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1. Introduction 

Prisoner’s Dilemma (PD) is a symmetric matrix game 
with a transparent payoff matrix, where both players’ 
can act simultaneously without knowing the other’s 
actions. As a player, your ultimate goal is to achieve 
the highest score against other opponents. In game 
theory, this is possible by finding the best path which 
leads to the highest score [14]. There is one-shot 
version of the PD when the rational player is faced 
with playing a single game. Therefore, it is not very 
interesting to play that since most of the real life 
applications of one-shot PD are limited. Also, the 
dominant mutual defection strategy relies on the fact 
that it is a one-shot game, with no future. While if the 
player’s met and played several games in a row then 
the game called Iterated PD (IPD). 

The key to the IPD is that two player’s may play 
against each other several times. This allows players to 
generate strategies based on previous interactions. 
Therefore, a player’s move has a considerable effect on 
future opponent’s behavior. The consequences of IPD 
results in eliminating the single dominant strategy of 
mutual defection as player’s use more complex 
strategies based on game histories in order to maximize 
the payoffs they receive.  

The Iterated N-Player PD (INPPD) is more realistic 
game in modeling real-life problems. The importance 
of INPPD is that it completely displays the problem of 
social dilemma which is normally happen in a 
collective action. INPPD has various applications 
where individual’s defections at the expense of others 
lead to overall less desirable outcomes. Therefore, in 
this research we will consider the INPPD in modeling 
the player’s behaviors. 

One way in modeling the player’s behavior is by 

utilizing the power of adaptive systems. Adaptive 

systems  have successfully obtained the attention in the  

 
last few decades due to their suitability in modeling 

several complex systems. In typical self-learning 

systems, a self-operating machine is known by an 

Automaton. The automaton consists of sequence of 

instructions that are designed to achieve a specific 

goal. The behavior of a given automaton can be 

controlled by a pre-determined set of rules or it can 

adopt new behavior based on the environment in which 

it operates.  

The adaptive behaviors are strongly affected by the 

learning process. Thus, the adaptive automaton adapts 

to the responses from the environment and then 

attempts to learn the best action from a set of possible 

actions that are offered by the environment. Based on 

that, we intended to utilize the concept of adaptive 

behaviors to encourage player’s to develop new 

behavior which tends to be more cooperative. 

The rest of the paper is organized as follows: 

Section 2 discusses INPPD and the existing techniques 

that are used for representing the player’s strategies 

while section 3 introduces the new adaptive automata-

based model.  Section 4 discusses the results obtained 

by the intelligent model while section 5 gives 

concluding remarks on our work. 

 

2. Background 

INPPD is used for finding and building different 
models which are related to altruism, stable 
cooperation, co-evolutionary learning, community 
structure and etc., [2, 3, 10, 11, 17]. INPPD is 
formulated by the following two statements [15, 16]: 
Regardless of what the other player’s do, each player 
receives a higher payoff for defecting behavior than for 
cooperating behavior; all player’s receive a lower 
payoff if all defect than if all cooperate.  
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As in regular I2PD, each INPPD player should 

choose either to Cooperate (C) or to Defect (D). The 

payoff of a player is a function of the number of 

existing cooperators (i). Let ci and di (for all player’s 

where i= 0, 1, ... , n-1) be the payoff of a given player 

under consideration if it cooperates and defects, 

respectively. In other words, for a particular player p 

who is under the consideration, there should be 

cooperators and n-i-1 defectors. The player p will 

receive ci or di when it cooperates or defects, 

respectively. The player needs not know the number of 

cooperators and defectors for computing the payoff. 

Obviously, INPPD depends on rewarding or 

punishing the player’s based on their actions. 

Therefore, the payoff matrix which asses the player’s 

actions is crucial in determining the minimum coalition 

size in INPPD game [9].  

In Figure 1, a cooperative coalition makes sense 

only when the payoff is no worse than all defection. In 

other words, we need at least M cooperators to form a 

coalition. If M is larger than one half of the total 

number of player’s, a cooperative coalition cannot 

emerge in the game. If M is smaller than one half of 

the total number of the player’s, a cooperative coalition 

may emerge with respect to the number of player’s in 

the game and the used payoff function [13]. 

              

Figure 1. Minimum coalition size M, payoff lines for defectors and 

cooperators as a function of the fraction of cooperators for INPPD. 

