
The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016                                                                                                        

 

Predicting the Existence of Design Patterns based 

on Semantics and Metrics 

Imène Issaoui
1
, Nadia Bouassida

2
, and Hanêne Ben-Abdallah

3
  

1
Institut Preparatory to Engineering Studies, University of Monastir, Tunisia 

2
Department of Computer Science, University of Sfax, Tunisia

  

3
Faculty of Computing and Information Technology, King Abdul-Aziz University, KSA 

 
Abstract: As part of the reengineering process, the identification of design patterns offers important information to the 

designer. In fact, the identification of implemented design patterns could be useful for the comprehension of an existing design 

and provides the grounds for further code/design improvements. However, existing pattern detection approaches generally 

have problems in detecting patterns in an optimal manner. They either detect exact pattern instantiations or have no 

guidelines in deciding which pattern to look for first amongst the various patterns. To overcome these two limitations, we 

propose to optimize any pattern detection approach by preceding it by a preliminary “sniffing” step that detects the potential 

existence of patterns and orders the candidate patterns in terms of their degree of resemblance to design fragments. Our 

approach uses design metrics to characterize the structure and semantics of the various design patterns.  

 

Keywords: Metrics, design pattern, quality assurance, sniffer. 

Received September 3, 2013; accepted April 27, 2014; published online April 1, 2015 
 

1. Introduction 

The advantages of design patterns [17] as good quality 
generic solutions for recurring problems have been 
widely accepted. Reusing design patterns accelerates 
the development process and reduces the cost of 
software development. In addition, it improves the 
quality of the design and the produced code. 
Furthermore, the identification of instantiated design 
patterns could be useful for the comprehension of an 
existing design and/or code.  

These advantages motivated the proposition of 
different approaches for design pattern detection [10, 
11, 16, 18, 33]. Existing design pattern identification 
approaches tackled the problem in different manners: 
Some are based on graph matching techniques [10, 33] 
others are based on constraint satisfaction problems 
[18] yet others are based on XML retrieval techniques 
[13]. One common weakness of these approaches is 
their assumption that the designer knows which pattern 
he/she is trying to find in the design. In other words, if 
this assumption does not hold, the existing approaches 
would have to try the identification of all patterns in an 
ad hoc manner, even if no pattern exists. Evidently, 
this is impractical given their high time complexity 
(exponential in terms of the size of the design). A more 
judicious identification should have a strategy to 
eliminate those patterns that may not exist and order 
those patterns that it should look for in the design. The 
proposition of such strategy is the main contribution of 
this paper. 

More specifically, we propose a method that can be 
applied as a preliminary step to any existing pattern 
identification approach to make it more efficient (in  

time). To do so, our method: Filters the design patterns 
that are probably present in the design; orders those 
candidate patterns in terms of their degrees of 
resemblance to the design fragments and delimits the 
design fragment susceptible of containing each 
candidate pattern. As a consequence, any pattern 
detection approach will detect patterns beginning by 
those that are most likely to be present.  

Our method relies on the fact that any pattern has an 
intention and that it improves particular aspects of 
design quality. Thus, it tries to capture the pattern 
intention through a set of structural and semantic 
metrics. These metrics are hence used to “sniff”/predict 
the existence of patterns in a design. We think that an 
appropriate pattern instance is one that respects (i.e., 
does not fall under) the thresholds of the values of the 
metrics which reflect the intention of the pattern. For 
instance, the pattern Mediator is devoted to reduce 
coupling [30] while it centralizes control in the class 
Concrete Mediator whose complexity becomes high. In 
addition, among the classes of this pattern, the class 
Mediator has a high Coupling Between Objects (CBO) 
[22]. Hence, if the CBO is low for all the classes of a 
given design, then the pattern Mediator does not exist 
and it is useless to try to identify it in such a design. 
Besides existing structural design metrics [11, 15], we 
propose a new metric, called semantic coverage, to 
measure the semantic similarity between design 
patterns and design fragments. This semantic metric 
refines the ranking of candidate patterns determined 
through the structural metrics. 

Evidently, the thresholds of the metrics highly 
influence the performance of our prediction method. 
To determine the thresholds that reflect the intention of 



The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016                                          

 

 

the design pattern, we conducted an empirical study on 
three open source systems JHotDraw v5.1, JRefactoty 
v1.0 and JUnit v3.7 [24, 25, 26].  

The remainder of this paper is organized as follows: 
Section 2 overviews currently proposed approaches for 
pattern identification and works that relate object 
oriented metrics to design patterns, section 3 highlights 
the basic steps of our prediction method, section 4 
illustrates our approach through an example and using 
the pattern sniffer toolset and section 5 summarizes the 
paper and outlines our future work. 

 

2. Related Works 

2.1. Design Pattern Identification Methods 

Many researchers were interested in proposing 
approaches that recover design pattern instances by 
performing a static analysis of the design cf., [10, 18]. 
Other approaches carried out the design pattern 
identification using either dynamic analysis or a 
combination of static and dynamic analyses [5, 16]. 

Within the static analysis approaches, Gueheneuc 
and Antoniol [18] proposed a multilayered approach 
for design motif identification based on constraint 
satisfaction problems. One advantage of this approach 
(called DeMIMA) is that it tolerates a partial match of 
the pattern in the design; however, it focuses only on 
the structural aspect of the pattern, while neglecting the 
behavioural and semantic aspects. Also, among the 
static analysis approaches, Tsantalis et al. [33] 
consider that recognizing a pattern in a design is a 
graph matching problem. They propose a design 
pattern detection approach based on similarity scoring 
[12] between graph vertices; the graphs of the searched 
pattern and the examined design are encoded as 
matrices from which a similarity matrix is derived. 

This approach, can only calculate the similarity 
between two vertices (representing classes/relations), 
instead of two graphs (representing the whole pattern 
and design); thus, it has a low precision ratio in the 
identification. This drawback is bypassed in the 
approach and tool called SGFinder proposed by 
Belderrar et al. [10]. SGFinder derives OO micro-
architectures from the class diagram; a micro-
architecture represents a connected sub-graph induced 
from the design’s class diagram.  

