
The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016 471

Securing RSA Algorithm against Timing Attack

Amuthan Arjunan, Praveena Narayanan, and Kaviarasan Ramu

Department of Computer Science and Engineering, Pondicherry Engineering College, India

Department of Information Technology, Alpha College of Engineering and Technology, India

Department of Computer Science and Engineering, Alpha College of Engineering and Technology, India

Abstract: Security plays an important role in many embedded systems. All security based algorithms are implemented in
hardware or software, and on physical devices which interact with the systems and influenced by their environments. The

attacker extracts, investigate and monitor these physical interactions and extracts side channel information which is used in

cryptanalysis. This type of cryptanalysis is known as side channel cryptanalysis and attacks performed by using this method is

known side channel attacks. There are different types of side channel attacks based on side channel information like time,

power, electromagnetic information and faulty output emitted from the cryptographic devices during implementation. The

attack that occurs based on the run-time by which the information gained from physical characteristics of cryptosystems to

retrieve the secret key is known as the timing attack. The side channel attacks are vulnerable to both symmetric and

asymmetric algorithms. RSA is an asymmetric algorithm which plays an important role in most of the applications, but this

algorithm is vulnerable to timing attack. So a new technique is proposed called “Randomness Algorithm” and Optical

Asymmetric Encryption Padding (OAEP) technique to improve the robustness of RSA algorithm against timing attack, by

introducing randomness in computation of decryption process to make the timing information unusable to the attacker.

Keywords: Cryptanalysis, side channel attacks, timing attack, RSA, OAEP.

Received September 13, 2013; accepted March 20, 2014; published online August 22, 2015

1. Introduction

An embedded system is a special-purpose computer
system designed to perform a dedicated function.
Embedded systems are designed to do some specific
task, rather than a general purpose computer which is
designed for multiple tasks. Embedded System has
software that is embedded into computer hardware,
which makes the system dedicated for applications or
specific part of an application or part of a larger system.
Many modern electronic systems including personal
computers, PDAs, cell phones, network routers, smart
cards, and network sensors which are used to access,
store, manipulate, or communicate sensitive
information, making security a serious concern in their
design. In embedded system, security is one of the
major concerns because the system is vulnerable to
both mathematical and implementation attacks. One of
the implementation attacks is side channel attacks.
Designing a secured cryptographic algorithm in order
to overcome the side channel attacks in the embedded
system is a challenging task. The weakness of
cryptographic algorithm is mainly due to the
environmental factors like running, performance
optimizations, computations performed during a
cryptographic algorithm of embedded systems.
A side channel attack [11] is defined as any

observable information which is emitted as a by
product of the physical implementation of the
cryptosystem. Information leaked via side channels can
be any one of the following namely time, power
consumption, faulty outputs and electromagnetic
radiation of cipher devices. Side channel attacks have

been proved to be extremely powerful since they are
practical and relatively easier to mount with less
constrain due to the complexity of the algorithm [3].
These attacks don’t require exhaustive resource and
time to launch the attack, which is considered as
important threats against modern cryptographic
implementations. Side channel attack is more
vulnerable to private key as well as public key
cryptography which breaks the cryptosystem by
inferring the secret key using statistics of phenomena
such as timing, power and electromagnetic radiation.
Timing attack is a type of side channel attack, in
which the attacker attempts to compromise a
cryptosystem by analyzing the time taken to execute
cryptographic algorithms. The RSA algorithm is used
in almost all applications in modern days. RSA is
considered as one of the secure public key
cryptography which overcomes the mathematical
attack and faces security threats in the implementation
attack namely timing attack [5]. This attack reveals the
secret key of the users and breaks the entire
cryptosystem. So, there is need to provide a better
solution for mitigating the RSA from timing attack.
The organization of paper is as follows: Section 2

discusses on overview of side channel attack and
different types of side channel attack. Section 3 gives
a complete description on the techniques used by
various researchers to mitigate side channel attack.
Section 4 discusses on the attack chosen in RSA
algorithm. Section 5 discusses on the proposed
technique used to mitigate RSA algorithm. Section 6
discusses on the performance analysis of the proposed

472 The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016

algorithm against timing attack. Conclusion and future
work are given in the final section.
The section below discusses on the type of side

channel attack.