The resulting dynamic tends to decrease the number 
of cooperators within a group. The deficient outcome 
of PD inheres the fact that the payoff of defectors when 
there are a minimum number of cooperators (point A) 
is lower than the payoff of cooperators when there are 
a maximum number of cooperators (point B) [4]. Thus, 
even though for a given state of the system an 
individual benefits more by defection than cooperation, 
still cooperators in a group of cooperators get more 
benefit than defectors in a group of defectors. 

Generally, the actions of each player are evaluated 

using the same payoff function and they can choose 

either to cooperate or defect. The INPPD payoff matrix 

is presented in Table 1. The columns and rows refer to 

the number of cooperators and choices that a given 

player can make, respectively.  

Table 1. Payoff matrix of INPPD. 

  No. of Cooperators Among the Remaining n-1 Player’s 

  0 1 2 … n-1 

Player 

A 

Cooperate c0 c1 c2  cn-1 

Defect d0 d1 d2  dn-1 

3. Adaptive Automata 

An automaton is a self-operating machine. The output 

of one automaton is a combination between the 

consequences of the current input and the history of the 

machine’s previous inputs. An automaton is designed 

to automatically follow a predetermined sequence of 

operations. Figure 2 illustrates the concept of 

automaton, where the possible states are presented by 

S1, S2, S3, S4 and S5. 

 

Figure 2. The structure of automata. 

An adaptive automaton consists of a set of states, a 

finite non-empty alphabet, initial state, set of final 

states and a transition function. The transition function 

is composed of two transitions levels: Internal and 

external. The internal transitions are similar to those in 

finite-state automata. On the other hand, the external 

transitions are responsible for the calling and returning 

scheme. In each transition of an adaptive automaton, 

the current state and the current input symbol of the 

automaton determine a set of possible transitions to be 

applied. Mathematically [12] adaptive automata can be 

defined as a 10-tuple R as follows: 

             R=(S; α; I0; F; δ; U; Г; H; Q; ∆)                     (1) 

Where the tuples of R are classified into the following 

categories: 

1. State Tuples: this category includes tuples S, I0 and 

F, such that: 

• S: Is a set of states. 

• I0: Is the initial state of the automaton. 

• F: Is the final (acceptance) state. 

2. Input Tuples: This category includes tuples α and Г, 

such that: 

• α: Is a set of input symbols. 

• Г: Is a set of parameters and variables. 

3. Transition Tuples: This category includes tuples δ, 

U, H, Q and ∆, such that: 

• δ: Is the transition relation, where this relation 

takes two elements: an element from U and a set 

of mapped parameters from Q.    

• U: Is a set of adaptive function labels. 

• H: Is a set of generators.  

• Q: Is used for mapping parameters, variables and 

generators to U. 

• ∆: Is a set of adaptive actions {+, -, ?}. 

Each adaptive action consists of the type and the 

transition of the adaptive action. The action type can 

S1 

S2 

S4 

S3 

S5 

M 

C 

Payoff of Individual Defector (UD) 

 

Fraction of Cooperators (f c) 

       Payoff of Individual Cooperator (UC) 

B 
A 
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be either a query, remove or insert actions, represented 

by ?, - and + respectively. Adaptive actions are 

formulated as calls to adaptive functions with a set of 

parameters. These actions describe the modifications 

which should be applied to the adaptive automaton 

whenever they are called. Technically, simple finite 

automaton can be turned into an adaptive automaton by 

allowing its rules to change dynamically. 

In order for adaptive automata to do self-

modification, adaptive acts adhered to their state-

transition rules are activated whenever the transition is 

used. Adaptive mechanism can be defined as adaptive 

actions which change the behavior of adaptive 

automata by modifying the set of rules defining it. The 

simple notation for representing adaptive automata 

should have some features such as, being, at least 

compact, simple, expressive, unambiguous, readable 

and easy to learn, understand and maintain. 

The work presented in [7] has paid attention to 

INPPD. An evaluative probabilistic automaton was 

created for strategy modeling. It has been shown that 

genetic automata are well-adapted to model adaptive 

strategies. As a result, we noticed that modeling the 

player behavior needs some adaptive attributes. The 

computable models related to genetic automata are 

good tools to model such adaptive strategy. In [6], the 

authors used genetic algorithms to generate adaptive 

behaviors to be applied for modeling an adaptive 

strategy for the PD. Generally, this model is found 

efficient in generating efficient strategies in complex 

environments. The main limitation of the above works 

is that they support limited number of INPPD player’s. 