Some approaches combine the static analysis with 
the dynamic analysis technique, as an example, De 
Lucia et al. [16] identify behavioural design patterns. 
First, a static analysis is used to identify candidate 
instances of a behavioural pattern. Then, a dynamic 
analysis is performed over the automatic 
instrumentation and monitoring phase of the method 
calls involved in the identified candidate pattern 
instances. The dynamic information obtained from a 
program monitoring activity is matched against the 
definitions of the pattern behaviours expressed in terms 
of monitoring grammars. 

Also, combining static and dynamic analyses, 

Bouassida and Ben-Abdallah [13] propose an 

identification approach based on XML document 

retrieval techniques where the pattern is seen as the 

XML query and the design as the XML document in 

which the query is searched. Their approach relies on a 

context resemblance function to compute the similarity 

potential between the design structure and behaviour 

and the pattern.  
Within the dynamic analysis approaches, Arcelli et 

al. [6] propose a design pattern detection technique for 
Java codes. The approach relies on data collection 
through Java Platform Debugger Architecture (JPDA). 
It applies a set of rules to detect behavioural design 
patterns.  

Overall, depending on their technique, the proposed 
methods detect structural, creational and/or 
behavioural design patterns with different precision 
rates. They have two common limitations: A high 
(exponential) time complexity and the assumption that 
the designer knows which pattern he/she is trying to 
identify. To overcome the first limitation in practice, 
some methods presume that the design is fragmented 
(manually or automatically) before the identification is 
launched. The second limitation will be addressed for 
the first time in this paper. 

2.2. Design Patterns and Design Metrics 

Several works examined the relationships between 
design patterns and OO design metrics [1, 2, 3, 4,  9, 
20, 21, 22, 29, 30, 31]. Some works were interested in 
patterns detection using design metrics. Others were 
interested in studying the effects of design patterns on 
the design quality through various metrics. 

On the other hand, many works focus on evaluating 
the impact of patterns reuse on quality. For example, 
Reißing [31] applies classic OO design metrics to two 
similar designs A and B. Knowing that B uses design 
patterns and A does not use them, the metrics show 
that the design A is better than B because it has less 
classes, operations, inheritance, associations, etc., for 
this reason, Reibing [31] proposes a more appropriate 
notion of quality that includes both views: The 
traditional design metric view based on size, coupling, 
and other complexity criteria and the flexibility 
considerations inherent to design patterns. 

Masuda et al. [30] use the C and K metrics suite of 
[15] to evaluate the efficiency of applying design 
patterns in two applications developed by their 
research group. They show that particular design 
patterns have a tendency to make a particular metric 
value poorer. However, they caution that this does not 
necessarily mean that those design patterns always 
induce quality degradation. In addition, Masuda et al. 
[30] presume that the Weighted Methods per Class 
(WMC), Depth of Inheritance (DIT), Number of 
Children (NOC) and Lack of Cohesion in Methods 
(LCOM) metrics are essentially used for single classes. 
Hence, they are not suitable to measure the relationship 
among classes. Only the Response For Call (RFC) and 
CBO metrics can capture the degree of communication 
between classes. However, the RFC and CBO metrics 



The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016                                          

 

 

reflect the one-to-many relationship. Instead, Masuda 
et al. [30] suggest that new metrics should be proposed 
for the evaluation of the efficiency of applying design 
patterns. The main limitation of this work is that the 
authors used small applications which are developed 
by their research group to draw their conclusions. 

Ampatzoglou et al. [3] propose an approach for 
comparing design patterns to alternative designs with 
an analytical method. In fact the designs are compared 
based on their possible number of classes and on 
equations representing the values of the various 
structural quality attributes as a function of these 
numbers of classes. For this purpose, the authors 
needed to predict quality attributes from code and 
design measurements. They choose code/design 
metrics and a model to calculate quality attributes from 
them and according to the proposed thresholds, the 
designer can opt for the design pattern solution. 

3. A New Approach for Design Patterns 

Prediction  

As mentioned in the introduction, the main goal of our 

design pattern “sniffing” is to provide designers with a 

mechanism that allows them to forecast the existence 

or nonexistence of design patterns using metrics. It 

should be noted that sniffing is meant to be applied 

before the identification process for two purposes: 

Limit the list of candidate design patterns, delimit the 

design fragments which are structurally and 

semantically susceptible to include patterns.  Because it 

uses both semantic and syntactic information, our 

method can further assist the detection approaches by 

giving them the probable matches between the design 

elements and the pattern elements. This information 

can be used by the designers to improve their designs, 

for instance, by reading the pattern documentation in 

order to add/remove/rename/restructure their design 

fragments so that they fit the pattern problem. Once 

such modifications are done, the pattern would be 

reused according to its intention, which improves the 

quality of the design as discussed in the various works 

in the literature cf. [5, 18, 34]. 

Our design pattern sniffing method operates in two 

analysis steps: A semantic analysis that is followed by 

a structural analysis only when the first step succeeds 

in identifying design pattern candidates. Both steps use 

a filtering technique to determine an ordered list of 

candidate design patterns; the order reflects the degree 

of resemblance between the design patterns and design 

fragments.  

3.1. Sniffing Patterns Semantically 

Semantic sniffing consists in predicting the potential 

existence of design patterns. The potential is 

determined by measuring the degree of the “semantic 

coverage” of the patterns in the design. To define this 

new metric, we rely on the names used in defining the 

pattern elements. Being well chosen, these names 

characterize the semantics encoded in the design 

patterns. 
We suppose that each design pattern is represented 

by the list of its class and method names. In addition, 
since classes in a design pattern represent its essence 
(e.g., “observer” and “subject” in the Observer pattern) 
and since, method names are less important than class 
names, we associate to each class name and to each 
method name a weight to reflect its importance in the 
design pattern. The lists of weighted names 
characterizing the design patterns are manually 
constructed based on their documentation. These lists 
are used to compare them with the names used in the 
design.  