2. Overview of Side Channel Attack

Side channel attack exploits cryptographic modules
information which is extracted from the implementation
of the cryptographic primitives and protocols. This
characteristic information can be extracted from timing,
power consumption or electromagnetic radiation features
[3]. These attacks make use of the characteristics of the
hardware, software elements as well as the
implementation structure of the cryptographic primitive.
Therefore, in contrast to analyzing the mathematical
structure and properties of the cryptographic primitives,
side channel also analyze the implementation features.
Figure 1 represents the hierarchical representation of

side channel attack which breaks the implementation of

cryptosystem, signature scheme, message authentication

and even cryptographic protocols. Some of the known

side channel attacks are timing attack, fault attacks,

power analysis attack, electromagnetic attack, optical

side channel attacks, traffic analysis attacks, acoustic

attacks and thermal imaging attacks.

Figure 1. Hierarchical representation of Side channel attack.

2.1. Timing Attack

Timing attack is the attack in which the attacker
attempts to compromise a cryptosystem by analyzing
the time taken to execute the cryptographic algorithms
[6]. Every logical operation in a computer takes time to
execute, and that time can differ based on the input.
Implementations of the cryptographic algorithms

often perform computations in non-constant time, due
to performance optimizations. If such operations
involve secret parameters, these timing variations can
leak some information and, provided enough
knowledge of the implementation which as a form of
statistical analysis it could even lead to the total
recovery of these secret parameters.
A timing attack is a way of obtaining some user's

private information by carefully measuring the time it

takes by the user to carry out cryptographic
operations. The principle of this attack is very simple
and exploits the timing variance in the operation.

2.2. Fault Attack

Fault attack is an active attack which consists of

tampering the crypto device in order to create faults

and allow them to perform some erroneous operation

[2]. This erroneous output will leak information about

the secret key used in the crypto device. Two types of

faults are used to retrieve the secret key. They are

permanent fault and transient fault.

2.3. Power Attack

Power attack is a form of attack in which the attacker
studies the power consumption of a cryptographic
device. The attack can non-invasively extract
cryptographic keys and other secret information from
the device [5]. In addition to its running time and its
faulty behaviour, the power consumption of a
cryptographic device may provide much information
about the operations that take place and the involved
parameters. Certainly, power analysis attack is
applicable only to hardware implementation of the
cryptosystems. Power analysis attack is particularly
effective and proven successful in attacking smart
cards or other dedicated embedded systems storing the
secret key.
The below section describes the various techniques

used by the researchers to mitigate side channel attack.

3. Survey on Side Channel Attack

Carlos Morino and M. Anwar Hasan [8] proposed the

solution for timing attack. In this paper they proposed

a counter measure consisting of ideal-weight to make

the decryption time in-dependent of the data. The goal

of this method is to increase performance penalty

when compared to existing blinding method.

Kopf and Durmuth [8] proposed the novel counter

measure for timing attack. The amount of information

about the key by an unknown message using which

the attacker can extract from the deterministic side

channel is bounded from above by |O|log2(n+1) bits

where O is set of possible observation, N is the

number of side channel measurement. This method

leads to implementation with minor performance

overhead and formal security guarantees.

Chen et al. [4] proposed a technique for mitigating

timing attack on RSA, which summarizes several

algorithm used to secure RSA implementation like

binary algorithm, CRT algorithm, Montogomery

reduction Karatsuba multiplication and how timing

attack can be used to reconstruct the entire secret RSA

exponent. To prevent differences of the running time,

the private key operations takes the same amount of

time used as a counter measure called as equal timing.