Another modeling scheme was presented in [18]. 

This scheme has formed the collection of automata in a 

tree-like structure. The modification of action 

possibility continued at different levels according to  

the reward signs provided for all hierarchical levels. 

This scheme is found not efficient in handling large 

number of player’s. 
The work presented in [1] has focused on the 

models which can be used for simulating INPPD. The 
work showed how existing models and algorithms, in 
game theory, can be used with adaptive automata for 
representing the behaviors of player’s. The dynamical 
and adaptive properties can be described in term of 
specific operators based on genetic algorithms. In 
addition, the work showed that genetic operators on 
probabilistic automata enable the adaptive behavior to 
be modeled for PD strategies. 

However, finite automata are a particular case of 
adaptive automata. If the automata have no rules 
associating adaptive functions to transitions, the model 
can be reduced to finite automata. This characteristic is 
considered important to use adaptive automata 
naturally where finite automata are required. On the 
other hand, adaptive automata have a unique 
computational power [8]. Thus, strategies presented by 
adaptive automata may show more complex behaviors 
than the ones described by finite automata. 

In the next section, we introduce our new adaptive 

automata-based model that is composed of multiple 

automata distributed over different levels through m 

tournaments. 

 

4. The Adaptive Automata-based Model 

In this model we have developed a new component 

Intelligent Decision System (IDS) which is able to 

represent complex strategies regardless the number of 

player’s. The IDS is an intelligent component operated 

by one random stage and three levels of adaptive 

automata that are responsible for representing the 

player’s strategies. IDS divide the total number of 

tournaments into four main stages, where the first stage 

(r1% of the total number of tournaments) allows the 

player’s to play their actions randomly. The second 

stage is activated in the second r2% of the total number 

of tournaments. Consequently, the third and fourth 

stages are activated in the third r3% and fourth r4% of 

the tournaments, respectively. 

In the second stage, an adaptive automaton is 

designed to help each player to get some information 

about the other player’s. Technically, the second stage 

of IDS encourages each player to balance between the 

cooperation and defection behaviors. In other words, 

the player’s will be cautious to be generously 

cooperative unless some cooperation patterns among 

the player’s are detected. Figure 3 represents the 

design of the automaton that will be activated in the 

second stage of IDS. 

 

 

       t1:TCr×TCrplayer)>((n/2)×r) 

 

INS(C,[ (TCr×TCrplayer)<( (n/2)×r)], D) 
 

 

  t2:TCr×TCrplayer)≤((n/2)×r) 
 

t3:TCc×TCrplayer)≥((n/2)×r) 
 

Figure 3. Adaptive automaton activated in stage 2. 

Note that, the above automaton is associated with a 

set of parameters and one adaptive function INS. The 

function INS is responsible for adding a new transition 

from state C to state D when t1 is invoked. Adding the 

new transition is responsible for forcing the player to 

defect if the defection ratio among the other player’s 

(including the player itself) in the population is 

dominating as shown by the condition of transition 

[(TCr×TCrplayer)< ((n/2)×r)]. 

In term of parameters, the adaptive automaton 

above consists of a set of parameters that are essential 

for studying the behavior of the player’s. From this 

point onward, we will refer to the current move, game 

and generation numbers by mc, gmc and gnc 

respectively. The current move played at any specific 

time is presented by the notation (mc-gmc-gnc). In this 

model, the three stages of automata are controlled by 

the following set of parameters: 

• TCc: Refers to the total number of cooperated 

player’s (within the same group) in current move 
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(mc-gmc-gnc). This parameter measures the behavior 

of each group of player’s in term of cooperation 

actions. 

• TCg: Refers to the total number of cooperated 

player’s (within the same group) in move (mc+1)-

(gmc-1)- (gnc-1). This parameter is designed to study 

the player’s behaviors that are directly connected to 

each other (direct neighborhood). The higher is the 

TCg, the higher is the cooperation actions being 

made by the group. However, it is not necessary that 

all groups within the population have similar TCg. 

• TCr: Refers to the total number of cooperation 

actions made by a particular group of directly 

connected player’s in the last r moves. This 

parameter assists IDS to study the group’s behavior 

in the last r moves. TCr parameter is associated with 

each group.  

