
274 The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016

A Group based Fault Tolerant Scheduling

Mechanism to Improve the Application

Turnaround Time on Desktop Grids

Mohammed Khan
1
, Irfan Hyder

2
, Ghayas Ahmed

2
, and Saira Begum

2

1
PAF-Karachi Institute of Economics and Technology, Pakistan

2
Institute of Business Management, Pakistan

Abstract: Desktop grid is an exciting discipline for high throughput applications but due to inherent resource volatility,

desktop grids are not feasible for short lived applications that require rapid turnaround time. Efficient and more

knowledgeable resource selection mechanism can make it possible. In this paper, we propose a group based resource

scheduling mechanism. The groups are made by using three measures: Collective impact of CPU and RAM, spot checking and

task completion history. We evaluated the proposed mechanism over a network of 900 nodes having varied resources and

behavior and found that excluding desktop resources on the basis of just clock rates is not a good idea and RAM should also,

be considered as a collective parameter besides spot checking and task completion history. We also, show that the appropriate

scheduling mechanisms can only be implemented after the grouping of resources on computing strength and behavior. The

proposed mechanism ensures that tasks are allocated to hosts with higher probability of tasks completion that reduces tasks

failures and improves fault tolerance.

Keywords: Scheduling mechanism, fault tolerance, desktop grids.

Received May 15, 2013; accepted September 19, 2014; published online April 1, 2015

1. Introduction

Gone were the days when super computer was the only
option for the high end computing and storage.
Desktop grids also known as Volunteer Computing
(VC) has laid down a much cheaper path towards the
same. It is indeed an era where the abundance of
communication bandwidth has open up new horizons.
Desktop grid is one of them through which the
utilization of the idle processing cycles and memory of
millions of users connected on the internet or through
any other type of network become possible. The
infrastructure of desktop grid system is based on three
entities:

• Master is responsible for maintaining the list of
hosts/volunteers. Assignment of tasks to the hosts,
getting back the results and communicating it back
to user is also master’s job.

• Volunteer/host is responsible to register with master
to show the intent of sharing processing cycles and
memory. Its job is to complete the assigned task and
send the results to master.

• User is responsible to submit jobs to master which
will later sent to hosts.

Various successful projects are already using desktop
grid platform such as computing against cancer,
GIMPS, FightAidsAthome, Seti@Home [5, 6, 7, 11].
Desktop grid provides an environment in which large
scale of computation can be performed without having
huge IT infrastructure which ultimately reduces
infrastructure cost.

In desktop grid environment hosts are much volatile

in terms of host availability and/or CPU availability.

Host un-availability refers to a scenario in which host

is not connected to desktop grid software and CPU un-

availability refers to a scenario in which host is

connected to desktop grid software but CPU idle cycles

are not available [1]. Desktop grid also suffers from

non-reliable or erroneous results submitted by the hosts

un-intentionally and/or intentionally. To cater these

problems server creates replicas of tasks so that in case

of task failure it can be replicated to other workers.

Task failure causes tasks to be restarted from scratch

on other hosts [1] which in turns cause delay in

application completion.

Efficient utilization of resources in desktop grid is a

challenging task, which can be achieved through

efficient resource management. Volatility is an

inherent feature of resources on desktop grids.

Applications having large number of tasks as

compared to hosts are used in traditional desktop grids.

Hence, resource management and application

scheduling techniques play a key role in such

environment. In this paper, we consider an application

having independent and identical tasks where as

application performance is measured in terms of

application’s turnaround time.

Our work focuses on the minimization of

turnaround time of a single application instead of

multiple applications. Maintaining fairness among

jobs/tasks, replication and bandwidth utilization is not

A Group based Fault Tolerant Scheduling Mechanism to Improve the Application Turnaround Time on Desktop Grids 275

taken into account in our study. The proposed

mechanism is primarily based on creating host groups

focusing on three aspects that include collective impact

of CPU and RAM, spot check and task completion

history. To evaluate our proposed mechanism

simulation is performed using the traces obtained from

educational institution’s computer labs.