More specifically, we propose the new metric, 
called semantic coverage, to count the number of 
classes and method names in the design that are 
“related” to the name list characterizing a particular 
design pattern. We consider that a class is related to a 
name list characterizing a design pattern, if the name of 
the class and/or the names of its methods are 
semantically related to those in the list through the 
name comparison criteria presented below and initially 
proposed in [34]. 

3.1.1. Class Name Semantic Relationships 

We propose the following six criteria to express the 
semantic relationships between the class names of the 
design and keywords from the name list characterizing 
a design pattern: 

• Is_a kind_of (C, K): Implies that there is a semantic 
relationship between the class C indicating that C a 
type or a variation of the keyword K. Example: Is_a 
kind_of (student, intellectual).  

• Is_one way_to (C, K): Implies that there is a 
semantic relationship between the class C and 
keyword K. C is one of several manners to do K. 
Example: Is_one_way_to (help, support). 

• Synonym (C, K): Implies that the name C is a 
synonym of the name K. Example: Synonym 
(student, pupil). 

• Inter_Def (C, K): Implies that the definitions C and 
K given by WordNet dictionary [36] have common 
words. The common words list is obtained after 
eliminating the stop words such as: ‘a’,’and’, 
‘but’,’ how’, ‘or’ and ‘what’. Example: Inter_Def 
(Figure, Composite).  

• Def_Contain [C, K]: Implies that the definition of 
the name C contain a certain keyword K. Example: 
Def_Contain (Paper, Observation). 

• Name_Includ (C, K): Implies that the name C 
includes the name K. C is a string extension of the 
name of the class K. Example: Name_Includ 
(“XWindow”, IconXWindow). 

Note that, the semantic criterion Is_a kind_of, Is_one 
way_to and Synonym exist, already, in the Word Net 
dictionary [36]. 



The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016                                          

 

 

3.1.2. Method Name Semantic Relationships 

The method name comparison criterion explicit the 
relation between the methods names in the design and 
the keywords characterizing the design patterns: 

• Synonym_Meth (K, MC1): Implies that the method 
MC1 of the class C1 in the design is identical or 
synonym to the keyword K, i.e., they have the same 
or synonym names.  

• Inter_Def_Meth (K, MC1): Implies that the 
definition of the keyword K and the definition of the 
method MC1 of the class C1 in the design have 
common words. 

• Meth_name_Includ (K, MC1): Implies that the 
name of the method MC1 of the class C1 contains 
the keyword K.  

• Meth_Def_Contain (K, MC1): Implies that the 
definition of the method MC1 of the class C1 
contains the keyword K.  

3.1.3. Semantic Coverage Metric 

The semantic coverage metric is used to calculate the 
linguistic similarity between a design fragment 
(represented as a set of classes and set of methods 
names) and a particular design (represented as a set of 
characterizing key words, collected manually from its 
documentation).  It is calculated as a weighted sum of 
the number of class names matches and method names 
matches. The weights are needed to reflect the fact that 
a class name carries more or coarser semantic 
information than its method names.    

Let D be a design, CD be a set of classes in the 
design D and MD a set of methods in the design D and 
let KP be the set of names characterizing a pattern P. 
The semantic coverage metric between the design D 
and the pattern P is calculated as follows: 

SemanticCoverage (D, P)= wC *|CD Rel KP|+ wM*|MD Rel KP| 

Where |CD Rel KP|: Is the number of classes in the 

design D which are related to the name list KP 

characterizing the pattern P, through the semantic 

relationships defined above, |MD Rel KP|: Is the number 

of methods in the design D which are related to the 

name list KP characterizing the pattern P, through the 

semantic relationships defined above, and wC, wM: Are 

the weighing factors for the class names and method 

names, respectively. 

Note that, the exact values of the weighing factors 

can be fixed by the designer; appropriate interval 

values should however be determined empirically. In 

our experiment, we suppose that the weighing factor of 

class names is 70% and that of method names is 30%.  

3.2. Sniffing Patterns Syntactically 

Once the semantic sniffing produces a list of candidate 

patterns potentially present in a design, we proceed 

with the syntactic sniffing step. For this step, we 

characterize the design properties (inheritance, 

coupling, complexity, …) of design patterns through a 

correlated set of symptoms that can be captured by a 

set of metrics. Using the list of candidate patterns 

provided by the semantic sniffing step, we calculate 

the values of the syntactic metrics for the design 

fragment that are susceptible to be candidate patterns 

only. We check if these values are coherent with the 

metric’s thresholds that reflect the intention of the 

design pattern. If that is the case, we presume that the 

pattern has a high probability of being present in the 

design. 

Before illustrating this step, we first overview the 

metrics we used. Secondly, we propose a 

characterization of design patterns in terms of a set of 

metrics Table 1. Finally, we show how we determined 

empirically the thresholds of these metrics.  
 

Table 1. Measuring the quality of design patterns with metric. 

D.P OO Design Properties Design Quality Attributes 

Metrics 

Inheritance Coupling Complexity Cohesion 

DIT NOC CBO RFC WMC LCOM 

Mediator 

decrease coupling increase 

complexity increase 

reusability [21, 22] 

Increase reusability [11] 

D
IT
 v
al
u
e 
d
o
es
 n
o
t 
b
ec
o
m
e 
v
er
y
 h
ig
h
 w
h
il
e 
ap
p
ly
in
g
 d
es
ig
n
 p
at
te
rn
s.
 