• TCrplayer: Refers to the total number of cooperation 

actions made by a particular player. TCrplayer is 

responsible for measuring the cooperation behavior 

achieved by a particular player in the last r moves. 
• n: Is total number of player’s. 

• r: Is length of internal memory of each player. 

• TCabc: Refers to the average number of cooperated 

player’s in moves mc-i-j, where i and j represent the 

set of all previous moves played before the current 

game gmc (for all i ≤ gmc) and the current generation 

gnc (for all j ≤ gnc). Note that IDS computes TCabc 

with respect to all strategies played by the directly 

connected neighbors and stored in the knowledge-

based. The purpose of this parameter is to study the 

behavior of the player’s, within each group, in the 

same move number during all previous games and 

generations. 

• TCdkb: Similar to TCabc, IDS computes TCdkb by 

finding the average number of cooperated player’s 

in moves mc-i-j, where i and j represent the set of all 

previous moves played before the current game gmc 

(for all i≤ gmc) and the current generation gnc (for 

all j≤ gnc) and with the same move number mc. 

However, unlike TCabc, TCdkb is computed with 

respect to the best strategies played by the whole 

populations. Note that both of TCdkb and TCabc are 

extracted from the knowledge-based.  

In order to, measure and analyze the player’s behavior 

through generations efficiently, the above parameters 

are designed such that they cover all aspects of 

communications between the player’s (i.e., player, 

group and population). 
Back to stage 2 shown in Figure 3, the automaton is 

composed of three transitions (t1, t2 and t3). The 
transition t1 indicates that the cooperation ratio 
between the players’s within the same group is 
considered high with respect to the total number of 
player’s in the population. This leads the player to 
change its strategy from being defective to cooperative. 
For instance, given a game of 30 player’s (n=30) 

distributed on a lattice space as shown in Figure 4, 
where each group consists of five adjacent neighbors 
(player’s) with an internal memory of size (r=4). 

 

 

Figure 4. The distribution of 30 player’s over the game space. 

Assume that a particular player p is currently in the 

defection state, the strategy of p will only change to C 

if the group is showing some cooperation behavior as 

stated by the condition (TCr×TCrplayer> (15×4)). The 

purpose of this transition is to allow p to change its 

strategy if its group is showing cooperative behaviors 

with respect to the whole population.  

When transition t1 is triggered, the adaptive function 

INS attached to t1 will be activated and a new transition 

t2 will be inserted from state C to D, as shown by 

Figure 5. The purpose of the newly inserted transition 

is to encourage the player to show more cooperative 

behavior even if the majority of the player’s are not 

cooperating. But, the cooperative behavior will be 

limited until the threshold (TCr×TCrplayer< (15×4)) in t2 

is reached. In that case, the player has to start defecting 

since the group is aggressively adopting the defection 

strategy. 

 

 

          t1:TCr×TCrplayer)>((n/2)×r) 
 

   

       t2:TCr×TCrplayer) < ((n/2)×r) 
 

 

t3:TCR×TCrplayer) ≤ ((n/2)×r) 
 

 

T4:TCc×TCrplayer)≥ ((n/2)×r) 
 

Figure 5. Executing the adaptive function in stage 2. 

Regardless the adaptive function, the transitions t3 
and t4 shown in Figure 5 are also existed in the initial 
automaton of stage 2 as shown in Figure 3. The main 
purpose of these transitions is to allow the player to 
maintain its own strategies based on other player’s 
behaviors. The transition t3 is responsible for 
maintaining the defective behavior as long as the group 
is showing low level of cooperation. While, t4 is 
responsible for maintaining the cooperative behavior as 
long as the group is showing a considerable level of 
cooperation. 

As we move toward new tournaments, the model 
activates stage 3 to increase the level of cooperation 
between the players’s. Figure 6 presents the 
constructional design of the automata which operates 
at stage 3. The automaton is associated with a set of 
parameters and one adaptive function REM. The 
function REM is responsible for removing the second 
part (TCdkb>0.5) of transition t1 when t2 is invoked. 
Removing this part releases the restriction on changing 
the behavior from being defective to be cooperative. 
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t1:TCabc>=0.5)&&(TCrdkb>0.5) 
 

 t2:TCc×TCrplayer) <= ((n/2)×r) 
 

   

REM((D. TCdkb>0.5, C) 
 

 

t3:TCg×TCrplayer) <= ((n/2)×r) 
 

 

T4:(TCg×TCrplayer)<=((n/2)×r)|| 

TCabc>0.5 
 

Figure 6. Adaptive automaton activated in stage 3. 