2. Related Works

In [10] resources are selected and eliminated according

to the clock rates and task completion prediction

whereas our proposed mechanism doesn’t eliminate

any worker, rather it places them into groups according

to their processing capability i.e., collective impact of

CPU and RAM and task completion history. We do not

eliminate any worker on the basis of hardware strength

because a worker may possess less hardware capability

but can provide more processing time and/or its

hardware strength may get better.

In [4] grouping mechanism based on volunteer

autonomy failure, availability and service time is

proposed whereas groups are managed through mobile

agents selected from each group. Whereas, our

proposed mechanism emphasizes on volunteer’s

collective impact and task completion history which

ultimately shows liveliness of volunteers. In contrary,

instead of volunteers, we left the scheduling

responsibility to the server due to volatile nature of

volunteers.

In [9] replication mechanism is proposed based on

volunteer grouping. Our proposed mechanism is

different in several ways i.e., we are focusing on

average percentage of cumulative impact of hardware

resources for group placement of volunteers, where

average CI should be greater than 75% and arranging

volunteers in groups is based on number of task

completed from assigned tasks.
Anderson and Fedak [2] concluded that evaluation

of hardware resources individually is not appropriate
i.e., higher disk space will play its role if proper
network bandwidth is available to access it, similarly
higher processor speed could positively affect
processing if more RAM is available to it. To
overcome the issues arises while focusing on hardware
resources individually. Our proposed framework
evaluates collective impact of hardware resources to
place volunteers in a group.

Watanabe et al. [14] proposed a mechanism to

reduce the overhead occur as a result of spot-checking

hence to reduce computation time in VC. Our proposed

mechanism doesn’t cater the spot-check rate rather

marks hosts as saboteur if returns erroneous results

trice.

Toth and Finkel [13] investigated the effects of task

retrieval policies on task completion and concluded

that volunteers having download early task retrieval

policies completes more tasks as compare to other

policies. Similarly, screen saver on mode completes

fewer tasks than screen saver off mode. In contrary,

our proposed mechanism also focuses on improving

tasks completion time but measures of address are

hardware collective impact, task completion history.

Silaghi et al. [12] constructed an emulation based

system to evaluate scheduling policies. It is concluded

that EDF reduces CPU wastage, devoting all

processing cycle to 1 project improves throughput.

Hanandeh et al. [8] presented a dynamic replication

strategy that considers the storage capacity of the grid

node. This work enhances the fast spread mechanism

by concentrating on the feasibility of replicating the

requested replica on each node among the network.

3. Scheduling Short-lived Applications on

Desktop Grids

3.1. Problem Definition

In this study, we are scheduling an application

consisting of independent and identical tasks whereas

hosts are in order of magnitude of tasks. Hosts are

individually managed by their users or owners and

takes part in desktop grid computation only when their

CPU cycles are idle, due to which hosts are volatile.

Figure 1 shows throughput using FCFS mechanism

that is also used in many desktop systems [3, 5, 6, 7,

11] for applications having 450, 900 and 1800 tasks

whereas number of hosts are 900. However, each task

takes 15 minutes to complete on dedicated 2.0GHz

processor. The figure indicates initial edge after which

application progresses approximately linearly. It is

observed that in case of 450tasks 90% of tasks were

completed in 21minutes whereas rest of the tasks took

41minutes that means, last 10% of the tasks took

almost equal time to complete as compared to initial

90% of the tasks. Same behavior was observed with

application of 900 and 1800 tasks. It can be said that

fast host have completed their assigned tasks due to

which an initial edge was observed whereas slow hosts

caused task failure that resulted in application delay.

On the basis of above simulation, we hypothesize that

slow hosts due to their clock rate and hosts’ having

variations in their availability can cause task failure

which ultimately results in application delay hence

causes increases in application’s turnaround time.

2000

1800

1600

1400

1200

100

800

600

400

200

0

 ti
m
e

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 38 37 39

Figure 1. Application completion time of 450, 900 and 1800 tasks

applications.