[3
1
] 

high for the Class 

Colleague 

high Class 

Mediaor [30] 

high for the class 

Concrete Mediaor [30] 

high for the class 

Concrete Mediator 

[30] 

high for the class 

Concrete Mediator 

[30] 

Command decrease complexity [17] increase flexible [17] 
high for the class 

Command [30] 

low for the class 

Invoker 

low for the class 

Invoker 

low for the class 

Concrete Command 

[30] 
- 

Strategy 
increase cohesion [9,9] 

decrease complexity [9] 

increase flexibility increase 

maintainability [17] increase 

Polymorphism [21] 

high for the class 

Strategy [30] 

low for the class 

Strategy 

low for the class 

Concrete Strategy 

low for the class 

Concrete Strategy 

and context [8, 9, 

30] 

- 

State 
increase cohesion [28] 

decrease complexity 

increase flexibility [17] 

increase polymorphism [21] 

high for the class 

State [31] 

low for the class 

State 

low for the class 

Concrete State 

Low for the class 

Concrete State [8] 

does not change 

when applying State 

[31] 

Factory 

Method 
decrease complexity [30] increase flexibility[17] 

high for the classes 

Product and Creator 

high for the class 

Concrete Creator 

[30] 

high for the class 

Concrete Product 

low for the class 

Concrete Factory 

[30] 

- 

Visitor 
decrease complexity [9] 

increase polymorphism [17] 
 

high for the class 

Visitor [30] 

low for the class 

Concret Visitor 

high for the class 

Concrete Visitor [30] 

Low for the class 

element [9] 
- 

Abstract 

Factory 

increase complexity [35] 

decrease coupling; [21] 
increase reusability [17] 

high for the classes 

Abstract Factory 

and Abstract 

Product [30, 35] 

high for the class 

Concrete Factory 

[30, 35] 

high for the classes 

Abstrac tFactory and 

Concrete Factory [35] 

high for the classes 

Abstract Factory 

and Concrete 

Factory [35] 

 

  



Predicting the Existence of Design Patterns based on Semantics and Metrics 

 

 

3.2.1. The Syntactic Metrics Used 

We retained from the metrics suite of [15, 27] the 

following set of metrics: DIT, NOC, CBO, RFC and 

WMC. 

In addition, to the above existing metrics, we 

propose a new metric to filter further candidate 

patterns. The new metric, Number Of Roots (NORoot), 

calculates the number of super classes. This metric is 

inspired from our note that the number of hierarchies is 

one salient characteristic of GoF design patterns [17]. 

For instance, State and Strategy have a single 

hierarchy. Mediator and observer have two hierarchies, 

while AbstractFactory has three hierarchies.  

 

3.2.2. Characterizing Patterns Through Metrics 

As demonstrated in [1, 17, 21, 30] patterns do not 

improve all quality aspects, but each pattern is devoted 

to a certain quality aspect. For example, the Strategy 

pattern mainly promotes polymorphism [28] in 

addition, each created subclass is focused on only one 

job, this in turn increases cohesion. In fact, Strategy 

promotes the “low cohesion principle” while it reduces 

complexity [28]. Translated into metrics, these 

characteristics mean that Strategy reduces WMC [8] 

and decreases CBO and RFC. As a consequence, if the 

CBO and the RFC are high then the Strategy pattern 

does not exist and it is useless to try to identify it. 

We synthesize the relationships of design patterns 

with OO design properties. In our opinion, an 

appropriate instance is one that respects the values of 

metrics required as shown in Table 1.  

3.2.3. Metrics Threshold Values 

Choosing useful metrics and relating them to patterns 

is not enough to ensure that our approach is beneficial, 

it is necessary to fix the threshold values which highly 

influence the efficiency of the sniffing. We should 

caution that, in the software engineering field, in 

general, there is not yet a precise guideline for how to 

fix thresholds. In fact, the threshold problem is far 

from being new. 

Table 2 shows threshold values for the CK metric 

suite [14]. The WMC threshold limit is set to 15 per 

class. The works in [14, 32] suggest a threshold value 

of 6 for DIT and NOC. The threshold limit for CBO 

metric is set to 8 per class. For the RFC metric the 

threshold limit is set to 35 per class, finally the 

threshold limit for the LCOM metric is set to 1 per 

class. Note that, a metric value is considered high if it 

is greater than half of its threshold and it is considered 

low if it is lower than half of its threshold fixed in 

Table 2. 

Table 2. Threshold values for the CK metric suite [15]. 

Metric Threshold 

WMC 0-15 

DIT 0-6 

NOC 0-6 

CBO 0-8 

RFC 0-35 

LCOM 0-1 

3.2.4. The Empirical Study 

We noticed that it is essential to make an empirical 

study on open source projects and software 

architectures reusing different and combined design 

patterns to determine the right thresholds values for 

metrics: JHotDraw v5.1, JRefactoty v1.0 and JUnit 

v3.7 [24, 25, 26] as shown in Tables 3, 4 and 5. 

JHotDraw v5.1 [24] is a two-dimensional graphics 

framework for structured drawing editors. It involves 

many pattern occurrences. JRefactory v1.0 [25] is a 

tool designed to refactor and restructure Java source 

files. JUnit v3.7 [26] is a unit-test framework 

developed to ease the implementation and running of 

unit tests for Java systems.  

Table 3. Calculated metrics for the JUnit v3.7. 

JUnit v3.7 

Design Patterns 

Number 

of 

Instances 

Classes 

Metrics 

Inheritance Coupling Complexity 

NORoot 
DIT NOC CBO RFC WMC 

Min Max Min Max Min Max Min Max Min Max 

Composite 1 

Component 

1 

0 
 

3 
 

3 
 

30 
 

2 
 

Composite 1 2 0 1 1 1 4 48 4 20 

Leaf 1 3 0 2 0 0 4 57 2 24 

Client 0 
 

0 
 

1 
 

21 95 21 
 

Decorator 1 

Component 

1 

0 
 

3 
 

1 
 

71 
 

2 
 

Concrete Component 1 3 0 2 0 0 5 44 0 24 

Decorator 0 0 2 
 

1 0 32 
 

2 
 

Concrete Decorator 1 2 0 2 0 0 17 18 4 6 

Iterator 1 

Aggregate 

2 

0 
 

1 2 1 
 

2 
 

1 
 

Concrete Aggregate 1 2 0 0 2 
 

4 10 2 6 

Iterator 0 
 

1 
 

1 
 

2 
 

0 
 

Concrete Iterator 1 
 

0 0 4 
 

4 
 

2 
 

Client 0 
 

0 
 

2 
 

11 
 

9 
 

Observer 3 

Subject 

2 

0 1 1 3 1 
 

27 71 0 6 

Concrete Subject 1 2 0 0 2 3 9 44 9 21 

Observer 0 0 1 3 1 
 

2 5 0 4 

Concrete Observer 1 2 0 0 1 
 

4 83 0 21 

Singleton 2 Singleton 0 0 0 0 0 0 0 2 18 0 2 

 



The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016                                          

 

 

Table 4. Calculated metrics for the JRefactory v1.0.  