Breaking The

Implementatio

Side Channel Attacks

Cryptosystem
Signature

Scheme

Message

Authentication Code

Cryptographic

Protocols

Block Cipher

Stream Cipher

Public Key Cipher

Securing RSA Algorithm against Timing Attack 473

Giraud proposed [5] a technique to counteract with
Fault Attack by presenting a new way to implementing
exponentiation algorithms. This method can be used to
obtain fast FA-resistant RSA signature generations in
both the Straightforward Method and Chinese
Remainder Theorem modes. The new exponentiation
algorithm only adds two modular multiplications and
four checksum computations during modular
exponentiation of RSA algorithm. This overhead is
negligible compared to the cost of the whole
exponentiation. Our paper focuses on to protect RSA
from timing attack. To overcome the timing attack on
RSA proposed two solutions to prevent chosen cipher
text attack, time variation and data dependency. First
one is padding scheme called Optical Asymmetric
Encryption Padding (OAEP) is used before encryption
process to prevent chosen cipher text attack and
Randomness algorithm is used before decryption
process to prevent non fixed time computation in RSA.
From the survey it is quite evident that the

techniques discussed is not that much efficient in

mitigating side channel attack. So, a new technique is

devised in order to make RSA more secure.

4. Problem Undertaken

RSA is asymmetric algorithm most widely used in
public key cryptography. The RSA Algorithm was
named after Ronald Rivest, Ali and Al-Salami [1], who
first published the algorithm in 1977. Since that time,
the algorithm has been employed in Internet electronic
communications encryption program namely, PGP,
Netscape Navigator and Microsoft Explorer web
browsers in their implementations of the Secure
Sockets Layer (SSL), MasterCard and VISA in the
Secure Electronic Transactions (SET) protocol for
credit card transactions. The security of the RSA
system is based on the intractability of the integer
factorization problem. It is very quick to generate large
prime numbers using probabilistic algorithms and
Rabin-Miller test but very hard to factorise large
numbers.

3.1. Modular Exponentiation

Once an RSA cryptosystem is set up, i.e. the modulus
n, the private exponent d, public exponent e are
determined and the public components have been
published, the senders as well as the recipients perform
a single operation for encryption and decryption. In
RSA encryption or decryption, the core part of the
algorithm which takes up much time in the modular
exponentiation. Especially in decryption, M=C

d
(mod n)

and since d is generally a big number. For the
decryption to run acceptably, speeding up of modular
exponentiation is very important.

3.2. Timing Attack Against RSA

In RSA, cryptographic operation in modular
exponentiation takes discretely different amount of time

to process different inputs. The input (m) and secret
key (d) during encryption and decryption process
takes different amount of time to execute [5]. Due to
this, the attacker observes the operation and notes the
time taken during the process and finds the
corresponding cipher text or plaintext.
The operation in RSA involves in generating the

private key is thus the modular exponentiation
M=C

d
 mod N, where N is the RSA modulus, C is the

text to decrypt or sign, and d is the private key. The
attacker’s goal is to find d. For a timing attack, the
attacker needs to compute C

d
 mod N for several

carefully selected values of C. By precisely measuring
the amount of time required and analyzing the timing
variations, the attacker can recover the private key d
one bit at a time until the entire exponent is known.
Add and multiply algorithm is used to perform
modular exponentiation of existing RSA.
Timing attack on RSA is mainly due to chosen

cipher text attack, non fixed time computation, and
data dependency of decryption process. So, analyze
the encryption and decryption time for different bits of
RSA. From the analysis the encryption time remain
constant for different bits but the decryption time may
vary depend upon the key size. The variation in key
size makes the attacker to guess the value of bits size
and break the cryptosystem by retrieve the secret key
used in decryption process.
Section 5 depicts the proposed technique to

mitigate timing attack in RSA.

5. Proposed Solution

To overcome the timing attack on RSA two
techniques are proposed to prevent chosen cipher text
attack, time variation and data dependency. First one
is padding scheme called OAEP is used before
encryption process to prevent chosen cipher text attack
and Randomness algorithm is used before decryption
process to prevent non fixed time computation in
RSA.