276 The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016

3.2. Proposed Mechanism

The proposed mechanism is based on a grouping
through which hosts are categorized. Due to the fact
that hosts in desktop grid exhibit wide variety of
behaviors, simple scheduling mechanism will not be
sufficient. If we can somehow group the hosts that
exhibit some common features then relevant
scheduling mechanism can be enforced in order to
reduce application turnaround time. Before explaining
the details of our proposed grouping mechanism, first
we would like to elaborate the factors that will be used
to form groups. These factors are:

• Collective Impact of CPU and RAM: The work

units in a desktop grid environment are assigned to

hosts on various basis. One of the most common

mechanisms is to check the processor speed and

reject the hosts that have low processing power. Our

submission is that the rejection of host only on the

basis of one parameter is not a good idea and other

parameters should also be used to accept or reject a

host. This idea is also supported by [10] which

conclude that hardware resources may be evaluated

in combination i.e., disc space is useful if

appropriate network band width is available to

access it. Similarity processor speed is useful when

substantial RAM is available. To analyze the impact

of the CPU and RAM relationship, we developed

and executed an application on dot net platform. We

executed the application on 2.8GHz. CPU having

just 512MB RAM and calculated the execution

time. Gradually we lowered the CPU speed by

changing the CPU and increased the RAM. The

experiment used the CPUs ranging from 1.8GHz. to

3.0GHz and RAM from 512MB to 4GB. As per [10]

the execution time of application showed very little

change which proves that the RAM should be

counted as a collective parameter with CPU. In

Table 1, we have summarized and grouped the CPU

and RAM available on our infrastructure and

assigned a numeric value on the basis of their

effectiveness in task execution. These numeric

values will be used for calculating the overall

impact of the mechanism.

Table 1. Grouping of available CPU and RAM.

CPU-Speed Scoring Scheme Value

Less than or equal to 1.8 GHz 1

Greater than 1.8GHz and less than or equal to 2.2 GHz 2

Greater than 2.2GHz and less than or equal to 2.6 GHz 3

Greater than 2.6GHz and less than or equal to 3.0 GHz 4

Greater than 3.0GHz 5

RAM-Availability Scoring Scheme Value

Less than or equal to 512 MB 1

Greater than 512 MB and less than or equal to 1 GB 2

Greater than 1GB and less than or equal to 2 GB 3

Greater than 2GB and less than or equal to 4 GB 4

Greater than 4GB 5

• Spot Checking: It is the way to identify a host acting

as saboteur. In spot checking, tasks whose result is

already to known to server is sent to host and after

the submission of result by the host it is crossed

checked with server’s own result. If result matches

the host is marked as non-saboteur otherwise

saboteur [6]. The process of spot checking is cyclic.

• Task completion History: Task completion history

states what percentage of assigned tasks has been

completed before deadline. The deadline is defined

by the owner of the application [3]. It is a major

factor to place the host in a more reliable group.

• Grouping Mechanism: The overall grouping

mechanism is depicted in Figure 2. In the proposed

mechanism when a host logins, its hardware

strength check is performed. In this process host’s

processor’s speed and RAM size is gathered and on

the basis of Table 1 numeric values are assigned.

After assigning values, percentage of scored marks

are calculated e.g., if a host scores 4 marks for

processor and 3 marks for RAM than the overall

score will be 7/10 i.e., 70% marks.

Figure 2. Overall proposed grouping mechanism.

Proposed mechanism uses three groups i.e., silver,
gold and platinum to categorize hosts. If a host scores
minimum of 75% marks in hardware strength check
then it will be placed in either platinum or gold group
based on previous task completion history, otherwise it
will be placed in silver group.