JRefectory v1.0 

Design Patterns 
Number of 

Instances 
Classes 

Metrics 

Inheritance Coupling Complexity 

NORoot 
DIT NOC CBO RFC WMC 

Min Max Min Max Min Max Min Max Min Max 

Adapter 17 

Target 

1 

0   1 10 1 3  11   1 11 

Adapter 1   0 0 1   2  21  1 11 

Client 0 3 0 1 1    4 83  1 33 

Adaptee 0 2 0 4 1   1  71 1 33 

Builder 2 

Director 

1 

0 1 0 0 1 1 14  35  12 32 

Builder 0 0 1 1 1 1  6  20 4 16 

ConcreteBuilder 1 1 0 0 1 1  6  15 4 10 

Product 0 0 0 1 1 1  2  15 0 10 

FactoryMethod 1 

Product 

2 

0   1   0   6  
 

0   

ConcreteProduct 1   0   1   7  
 

7   

Creator 0   1   0   11  
 

1   

ConcreteCreator 1   0   1    6 
 

6   

Singleton 2 Singleton 0 0 0 0 0 0 0 6 18  6   

State 2 

State 

1 

0 0 5 10 1 1  7 7  9 14 

ConcreteState 1 2 0   0 0 3 25  3 8 

Context 0 1 0   1 1  12  83 4 29 

Vistor 2 

Visitor 

2 

0 0 6   1    13 90  13 86 

ConcreteVisitor1 1 4 0 1 0 0 3  106  2 106 

Clement 0 0 9   1    10  15 9 10 

ConcreteElement 1 2 0 8 0 0  4  60 2 33 

Table 5. Calculated metrics for the JHotDraw v5.1. 

JHotDraw v5.1 

Design Patterns 
Number of 

Instances 
Classes 

Metrics 

Inheritance Coupling Complexity 

NORoot 
DIT NOC  CBO RFC WMC 

Min Max Min Max Min  Max Min Max Min Max 

Adapter 1 

Target 

1 

0   1   0    11   11   

Adapter 1 4 0 1 1 2 2  21  2 10 

Client 0 2  0 0 1 4  4 83  3 61 

Adaptee 0 4 0 2 0 1 1  71     

Command 1 

Command 

1 

0   9   4   4    4   

ConcreteCommand 1 2 0   2 2 2 4  2 3 

Invoker 0 2 0 0 1 2  5 19  2 61 

Receiver 0 1 0 2 2 2  3 71  3 40 

Client 0 2 0 4 2 5 36  95  16 61 

Composite 2 

Component 

1 

 0 1 2   9   71    32   

Composite 3 5 0 3 1 1 4  48  4 33 

Leaf 1 6 0 2 0 2 4  57  3 38 

Client 0 5 0 4 1 1  2 95  2 52 

Decorator 1 

Componenet 

1 

0 1  2   9   71    32   

ConcreteComponent 1 5 0 2 0 1  5 44  5 34 

Decorator 1 3  2   1   32    31   

ConcreteDecorator 2 4  0 0 0 0  17 18  8 10 

FactoryMethod 3 

Product 

2 

0 1 4 17 0 0 6  11  6 11 

ConcreteProduct 2 4 0 3 1 1 4  11  2 8 

Creator 1 1 11 26 0 3 11  71  11 32 

ConcreteCreator 1 6 0 4 1 1  12 71  7 38 

Observer 2 

Subject 

2 

0 1 1 2 1 4  27 71  27 32 

ConcreteSubject 1 6 0 2 0 1  4  44 4 34 

Observer 0 0 1 4 0 0 2  5  2 5 

ConcreteObserver 1 5 0 0 1 5 4  83  1 38 

Prototype 2 

Prototype 

1 

1 2 
 

1 0 4 15 71 15 32 

ConcretePrortype 2 6 0 2 0 2 4 57 5 38 

Client 1 3 0 2 1 1 9 71 8 18 

Singleton 2 Singleton 0 0 0 0 0 0 0 4  18  4 9  

State 2 

State 

1 

0 0 1 1 1 2  7 7  7 7 

ConcreteState 1 4 0 11 0 0 3 25  2 18 

Context 2 2 0 1 1 1  12  83 7 61 

Strategy 2 

Strategy 

1 

0 1 1 3 1 2  1 6  1 6 

ConcreteStrategy 1 4 0 3 0 0  1 11  1 8 

Context 1 4 0 2 1 1 5 83  5 61 

TemplateMethod 2 
AbstractClass 

1 
0 2 4 6 0 1  26 42  12 35 

ConcreteClass 1 6 0 2 0 2  5 57  4 61 

 

Tables 3, 4 and 5 present the patterns existing in 

each open source systems, their number of occurrences 

and the calculated metrics for each design pattern. 

Note that, for these open source systems, the pattern 

instances are extracted from documentation and also, 

identified manually by experts as presented in [11,  

19]. We noticed from Tables 3, 4 and 5 that, for each 

design pattern, we got different metric’s values which 



Predicting the Existence of Design Patterns based on Semantics and Metrics 

 

 

are in perfect agreement with the thresholds shown in 

Table 5. For example, for the command instance in the 

JHotDraw v5.1, we find that NORoot is equal to 1, the 

DIT values of all classes of the design are not very 

high (in the interval [0, 2]) and the NOC of the class 

playing the role of Command is high (it is equal to 9). 

The CBO of the classes playing the role of Invoker is 

low (in the interval [1, 2]), the RFC of the classes 

playing the Invoker role is low (in the interval [5, 19]), 

and the WMC of the classes playing the role of 

Concrete Command is low (in the interval [2, 3]). 

