (3)

and the verification process are reduced to

#mult= n(6 general field + 4 sparse +13/d general
 field +5/d sparse) (4)

Thus the improvement in digital signature is

(1-multiplication cost of (1)/ cost of (3)) * 100

and the improvement in the verification is

(1-multiplication cost of (2)/ cost of (4)) * 100

 By using the data in Table 2 we can consider that
the sparse multiplication is approximately 10 times
faster than the general field multiplication, therefore
the improvement in the key generation, the signature
generation, and the verification process are shown in
Table 4.

Table 4. The improvement in the digital signature by using the
new approach.

6. Conclusion
To satisfy efficient computations and
communications, several algorithms are introduced
such as selecting random sparse elements algorithm,
finding sparse base points, compressing and
decompressing the sparse elements, sparse
multiplication over polynomial basis. The new
approaches and algorithms lead to enhance the digital
signature implementation about 40-60 percent, high
reduction in the public key parameters by 37-48
percent and did not sacrifice in the elliptic curve
cryptography security. Therefore, the elliptic curve
application as e-cash and e-commerce can be
implemented with better performance using the
suggested approach.

References
[1] Al-Daoud E. and Ramlan M., “A New Addition

Formula for Elliptic Curves Over GF(2n),” IEEE
Transactions on Computers, vol. 51, no. 8, pp.
972-975, August 2002.

[2] Al-Daoud E. and Ramlan M., “Elliptic Curve
Arithmetic Operations Over GF(2n) and GF(P) for
Cryptosystems Purposes,” in Proceedings of the
International Conference on Mathematics and its
Applications in the New Millennium, pp. 381-388,
2000.

[3] Blake I. F., Seroussi G., and Smart N. P., Elliptic
Curve in Cryptography, University Press, London,
Cambridge, 1999.

[4] Certicom, http://www.certicom.com, accessed on
March 5, 2003.

[5] Gupta V., Gupta S., and Sheueling C.,
“Performance Analysis of Elliptic Curve
Cryptography for SSL,” in Proceedings of ACM
Workshop on Wireless Security , Atlanta, Georgia ,
2002.

[6] Gura N., Eberle H., and Shantz S. H., “Generic
Implementations of Elliptic Curve Cryptography
Using Partial Reduction,” in Proceedings of 9th
ACM Conference on Computers and
Communications Security, Washington DC, 2002.

[7] Gura N., Shantz S. C., Eberle H., Finchelstein D.,
Gupta S., Gupta V., and Stebila D., “An End-to-
End Systems Approach to Elliptic Curve
Cryptography,” in Proceedings of CHES'2002
Workshop on Cryptographic Hardware and
Embedded Systems, Lecture Notes in Computer
Science, Springer-Verlag, Redwood City,
California, 2002.

[8] Ha J. S., Kim Y. H., and Lee K. Y., “Compact
Implementation of Elliptic Curve Cryptography
System Using a FPGA,” in Proceedings of the 9th
Korean Conference on Semiconductors, pp. 813-
814, 2002.

[9] Hankerson D., López J. and Menezes A. J.,
“Software Implementation of Elliptic Curve
Cryptography over Binary Fields,” in Proceedings
of CHES'2000, LNCS 1965, pp. 1-24, 2000.

[10] IEEE P1363 Draft, “Standard Specifications for
Public Key Cryptography,” http://grouper.ieee.
org/groups/1363/, version D13, 1999.

[11] King B., “An Improved Implementation of Elliptic
Curves Over GF(2) When Using Projective Point
Arithmetic ,” in Proceedings of 8th Annual
International Workshop on Selected Areas in
Cryptography (SAC'2001), pp. 134-150, 2001.

[12] López J. and Dahab R., “High-Speed Software
Multiplication in GF(2m),” IC Technical Reports,
IC-00-09, Institute of Computing, University of
Campinas, 2000.

[13] López J. and Dahab R., “Improved Algorithms for
Elliptic Curve Arithmetic in GF(2n),” in

Field
Size (n)

Doubling/
Adding

(d)

Signature
Generation

Improvement %

Verification
Process

Improvement %
163 2/1 55.73 40.74

163 3/1 60.00 46.78

191 2/1 55.73 40.74

191 3/1 60.00 46.78

211 2/1 55.73 40.74

208 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

Proceedings of 5th Annual International
Workshop on Selected Areas in Cryptography
(SAC'98), pp. 201-212, 1998.

[14] Menezes A. J., Oorschot P. C., and Vanstone S.
A., Handbook of Applied Cryptography, CRC
Press, Boca Raton, 1996.

[15] Paar C., “Implementation Options for Finite
Field Arithmetic for Elliptic Curve
Cryptosystems,” in Proceedings of Invited
Presentation at the 3rd Workshop on Elliptic
Curve Cryptography (ECC'99), University of
Waterloo, Waterloo, Canada, pp. 1-3, 1999.

[16] Rosing M., Implementing Elliptic Curve
Cryptography, Manning, Greenwich, 1999.

[17] Sklavos N. and Koufopavlou O., “Mobile
Communications World: Security
Implementations Aspects- A State of the Art,”
Computer Science Journal of Moldova, Institute
of Mathematics and Computer Science, vol. 31,
no. 2, 2003.

[18] Weimerskirch A., Paar C., and Shantz C. S.,
“Elliptic Curve Cryptography on a Palm OS
Device,” in Proceedings of the 6th Australasian
Conference on Information Security and
Privacy (ACISP'2001), LNCS 2119, Macquarie
University, Sydney, Australia, pp. 502-514,
2001.

Essam Al-Daoud graduated from
Mu’tah University in 1991. He
continued his master study at Al Al-
Bayt University majoring in
numerical analysis. He recieved his
PhD from University Putra Malaysia .
His research interests are namely

sparse matrices and cryptosystems.