Initially, all the hosts are placed in silver group
because of the unavailability of task completion
history. As the application execution progresses, hosts
task completion history will change that will result in
the updation of groups [host will be moved from silver
to gold or from silver to platinum groups]. If the host
had scored >=75% marks in collective impact and was
able to complete 80% or more tasks assign to it
correctly and before the deadline then the host will be
placed in platinum group. Whereas If a host had scored
>=75% marks in collective impact and percentage of
task completion history is in between 60% to 79.9%
than the host will be placed in gold group, Similarly, If
a host had scored <75% marks in collective impact
than the host will be placed in silver group. These
threshold values are kept configurable in the system
and optimal values are deduced through

A Group based Fault Tolerant Scheduling Mechanism to Improve the Application Turnaround Time on Desktop Grids 277

experimentation. Hosts are arranged in a ready queue
in order of their groups. Platinum group possess higher
priority than gold group. Similarly, gold group possess
higher priority than silver group.

Algorithm 1: Host Configuration (input login id and session

id).

VarProcessorSpeed = Fetch_Processor_Speed()

VarRAMSize = Fetch_RAM_Size().

VarLoginId = Session (“ loginID”)

Fetch marks for each component

Calculate overallpercentage

SaveInfoToDB(VarProcessorSpeed,VarRAMSize,VarLoginId).

First of all host configuration is performed as shown in

Algorithm 1. After selecting a host from hardware

capability check, test task for the purpose of spot

checking is assigned by using Algorithm 2. If a host

fails in spot checking, it will be placed in silver group,

whereas a host passes spot check will be placed in gold

or platinum group according to its task completion

history. If a host fails spot check thrice, it will be

marked saboteur and will not be assigned tasks in the

future. The rejoining of saboteur hosts will be based on

configurable heuristics depending on the server

workload and user’s (Application submitter)

preference. These heuristics can be X number of days,

X tasks completed etc., in the suggested approach

actual tasks are taken as test task due to which hosts in

desktop grid will not be able to identify whether

assigned task is a test task or actual task. Furthermore,

use of actual tasks as test tasks will eliminate the work

load of test task creation except for the case when the

first host joins in.

Algorithm 2: Spot check (input login id and session id).

assign test job to the host

VarNoOfSpotCheckFailed=0

When host return result master will check whether the task is

real or test task.

If test task true

Fetch masters own result of that test task

If masterresult=hostresult

SaveHostToDB “PASS”

Else

VarNoOfSpotCheckFailed =

VarNoOfSpotCheckFailed +1

If VarNoOfSpotCheckFailed=3

SaveHostToDB “Fail”

Else

PerformValidationforActualTask()

In the suggested mechanism, task completion history
evaluation is a cyclic process which takes place
whenever host requests for task. This process evaluates
what percentage of assigned tasks has been completed
by particular hosts by using Algorithm 3. If a host
scores collective impact >=75% and has
completed>=80% of the assigned tasks then host will
be placed in platinum group, if task completion
percentage in between 60% to 79.9% then it will be
placed in gold group. Hosts having collective impact
<75% will be placed in silver group.

Algorithm 3: Group placement function (be executed when

host request for new task.

VarPercentageCompleted, VarCollectiveImpact

VarPercentageCompleted=getTaskCompletedPercent()

VarCollectiveImpact=getCollectiveImpact()

If VarPercentageCompleted >= 80% and

VarCollectiveImpact>=75%

 Assign platinum group

elseif VarPercentageCompleted (in between 60% to 79.9%)

and VarCollectiveImpact>=75%

 Assign gold group

else

 Assign silver group

MaintainHostReadyQueue(orderbygroup)

4. Experimental Methodology

Our experiment is based on simulation driven by

traces. Our intention is to evaluate how much

improvement can be achieved through our proposed

mechanism as compared to the other such mechanisms.

We have compared our proposed mechanism with

FCFS scheduling which simply schedules jobs on first

come first serve basis and used by most VC system in

recent time [3, 5, 6, 7, 11]. In addition to FCFS, PRI-

CR-Excl is also used for comparison purpose which

excludes hosts having clock rates below some defined

clock rate threshold value because we claim that RAM

should also be considered as a parameter for such

decision making [1]. BOINC is the implementation

platform [3].

4.1. Trace Dataset and Dataset Gathering

Method

Traces were collected by submitting tasks of fixed

length i.e., 15minutes, which performs integer and

floating point operations under an infinite loop.