Hence, to detect the Command pattern, we apply the 

following rule:  

• RuleCmd: The Command design pattern is 

susceptible to be present in a design fragment D, if 

there is a set of classes, C1, …, Cn, in to the design 

fragment D such that: 

{NORoot (D)=1} 

{0<DIT(C1, …, Cn)< 3} 

{Synonym(C1,Command) or Name_Includ (“Command”, 

C1) and (2<NOC(C1)<9)}  

{Synonym(C2, Invoker) or Name_Includ(“Invoker”, C2) 

and/or (0<RFC(C2)<17)} and {(0<CBO(C2)<4)} and 

{Synonym (C3, ConcreteCommand) or Name_Includ 

(“ConcreteCommand”, C3) and (2< WMC(C2< 3)}. 

 

3.2.5. Example: Syntactic Sniffing of the Command 

Design Pattern 

In the semantic sniffing of the design D of Figure 1 

with the command design pattern, we calculate the 

semantic coverage metric. Semantic_Coverage (D, 

Command)=5. After the semantic sniffing, we proceed 

to the syntactic phase. To illustrate the syntactic 

sniffing of the Command design pattern, we apply the 

rule RuleCmd which allows the detection of the 

Command design pattern. 

 

Figure 1. Design example showing an application instantiating the 

design pattern. 

  

Using class name semantic relationships, we found 

that: Synonym (Command, Command) then the 

Command class is identified as: Command, 

Name_Includ (“Invoker”, InvokerButton) 

Name_Includ (“Invoker”, InvokerMenu) therefore, the 

classes InvokerButton and InvokerMenu are identified 

as Invoker. In the same manner the classes Bring To 

Front Command, Change Attribute Command, Copy 

Command and Insert Image Command are identified as 

Concrete Command. Simultaneously, we calculate the 

CK metrics for the classes of the design D1, we find 

that NORoot is equal to 1 and the DIT values of all 

classes of the design are not very high, they are in the 

interval [0, 1] and the NOC of the class Command 

playing the role of Command is high since, it is equal 

to 4. The CBO of the classes Invoker Button and 

Invoker Menu playing the role of Invoker are low, it is 

equal to 1, and WMC of the classes Bring To Front 

Command, Chang Attribute Command, Copy 

Command, Insert Image Command playing the role of 

Concrete Command is low, it is equal to 3.  

4. Tool Support 

The Pattern Sniffer toolset whose functional 

architecture is shown in Figure 3 reuses the Argo UML 

editor [7]. The principal activities performed by Pattern 

Sniffer, are essentially composed of four parts: The 

extraction of design tree, the design decomposition, the 

semantic pattern sniffing and the Syntactic pattern 

sniffing. 
The module of “extraction of design tree” parses the 

XMI file representing the UML design (class diagram 

and sequence diagrams) and extracts important 

information (class name, attribute name, operation 

name, message name, message sender, message 

receiver, …). This extraction is done thanks to an 

XSLT processor.  

Once the XML tree is generated, the decomposition 

process begins. The design decomposition starts from 

the abstract class and its descendants, then for each 

class belonging to the obtained hierarchies, its 

associated classes are also chosen. 

After decomposing the design fragment, the 

semantic sniffing process is performed for each sub 

design. It calculates the semantic coverage metric 

using the already generated XML file.  

To illustrate the steps of our method and the various 

functionalities of the Pattern Sniffer, let us consider the 

design fragment illustrated in Figure 2. We first 

decompose it; the decomposition produced the two sub 

designs as shown in Figure 2. The third step is the 

semantic and syntactic sniffing of the sub-designs. 

After decomposing the design fragment, the sniffing 

process is performed for each sub design. Due to space 

limitation, in the remainder of the paper, we will 

present our approach on the Sub-Design 2 (SD2).  



The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016                                          

 

 

Figure 2. A design fragment example.

 

 

 

 

 

 

 

 

 

 

 ArgoUML 

 

Syntactic Sniffing 

Calculating of syntactic 

metrics 

Generation of syntactic 

sniffing report 

Metrics: 

NORoot, NOC, 

CBO, RFC, DIT, 

WMC 

Semantic Sniffing 

WordNet 

dictionnary 

Calculating of the 
Semantic_Coverage metric : 

Semantic relationships checking 

Generation of semantic 

sniffing report 

UML Design.XMI 

UML Design.XML 

Extraction of design tree 

Design decomposition 

Figure 3. Conceptual architecture of the patternsniffer 

The semantic sniffing on SD2 

semantic coverage metric values shown in Figure 4.

In order to, calculate the semantic-

SD2 with the Strategy design pattern, we are 

in the classes, attributes and method’s semantic aspect. 

Thus, the tool used the Word Net dictionary. We found 

that: Name_includ (“Strategy”, Strategy

Def_Contain(BusStrategy,”way”)Meth_Def_Contain

Behavior”, MoveCarStrategy).SemanticCoverage

Strategy)= 3*0.7+2*0.3= 2.7. 

 

Figure 4. Semantic coverage metrics for the sub

 

In the same way, we calculated the semantic 

coverage of the SD2 with the state design patterns. 

Using WordNet dictionary, we found that: 

Meth_Def_Contain (“State”, Move Car

The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016                                          

 

Figure 2. A design fragment example. 

 

 

 

 

 

the patternsniffer tool. 

SD2 produces the 

semantic coverage metric values shown in Figure 4. 

-coverage of the 

trategy design pattern, we are interested 

semantic aspect. 

Net dictionary. We found 

“Strategy”, Strategy Vehicule), 

Meth_Def_Contain(“

SemanticCoverage(SD2, 

 

overage metrics for the sub-design 2. 

In the same way, we calculated the semantic 

2 with the state design patterns. 

we found that: 

“State”, Move Car Strategy) and 

Meth_Def_Contain (“State”, Move Bus

semantic coverage (SD2, State

The final list will be organized in terms of the semantic 

coverage (suitability) as shown in 

design patterns. Consequently, the detection step will 

focus on identifying the final, ordered list of candidate 

patterns is (Strategy, State). 

Figure 5. Semantic sniffing report

 

Figure 6 illustrates a screen shot of Pattern

presenting the calculated metrics for the 

noticed that the syntactic sniffing proves that the

is likely to contain the strategy pattern instances.

Figure 6. Calculated metrics on the sub design 2

5. Conclusions 

This paper proposes a new method that uses the 
K metrics proposed by [15]
coverage metric to determine the most probable 
correspondences between the design elements and the 
patterns. In addition, to predicting the possibility o
existence of design patterns,
determines the existence probability of each candidate 
design pattern. 