Figure 2. Proposed methods to overcome timing attack.

Figure 2 shows the proposed method consists of
two modules OAEP technique and Randomized
algorithm used before and after the encryption and the

Randomised

Algorithm

Decryption Time Analysis

To overcome

chosen Cipher text

attack

To Prevent Non Fixed

Time Computation

256 bit RSA

OAEP Encryption

512 bit RSA

1024 bit RSA

474 The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016

decryption process to overcome the timing attack for
different bits of RSA.

3.3. OAEP Technique

RSA is vulnerable to chosen cipher text attack, to
overcome the chosen cipher text attack, padding
method called Optimal Asymmetric encryption padding
is used. It is a basic Feistel network system and ends up
doing a mixture of permuting the plaintext, and adding
pseudo random noise to it [11]. It’s a reversible
transformation and the receiver of the encrypted
message knows how to do the reversal of the padding,
to decrypt the plaintext. This algorithm uses a pair
of random oracles G and H to process the plaintext
prior to asymmetric encryption. It increases the size of
the messages which guarantees that the encrypted
messages are large enough that will not be easy to use
for any attack and intersperses pseudo random
information that a given Plaintext is encrypted to a
wide range of different cipher texts, depending on the
choice made during padding.

3.4. Randomized Algorithm

To prevent the non fixed time computation and data
dependency randomness is introduced into the
computation to make the timing information unusable.
This method will work for both encryption and
decryption process or even during signature process.
Randomness is introduced into the RSA

computations to make timing information unusable.
Instead of decrypting the original cipher text C

d
 mod N,

add new variable A to decryption process and calculate
A
d
 mod N, before doing the above process calculate the

value of A with known values, A=g
e
 C mod N where C

is cipher text get after the padding method (not original
Cipher text) and e is public exponent and g value
depends upon the key size of different RSA.
After applying this algorithm in decryption process it

produce the decryption time as some blurred time and
makes timing information unusable to attacker.
Because for any size of RSA like 256, 512 or 1024bit
produce the decryption time as blurred time. So from
this analysis of timing information the attacker may not
even guess the key range of RSA which is basic
information to break the cryptosystem.

6. Experimental Results

RSA is implemented using java. Different bits of RSA
like 256bit, 512 and 1024bits is implemented, their
encryption time and decryption time are analyzed for
performing timing attack.
For generating large prime values java.math.

BigInteger class is used. The java.math.BigInteger class

provides operations analogues to all of Java’s primitive

integer operators and for all relevant methods from

java.lang.Math. It also provides operations for modular

arithmetic, GCD calculation, primality testing, prime

generation, bit manipulation, and a few other

miscellaneous operations. The

java.util.SecureRandom class is used to get a

cryptographically secure pseudo random number

generator used for securing sensitive applications.

Depending upon the processor utilized the time for

encryption and decryption may vary. But prediction of

decryption time is possible due to non fixed

computation of the exponential algorithm.

Table 1 represents the existing 256bit

implementation of RSA. The prime values of p and q

are taken as 128bit size each with key size of

maximum of 15 digits and note the encryption as well

as decryption time. From the analysis, encryption time

remains constant and decryption time vary depends

upon the key size.

Table 1. Existing 256bit RSA time analysis.

P

(Bit Size)

Q

(Bit Size)

Encryption Time

(Ms)

Decryption

Time(Ms)

Key Size

(Digits)

128 128 2 1 5

128 128 2 1 4

128 128 2 2 15

128 128 2 2 8

Table 2 represents the existing 512bit

implementation of RSA. The prime values of p and q

are taken as 256bit size each with key size of

maximum of 15 digits and note the encryption as well

as decryption time. From the analysis, encryption time

remains constant and decryption time vary depends

upon the key size.

Table 2. Existing 512bit RSA time analysis.