Submitted tasks perform computations and write their

computation rate periodically to a file. Through this

file, server can evaluate host availability and CPU

availability. Host availability indicates the time

interval in which host system is connected to desktop

grid software, whereas CPU availability shows that the

host is connected to desktop grid software and also

performs the assigned tasks [1]. Instead of host

availability and CPU availability, our proposed

mechanism primarily focuses on number of tasks

completed by hosts which ultimately aggregates both

types of availabilities.

Traces were gathered from a university named PAF-

KIET where computer labs can be categorized into two

types depending on their usage and types of processing

units they possess. General purpose labs have an

aggregate of 300PCs with an average f 2.0GHz

processor speed whereas special purpose labs (used for

practical classes) have an aggregate of 600PCs with an

average to 2.8GHz processor speed. The average size

of RAM in general labs is 2GB whereas special labs

possess an average of 3GB RAM. All the three

278 The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016

campuses have a total of 15labs out of which 5 labs are

for general use whereas 10labs are for practical classes.

Host available in general labs are often busy due to

which availability interval to process tasks are not so

long however hosts available in practical labs provide

longer availability of processing cycles. The clock

rates are not widely dispersed which means majority of

the hosts possesses nearly the same clock rate i.e., in

between 1.8 to 3.2GHz.

4.2. Simulated Applications

Applications varying in number of tasks and task size

were taken into account for simulation. Task size has

direct relation with task failure i.e., increase in task

size increases task failure in linear fashion, as

concluded in [1] we used applications consisting 450,

900 and 1800 independent tasks for simulation.

Furthermore each application has three instances

consisting 5, 15 and 35 minutes of tasks respectively.

Experiments for varied number of tasks and task sizes

are performed separately using proposed mechanism,

FCFS and PRI-CR-Excl. Available number of hosts are

900, so the selection of 450, 900, 1800 tasks is only

due to symmetric evaluation of results when tasks are

half, equal and double than available number of hosts.

The rationale behind this approach is based on

evaluation, when the number of tasks are half as

compared to the available number of hosts than the

master has little chance to assign task to slow host

whereas when tasks are equal to number of hosts then

the chance of task assignment to slow host increases.

In the case of twice as many tasks compared to hosts,

master will be left with no option but to assign tasks to

slow hosts.

4.3. Performance Metrics

We hypothesize that slow host and host which returns

erroneous results causes delay in application

completion. As our overall aim is to reduce the

applications turnaround time in desktop grid

environment that is why our performance metrics is

tasks makespan, if the individual task’s make span is

reduced than the overall application’s turnaround time

will automatically be optimized. We compare the

proposed mechanism with FCFS and PRI-CR-Excl on

the basis of the above mentioned performance metrics.

We did stepwise comparative analysis to analyze the

impact of each step i.e., hosts selection based on

collective impact of CPU and RAM without grouping

section 4, host selection based on grouping mechanism

section 5.

5. Host Selection based on Collective

Impact of CPU and RAM

In this method we focus on host’s hardware strength in

terms of CPU and RAM. Both components are

assigned a numeric value according to the ranges

defined in Table 1, then aggregate of those assigned

values are calculated. If a resource obtains 75% or

higher marks then it will be allowed to serve as

volunteer. Key idea behind the approach is to eliminate

slow hosts which might cause task failure and

application delay. Simulations were performed to

observe the difference between FCFS, PRI-CR-Excl

and resource selection based on collective impact of

CPU and RAM.
Figure 3 shows make span achieved for applications

having 450, 900, 1800 tasks through FCFS, PRI-CR-
Excl and collective impact. It is observed that the host
selection based on collective impact shows better
makespan as compared to FCFS and PRI-CR-Excl in
all cases. The reasons are FCFS must have selected
slow hosts as it performs scheduling on first come first
serve basis whereas PRI-CR-Excl must have rejected
hosts on the basis of low CPU speed. On the other
hand the collective impact would neither have chosen
slow hosts nor have rejected hosts just on the basis of
CPU because it considers RAM as well in decision
making.