With respect to Figure 6, if the player is in the 
defect state (D) and the cooperation ratio of the direct 
neighbors (TCabc) was at least 50% of the total number 
of actions, the player can adopt the cooperation 
strategy, accordingly. One can notice that the third 
stage of IDS has intentionally added extra rooms for a 
player to cooperate. For instance, the player can still 
maintain its cooperative strategy if the group are 
cooperating in the previous games and generation 
regardless the current behavior of the group and the 
player itself, as stated by t4. Figure 7 represents the 
structure of the automaton in stage 3 after executing 
the REM adaptive function. 

 

 

t1:TCabc>=0.5) 
 
 

 t2:TCc×TCrplayer) <= ((n/2)×r) 
 

   
 

 

t3:TCg×TCrplayer) <= ((n/2)×r) 
 

 

T4:(TCg×TCrplayer)<=((n/2)×r)|| 

TCabc>0.5 
 

Figure 7. Adaptive automaton activated in stage 3. 

At the final stage (stage 4), IDS extends the 
opportunities for the player’s to cooperate as shown by 
Figure 8. In this stage, the automaton increases the 
threshold for cooperation and decreasing it for 
defection. For instance, the automaton in stage 4 has 
restricted the player to check the value of TCabc and 
TCdkb in order to maintain the cooperation strategy. If 
the cooperation ratio within the group (represented by 
TCabc) and the cooperation ratio within whole 
population (represented by TCdkb) are forming at least 
40% of the actions being adopted, then the player 
should maintain its cooperation strategy. However, the 
adaptive automaton after executing the adaptive 
function of stage 4 is shown in Figure 9. 

 

     t1:TCrplayer>=(r/2))&&(TCrdkb>=0.4) 
 

t2:TCabc<=0.6)&&TCrdkb)<= 0.6 
 

   

REM((D. TCdkb>=0.4, C) 
 

 

t3:TCabc<=0.6)  

 

T4:(TCabc>0.4)n/2)&&(TCrdkb 

>=0.4) 
 

Figure 8. Adaptive automaton activated in stage 4. 

 

 

t1: TCrplayer>=(r/2) 
 

 t2:(TCabc<=0.6)&&( TCdkb<=0.6) 
 

   

 

 

t3: TCabc <= 0.6 
 

 

T4:( TCabc>0.4) &&(TCdkb>0.4) 
 

Figure 9. Executing the adaptive function in stage 4. 

Based on the state of art of PD, none of the existing 
models have focused on the importance of 
communication between the three different layers 
(player’s, group and population layers). In this model 
we established a set of communication channels 

between the three layers to provide the player’s with a 
possibility to learn from other player’s who have better 
behaviors in other groups.  

5. Results and Discussions 

The experiments conducted in this study focused on 
the ability of our model in evolving the cooperation 
behaviour between the participated players’s. The 
higher the cooperation ratio, the better is the player’s 
performance. 

To standardize the evaluation process, we have 
initialized the INPPD game as shown in Table 2. These 
parameters are tuned to measure the performance of 
the model from different angles. In term of the 
implementation, the model is coded in Java language 
under 32bit Windows 7® operating system. The 
machine is operating on Intel Pentium (R) Dual Core 
processor of 2.94GH and a RAM of 2.00GB. 

Table 2. INPPD game parameters and their initializations. 

Parameter Value 

Maximum Number of Tournaments 2000 

Number of Games 50 

Number of Moves 50 

Size of Internal Memory 4 

Number of Player’s 30 

Number of Simulations 20 

 
Note that, each tournament is composed of 50 

games and 50 moves. In other words, each complete 
strategy resulted from a single tournament consists of 
2500 actions (C or D). 

In the first test, we measure the performance of our 
model by evaluating the cooperation level between 
INPPD players. The results presented in Figure 10 
shows that the player’s could achieve high cooperation 
ratio after 1000 tournaments. As the number of 
player’s decrease, the efficiency of the model gets 
higher. Obviously, after less than 2000 tournaments, 
the player’s could almost reach 95% of cooperation. 
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Tournament number 

Figure 10. The effect of the model on INPPD player’s. 