The semantic resemblance determination obviously 
assumes that the design uses the same language as the 
design patterns. To widen the appl
approach, we will look into integrating a translation 
preliminary step to harmonize the languages of the 
design and patterns. Such a step can make use of 
existing powerful automatic translators; nevertheless, 
designers would need to interv
translation results because the design terminology 
often depends on the application domain.    

The presented experimental evaluation on open 
source code showed that our approach can predict 
design patterns. To demonstrate its
quantitatively, we are 
performance of our prediction method in terms of 
recall and precision. This evaluation will cover both 
open source applications (where pattern reuse is often 
well applied by experienced developers

The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016                                          

“State”, Move Bus Strategy). The 

SD2, State)= 0*70%+2*30%= 0.6. 

The final list will be organized in terms of the semantic 

as shown in Figure 5 of each 

design patterns. Consequently, the detection step will 

focus on identifying the final, ordered list of candidate 

.  

 
 

Semantic sniffing report. 

Figure 6 illustrates a screen shot of Pattern Sniffer 

presenting the calculated metrics for the SD2. We 

noticed that the syntactic sniffing proves that the SD2 

is likely to contain the strategy pattern instances. 

 

Figure 6. Calculated metrics on the sub design 2. 

This paper proposes a new method that uses the C and 
[15] and defines a semantic 

coverage metric to determine the most probable 
correspondences between the design elements and the 

to predicting the possibility of 
existence of design patterns, our method also 
determines the existence probability of each candidate 

The semantic resemblance determination obviously 
assumes that the design uses the same language as the 

To widen the applicability of our 
approach, we will look into integrating a translation 
preliminary step to harmonize the languages of the 

Such a step can make use of 
existing powerful automatic translators; nevertheless, 
designers would need to intervene to validate the 
translation results because the design terminology 
often depends on the application domain.     

The presented experimental evaluation on open 
source code showed that our approach can predict 

To demonstrate its efficiency 
 currently evaluating the 

performance of our prediction method in terms of 
This evaluation will cover both 

where pattern reuse is often 
well applied by experienced developers) and new 



Predicting the Existence of Design Patterns based on Semantics and Metrics 

 

 

designs produced by non-experienced developers and 
hence the probability of pattern reuse would be lower.  

 

References 

[1] Abul Khaer M., Hashem M., and Masud R., “On 

Use of Design Patterns in Empirical Assessment 

of Software Design Quality,” in Proceedings of 

International Conference on Computer and 

Communication Engineering, Kuala Lumpur, 

Malaysia, pp. 133-137, 2008. 

[2] Ampatzoglou A., Charalampidou S., and 

Stamelos I., “Research State of the Art on GoF 

Design Patterns: A Mapping Study,” Journal of 

Systems and Software, vol. 86, no. 7, pp. 1945-

1964, 2013. 

[3] Ampatzoglou A., Frantzeskou G., and Stamelos 

I., “A Methodology to Assess the Impact of 

Design Patterns on Software Quality,” Journal of 

Information and Software Technology, vol. 54, 

no. 4, pp. 331-346, 2012. 

[4] Antoniol G., Fiutem R., and Cristoforetti L., 

“Using Metrics to Identify Design Patterns in 

Object-Oriented Software,” in Proceedings of the 

5
th 
International Symposium on Software Metrics, 

Maryland, USA, pp. 23-34, 1998. 

[5] Arcelli F. and Maggioni S., “Metrics-Based 

Detection of Micro Patterns to Improve the 

Assessment of Software Quality,” in Proceedings 

of the 1
st
 Symposium on Emerging Trends in 

Software Metrics, Srdinia, Italy, pp. 50-59, 2009. 

[6] Arcelli F., Perin F., Raibulet C., and Ravani S., 

“JADEPT: Dynamic Analysis for Behavioral 

Design Pattern Detection,” in Proceedings of the 

4
th
 International Conference on Evaluation of 

Novel Approaches to Software Engineering, 

Milan, Italy, pp. 95-106, 2009. 

[7] ArgoUML., available at: http://argouml.softonic. 

fr/, last visited 2013.  

[8] Ayata M., “Effect of Some Software Design 

Patterns on Real Time Software Performance,” A 

Master’s Thesis, the Graduate School of 

Informatics of Middle East Technical University, 

2010. 

[9] Aydinoz B., “The Effect of Design Patterns on 

Object Oriented Metrics and Software Error-

Proneness,” Master’s Thesis, The Graduate 

School of natural and applied sciences of Middle 

East Technical University, 2006. 

[10] Belderrar A., Kpodjedo S., Guéhéneuc Y., 

Antoniol G., and Galinier P., “Sub-Graph 

Mining: Identifying Micro-architectures in 

Evolving Object-oriented Software,” in 

Proceedings of the 15
th
 European Conference on 

Software Maintenance and Reengineering, 

Oldenburg, Germany, pp. 171-180, 2011. 

[11] Bieman J., Straw G., Wang H., Munger W., and 

Alexander T., “Design Patterns and Change 

Proneness: An Examination of Five Evolving 

Systems,” in Proceedings of the 9
th
 International 

Software Metrics Symposium, Sydney, Australia, 

pp. 40-49, 2003. 

[12] Blondel D., Gajardo A., Heymans M., Senellart 

P., and Dooren V., “A Measure of Similarity 

between Graph Vertices,” Applications to 

Synonym Extraction and Web Searching, vol. 46, 

no. 4, pp. 647-666, 2004. 

[13] Bouassida N. and Ben-Abdallah H., “Structural 

and Behavioral Detection of Design Patterns,” in 

Proceedings of International Conference on 

Advanced Software Engineering and its 

Applications, Jeju Island, Korea, pp. 16-24, 2009. 

[14] Chandra P. and Edith L., “Class Break Point 

Determination using CK Metrics Thresholds,” 

Global Journal of Computer Science and 

Technology, vol. 10, no. 14, pp. 73-7, 2010. 