P

(Bit Size)

Q

(Bit Size)

Encryption Time

(Ms)

Decryption

Time (Ms)

Key Size

(Digits)

256 256 5 8 15

256 256 5 7 10

256 256 5 7 8

256 256 5 5 6

Table 3 represents the existing 1024bit

implementation of RSA. The prime values of p and q

are taken as 512bit size each with key size of

maximum of 15 digits and note the encryption as well

as decryption time. From the analysis, encryption time

remains constant and decryption time vary depends

upon the key size

Table 3. Existing 1024bit RSA time analysis.

P

(Bit Size)

Q

(Bit Size)

Encryption Time

(Ms)

Decryption

Time (Ms)

Key Size

(Digits)

512 512 60 32 15

512 512 60 31 10

512 512 60 30 8

512 512 60 30 6

Table 4 represents the proposed 256bit

implementation of RSA. The prime values of p and q

are taken as 128bit size with key size of maximum of

15 digits and note the encryption as well as decryption

time. From the analysis, encryption time remains

constant and produced decryption time is the blurred

time to achieve the constant time execution.

Securing RSA Algorithm against Timing Attack 475

Table 4. Proposed 256bit RSA time analysis.

P

(Bit Size)

Q

(Bit Size)

Enyption Time

(Ms)

Blurred Time

(Ms)

Key Size

(Digits)

128 128 2 1366130282065 5

128 128 2 1366130130299 4

128 128 2 1366130215612 15

128 128 2 1366100789701 8

Table 5 represents the proposed 512bit

implementation of RSA. The prime values of p and q

are taken as 256bit size with key size of maximum of

15 digits and note the encryption as well as decryption

time. From the analysis, encryption time remains

constant and produced decryption time is the blurred

time to achieve the constant time execution.

Table 5. Proposed 512bit RSA time analysis.

P

(Bit Size)

Q

(Bit Size)

Enyption Time

(Ms)

Blurred Time

(Ms)

Key Size

(Digits)

256 256 5 1366131541225 15

256 256 5 1366131711252 10

256 256 5 1366131815939 8

256 256 5 1366131615859 6

Table 6 represents the proposed 1024bit

implementation of RSA. The prime values of p and q

are taken as 512bit size with key size of maximum of

15 digits and note the encryption as well as decryption

time. From the analysis, encryption time remains

constant and produced decryption time is the blurred

time to achieve the constant time execution.

Table 6. Proposed 1024bit RSA time analysis.

P

(Bit Size)

Q

(Bit Size)

Emption Time

(Ms)

Blurred Time

(Ms)

Key Size

(Digits)

512bit 512 bit 60 1366132544562 15

512bit 512 bit 60 1366132156341 10

512bit 512 bit 60 1366132615819 8

512bit 512 bit 60 1366133145623 6

Table 7. Comparing existing time analysis with proposed time

analysis of RSA

Bits

Existing System Proposed System

Encryption

Time (ms)

Decryption Time

(ms)

Encryption Time

(ms)

Blurred Time

(ms)

256bit RSA 2 1 to 2 2 1366130282065

512bit RSA 5 4 to 6 5 1366131541225

1024bit RSA 60 30 to 32 60 1366132544562

From Table 7 it is noted that in existing system the

encryption time remain constant and decryption time
vary by increasing the bits of RSA. So there may be
chance for attacker to guess the bits of RSA from their
time analysis, due to variation in decryption process.
But in proposed time it produces the time as blurred
time that is fixed time computation for all the bits of
RSA, from this timing information it is harder for
attacker the to guess the key range. This timing
information becomes unusable for attackers as it is not
possible to retrieve the secret key d.

7. Performance Analysis

The evaluation metrics chosen is time, as timing attack

purely depends upon guessing of secret key based on

time computed in decryption process using modular

exponentiation.

In Figure 3, the decryption time increases if there is
increase in key bits size. By using this non fixed time

computation as information, attacker have a chance to

guess the size of key bits used in decryption process

and thereby find the secret exponent d by performing

the factorization method.