100

80

60

40

20

0

Time
5 15 35 5 15 35 5 15 35

min min min min min min min min min

 No. of task 450 No. of task 900 No. of task 1800

Figure 3. Application completion time using FCFS, Collective

Impact and PRI-CR-Excl.

Furthermore, applications having tasks with length
of 5 min show least makespan than the applications
having 15 or 35 min length. The reason behind this is
the granularity of tasks due to which even the host
whose availability interval is short, can complete the
task. In addition to this, 450 tasks are less than the
available number of hosts which allows scheduler to
assign tasks to hosts whose collective impact is
relatively high. In case of 900 and 1800 tasks
makespan is increased as compared to 450 tasks which
shows that scheduler has assigned tasks to such hosts
that were not considered in case of 450 tasks. As the
number of tasks would increase scheduler will have to
assign tasks to weak hosts.

In the coming section we will present the impact of
overall grouping mechanism that not only include
collective impact of CPU and RAM but also spot
checking and task completion history. Addition of
these mechanisms have improved the results because
these methods have eliminated the saboteurs
(intentional or un-intentional) and have considered the
host past performance.

A Group based Fault Tolerant Scheduling Mechanism to Improve the Application Turnaround Time on Desktop Grids 279

6. Host Selection based on Grouping

Mechanism

Here we examine the application turnaround time of

FCFS, PRI-CR-Excl and proposed grouping

mechanism based on collective impact of CPU and

RAM, spot check and task completion history).

Comparison of Figures 3 and 4 shows that the

grouping mechanism not only out performs the FCFS

and PRI-CR-Excl but also improves the results of

collective impact of CPU and RAM (when used

independently). Task assignment to slow host in FCFS

must have caused task failure that has enforced

scheduler to assign those tasks to other hosts for

execution form the scratch. PRI-CR-Excl performed

better than FCFS but consumed little more time than

proposed grouping mechanism. PRI-CR-Excl excludes

resources which possess slow clock rate but because of

enhanced RAM size, may have completed the task.

Due to this factor PRI-CR-Excl causes wastage of CPU

cycles.

100

80

60

40

20

0

Time
5 15 35 5 15 35 5 15 35

min min min min min min min min min

 No. of task 450 No. of task 900 No. of task 1800

Figure 4. Shows applications completion time using FCFS, PRI-

CR-Excl and proposed mechanism.

Proposed grouping mechanism performed better

because it provides a facility in which resource’s

internal processing capability is measured

cumulatively due to which some slow clock rate hosts

having higher RAM can join desktop grid which

eliminates the aspect of CPU wastage, so by the

utilization of such CPU cycles proposed grouping

mechanism improves application latency.

Furthermore, grouping mechanism selects resources

from ready queue which contains volunteers arranged

according to their groups. Resources of Platinum group

possess better collective impact and better task

completion history due to which these resources are

arranged on top in ready queue whereas gold group

members are placed after platinum and silver group

members are placed after gold group. Hence, at the

time of task assignment proposed mechanism gets

better available resource from all the available

resources which in turn cause improvement in

application turnaround time.

7. Conclusions

The proposed grouping mechanism is based on

collective impact for CPU and RAM, spot-checking

and task completion history that categorize the hosts in

platinum, Gold and Silver groups and has proved its

worth as compared to FCFS and PRI-CR-Excl

mechanisms. The results have shown significant

improvement in application turnaround time that is

why it is safe to conclude that arranging hosts into

groups according to their computational strength and

task completion history leads towards the improvement

in application turnaround time.

References

[1] Anderson P., “Emulating Volunteer Computing

Scheduling Policies,” in Proceedings of IEEE

International Symposium on Parallel and

Distributed Processing Workshops and Phd

Forum, Shanghai, pp. 1839-1846, 2011.

[2] Anderson D. and Fedak G., “The Computational

and Storage Potential of Volunteer Computing,”

in Proceedings of the 6
th
 IEEE International

Symposium on Cluster Computing and the Grid,

pp. 73-80, 2006.