The results also show that the two parameters (TCabc 

and TCdkb) have a significant impact on the number of 

cooperation actions played by all player’s. Figure 11 

illustrates the impact of these parameters, which are 

extracted from the Knowledge Based (KB), in 

increasing the number of cooperation actions played 

through m tournaments. Note that increasing the 
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number of cooperation actions indicates that the 

player’s are changing their behaviors to be more 

cooperative. 
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        Tournament Number 

Figure 11. The impact of TCdkb and TCdkb on the cooperative 

behavior between INPPD player’s. 

From the other perspective, we found that the length 

of the internal memory of each player has an effect on 

the player’s performance. We have tested the 

performance of the model with various internal 

memory sizes, including (r=1), (r=4), (r=8) and (r=10). 

The results as presented in Figure 12 shows that the 

model with 30 players could achieve better results with 

a memory of sizes 4, 8 and 10. However, we found that 

increasing the size of the internal memory results in 

increasing the computational complexity of the model. 

We also found that larger memory size makes 

optimizing INPPD infeasible. Thus, the best size of 

player’s internal memory is found to be 4.  
In [5] the experiments showed that the occurrence 

of the following two conditions during a specific 
tournament indicates that a cooperative behaviour is 
approaching within the population.  

• Condition 1: The total number of cooperation 
actions made by a particular player with the largest 
payoff is ten times greater than the population size.  

• Condition 2: The average total number of 
cooperative actions made by the whole population is 
ten times greater than the population sizes. 
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                                   Number of Players  

Figure 12. The impact of memory size on player’s performance. 

Increasing the population size played a primary role 

in decreasing the number of cooperative actions made 

by the best player. We have tested the model on three 

different populations of sizes 10, 50 and 100. For the 

population of size n=10, the results showed that the 

best player could satisfy the first condition in the first 

few generations. When the population size is increased 

(n=100), the model could satisfy 70% of the first 

condition where the best player could make a number 

of cooperative actions which is approximately 7 times 

greater than the population size. Figure 13 illustrates 

the impact of population size on the number of 

cooperative actions made by the best player of the 

corresponding populations. 
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      Tournament Number 

Figure 13. Measuring the behaviour of the populations (n=10, 

n=50, n=100) in term of the number of cooperative actions made 

by the best player. 

Satisfying condition 2 indicates that the whole 

population tends to be cooperative.  However, we have 

tested our model against this condition and the results 

showed that the model has satisfied this condition 

efficiently with populations of sizes (n=10) and 

(n=50). With larger populations, the model shows less 

efficiency in satisfying this condition. A population 

with 100 players could achieve an average number of 

cooperative actions that is about 6 times the population 

size as shown in Figure 14. 
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      Tournament Number 

Figure 14. Measuring the behaviour of the populations (n=10, n= 

50, n=100) in term of the average number of cooperative actions 

made by the population. 

The other way of proofing that the population 

favours cooperation rather than defection is by 

determining the longest sequence of cooperative 

actions being played by the player’s before it get 

interrupted by a defective action. We tested the model 

by tracking the cooperative sequences generated by its 

player’s. We found that a population with 10 and 50 

players could generate longer cooperative sequences. 

Figures 15 and 16 show the graphical representation of 

the behaviour of the best player in INPPD game with 

populations of sizes 10 and 50, respectively. 
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Figure 15. The graphical representation of the actions taken by the 

best player in a population of size (n=30) where dark squares 

denote the cooperative actions. 

 

Figure 16. The graphical representation of the actions taken by the 

best player in a population of size (n=50) where dark squares 

denote the cooperative actions. 

6. Conclusions 

This paper presents an alternative model for optimizing 
INPPD. The model focuses on enhancing the 
cooperation level between rational players in complex 
systems.  

The design of the model is based on incorporating 
adaptive automata over different layers. These 
automata are responsible for representing the player’s 
strategies as well as providing the player’s with a 
platform for supporting their decisions. 

The experiment results show that the model could 
evolve the cooperation behaviour among INPPD 
player’s over few tournaments. These results are 
obtained by tuning different parameters used in the 
model. Tuning these parameters results in obtaining the 
optimal values, which lead the player’s to achieve 
significant outcomes. 
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