[15] Chidamber S. and Kemerer C., “A Metrics Suite 

for Object Oriented Design,” IEEE Transactions 

on Software Engineering, vol. 20, no. 6, pp. 476-

493, 1994. 

[16] De Lucia A., Deufemia V., Gravino C., and Risi 

M., “Improving Behavioral Design Pattern 

Detection through Model Checking,” in 

Proceedings of the 14
th
 European Conference on 

Software Maintenance and Reengineering, 

Madrid, Spain, pp. 176-185, 2010. 

[17] Gamma E., Helm R., Johnson R., and Vlissides 

J., Design Patterns: Elements of Reusable Object 

Oriented Software, Addisson-Wesley, 1995. 

[18] Guéhéneuc Y. and Antoniol G., “DeMIMA: A 

Multilayered Approach for Design Pattern 

Identification,” IEEE Transactions on Software 

Engineering, vol. 34, no. 5, pp. 667-684, 2008. 

[19] Guéhéneuc Y., Sahraoui H., and Zaidi F., 

“Fingerprinting Design Patternséé,” in 

Proceedings of the 11
th
 Working Conference on 

Reverse Engineering, Eindhoven, Netherlands, 

pp. 172-181, 2004. 

[20] Hernandez J., Kubo A., and Washizaki H., 

“Selection of Metrics for Predicting the 

Appropriate Application of Design Patterns,” in 

Proceedings of the 2
nd
 Asian Conference on 

Pattern Languages of Programs, Tokyo, Japan, 

pp. 5-8, 2011. 

[21] Hsueh N., Chu P., and Chu W., “A Quantitative 

Approach for Evaluating the Quality of Design 

Patterns,” the Journal of Systems and Software, 

vol. 81, no. 8, pp. 1430-1439, 2008. 

[22] Huston B., “The Effects of Design Pattern 

Application on Metric Scores,” the Journal of 

Systems and Software, vol. 58, no. 3, pp. 261-

269, 2001. 

[23] Issaoui I., Bouassida N., and Ben-Abdallah H., 

“A Design Pattern Detection Approach Based on 

Semantics,” in Proceedings of the 10
th
 

International Conference on Software 



The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016                                          

 

 

Engineering Research, Management and 

Applications, Shangai, China, pp. 49-63, 2012. 

[24] JHotDraw., available at: http://www.jhotdraw. 

org, last visited 2013. 

[25] JRefactory., available at: 

http://jrefactory.sourceforge.net/, last visited 

2013. 

[26] JUnit., available at: http://www.junit.org, last 

visited 2013.  

[27] Kuljit K. and Hardeep S., “Investigation of 

Design Level Class Cohesion Metrics,” the 

International Arab Journal of Information 

Technology, vol. 9, no. 1, pp. 66-73, 2012. 

[28] Larman C., Applying UML and Patterns: An 

Introduction to Object-Oriented Analysis and 

Design and Iterative Development, Addison 

Wesley, 2004. 

[29] Maggioni S. and Arcelli F., “Metrics-Based 

Detection of Micro Patterns,” in Proceedings of 

ICSE Workshop on Emerging Trends in Software 

Metrics, Cape Town, South Africa, pp. 39-46, 

2010. 

[30] Masuda G., Sakamoto N., and Ushijima K., 

“Evaluation and Analysis of Applying Design 

Patterns,” available at: http://nanotsu.ait.kyushu-

u.ac.jp/IWPSE99/Proceedings/27.pdf, last visited 

2013. 

[31] Reißing R., “The Impact of Pattern Use on 

Design Quality,” available at: 

http://citeseerx.ist.psu.edu/viewdoc/download?do

i=10.1.1.21.9968&rep=rep1&type=pdf, last 

visited 2001.  

[32] Riel J., Object-Oriented Design Heuristics, 

Addison Wesley, 1996. 

[33] Tsantalis N., Chatzigeorgiou A., Stephanides G., 

and Halkidis T., “Design Pattern Detection using 

Similarity Scoring,” IEEE Transactions on 

Software Engineering, vol. 32, no. 11, pp. 896-

909, 2006. 

[34] Venners B., “How to Use Design Patterns-a 

Conversation with Erich Gamma, part I,” 

available at: 

http://www.artima.com/lejava/articles/gammadp.

html, last visited 2013. 

[35] Vernazza T., Granatella G., Succi G., 

Benedicenti L., and Mintchev M., “Defining 

Metrics for Software Components,” in 

Proceedings of World Multi Conference on 

Systemics, Cyberneti58cs and Informatics, 

Florida, USA, pp. 16-23, 2000. 

[36] WordNet., available at: 

https://wordnet.princeton.edu/, last visited 2013.   

 

 

 

 

 

Imene Issaoui is preparing a 

Doctorate degree in Computer 

Science at the Faculty of Economic 

Sciences and Management of Sfax, 

Tunisia. She is a Teaching Assistant 

at the Institut Preparatory to 

engineering studies of the University 

of Monastir, Tunisia.  

Nadia Bouassida received a Phd in 

Computer and Information Science 

from the University of Science of 

Tunis, Tunisia. Currently, she is 

Assistant Professor at the 

Department of Computer Science of 

the Institut Supérieur d'Informatique 

et du Multimédia at the University of Sfax, Tunisia. 

She is a member of the Multimedia, Information 

systems and Advanced Computing Laboratory, 

University of Sfax Her research interests include reuse 

techniques, such as design patterns, Frameworks and 

Software Product Lines. 

Hanene Ben-Abdallah received a 

BS degree in Computer Science and 

BS degree in Mathematics from the 

University of Minnesota, MPLS, 

MN, a MSE and PhD degrees in 

Computer and Information Science 

from the University of Pennsylvania, 

PA. She worked at University of Sfax, Tunisia from 

1997 until 2013. She is now full professor at the 

Faculty of Computing and Information Technology, 

King Abdulaziz University, Kingdom of Saudi Arabia. 

She is a member of the Multimedia, Information 

Systems and Advanced Computing Laboratory, 

University of Sfax. Her research interests include 

software design quality, reuse techniques in software 

and business process modelling.   

 

 

 

 
 