[3] Berkeley Open Infrastructure for Network

Computing, available at:

https://boinc.berkeley.edu, last visited 2013.

[4] Choi S., Baik M., Hwang C., Gil J., and Yu H.,

“Mobile Agent based Adaptive Scheduling

Mechanism in Peer to Peer Grid Computing,” in

Proceedings of the International Conference on

Computational Science and its Applications,

Singapore, pp. 936-947, 2005.

[5] Compute Against Cancer, available at:

http://www.computeagainstcancer.org, last

visited 2013.

[6] Fight Aids at Home, available at:

http://www.fightaidsathome.org, last visited

2013.

[7] Great Internet Mersenne Prime Search, available

at: http://www.mersenne.org, last visited 2013.

[8] Hanandeh F., Khazaaleh M., Ibrahim H., and

Latip R., “CFS: A New Dynamic Replication

Strategy for Data Grids,” the International Arab

Journal of Information Technology, vol. 9, no. 1,

pp. 94-99, 2012.

[9] Khan K., Hyder I, Chowdhry B., Shafiq F., and

Ali H., “A Novel Fault Tolerant Volunteer

Selection Mechanism for Volunteer Computing,”

Sindh University Research Journal-Science

Series, vol. 44, no. 3, pp. 501-506, 2012.

[10] Kondo D., Chien A., and Casanova H.,

“Scheduling Task Parallel Applications for Rapid

Turnaround on Enterprise Desktop Grids,”

Journal of Grid Computing, vol. 5, no. 4, pp.

379-405, 2007.

[11] Search for Extraterrestrial Intelligence., available

at: http://setiathome.ssl.berkeley.edu, last visited

2013.

280 The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016

[12] Silaghi G., Domingues P., Araujo F., Silva L.,

and Arenas A., “Defeating Colluding Nodes in

Desktop Grid Computing Platforms,” in

Proceedings of IEEE International Symposium

on Parallel and Distributed Processing, Florida,

USA, pp. 1-8, 2008.

[13] Toth D. and Finkel D., “Improving the

Productivity of Volunteer Computing by Using

the Most Effective Task Retrieval Policies,”

Journal of Grid Computing, vol. 7, no. 4, 2009.

[14] Watanabe K., Fukushi M., and Horiguchi

S., “Optimal Spot-checking for Computation

Time Minimization in Volunteer Computing,”

Journal of Grid Computing, vol. 7, no. 4 , 2009.

Mohammed Khan is the Director

College of Computing and

Information Sciences at PAF-

Karachi Institute of Economic and

Technology, Pakistan. He holds Post

Graduation in Computer Science as

well as in management science. He

is experienced in academic leadership and has

launched several bachelors programs at PAF-KIET. He

has also completed several consultancy and training

assignment at leading organizations. His research

interests include distributed systems, intelligent and

multi agent systems and performance evaluation.

Irfan Hyder is working as the Dean

College of Business Management

and College Engineering and

Sciences at Institute of Business

Management, Pakistan. He holds a

PhD and MS in computer science

from University of Texas at Austin,

USA. He has a wide experience in academic

leadership, consultancy, entrepreneurial ventures,

trainings, teaching, research, design and

implementation of innovative programs and as a

motivational speaker. In his career spanning over 18

years, he has worked in leadership positions at various

organizations. He was deputy director at IBA and Dean

and VP at PAF-KIET. He has extensive industry

consultancy experience for private and public sector

organizations.

Ghayas Ahmed is serving as

Deputy Controller in Federal Urdu

University, Pakistan. He holds MS

Computer Science from PAF-

Karachi Institute of Economic and

Technology. He also, possesses

close to 11 years of software

development experience. His research interests include

software engineering development patterns and

distributed systems.

Saira Begum is serving as Lecturer in Computer

Science Department at Jinnah University for Women,

Pakistan. Due to more than 6 years if software

development experience, she is also heading the final

year project committee. She holds MS Computer

Science from PAF-Karachi Institute of Economic and

Technology. Her research interests include

programming paradigms and databases.