 Decryption Time vs Key Size

T
im
e
(i
n
 m
s)

 Key Size (in bit)

 Figure 3. Decryption Time of Existing RSA.

Figure 4 shows the constant time execution of

decryption process. The attacker will not guess the key

size because of the fixed time computation of all the

higher bits of RSA implementation.

 Decryption Time vs Key Size
T
im
e
(i
n
 m
s)

 Key Size (in bit)

Figure 4. Proposed RSA decryption time.

8. Conclusions

Providing security to the software implementation in

embedded systems is one of the challenging

techniques. Cryptographic algorithms are always

implemented in software or hardware by which

interactions is influenced their environments that can

be investigated and monitored by attackers and

extracts information. Due to which the information

leaked due to timing attack makes the secured

information revealed. As RSA cryptosystem is

currently used in wide variety of applications namely

software, hardware (secure telephones, on Ethernet

network and smart cards) and many security protocols.

The robustness of RSA becomes a question mark

among researchers.

So, the technique which is used in this paper will

increase the robustness of RSA algorithm against

timing attack when compared to existing RSA

cryptosystem and possible to make the attacker task

harder to find the secret key. As the extension of this

work, the same countermeasure can be used for

implementing higher bits of RSA and applies the

476 The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016

solution not only for encryption or decryption mode but

also for signing and verification mode.

References

[1] Ali H. and Al-Salami M., “Timing Attack

Prospect for RSA Cryptanalysts Using Genetic

Algorithm Technique,” The International Arab

Journal of Information Technology, vol. 1, no. 1,

pp. 80-85, 2004.

[2] Aumuller C., Bier P., Fischer W., Hofreiter P.,

and Seifert J, “Fault Attacks on RSA with CRT:

Concrete Results and Practical Counter-

Measures,” in Proceedings of the 4
th
 International

Workshop Redwood Shores, USA, pp. 260-275,

2002.

[3] Borst J, “Block Ciphers: Design, Analysis and

Side-Channel Analysis,” PhD Thesis,

K.U.Leuven, 2001.

[4] Chen C., Wang T., and Tian J., “Improving

Timing Attack on RSA-CRT via Error Detection

and Correction Strategy,” Information Sciences,

vol.232, pp. 464-474, 2013.

[5] Giraud C., “An RSA Implementation Resistant to

Fault Attacks and to Simple Power Analysis,”

IEEE Transactions on Computers, vol. 55, no. 9,

pp. 1116-1120, 2006.

[6] Kocher P., “Timing Attack on Implementations of

Diffie-Hellman, RSA, DSS, and other Systems,”

available at: http://courses.csail.mit.edu/

6.857/2006/handouts/TimingAttacks.pdf, last

visited 1996.

[7] Kocher P., Jaffe J., and Jun B., “Differential

Power Analysis,” available at:

https://www.rambus.com/differential-power-

analysis/, last visited 1999.

[8] Kopf B. and Durmuth M., “A Provably Secure

and Efficient Countermeasure Against Timing

Attack,” in Proceeding of the 22
nd
 IEEE

Computer Security Foundation Symposium, Port

Jefferson, pp. 324-335, 2009.

[9] Shamir A., “Improved Method and Apparatus for

Protecting Public Key Schemes from Timing and

Fault Attacks,” available at:

http://www.google.com/patents/US5991415, last

visited 1999.

[10] Srivaths R., Anand R., Kocher P., and Hattangady

S., “Security in Embedded Systems: Design

Challenges,” ACM Transactions on Embedded

Computing Systems, vol. 3, no. 3, pp. 461-491,

2004.

[11] Zhou Y. and Feng D., “Side-Channel Attacks:

Ten Years after its Publication and the Impacts on

Cryptographic Module Security Testing,”

available at: http://eprint.iacr.org/2005/388.pdf,

last visited 2005.

Amuthan Arjunan currently,

working as Associate Professor in

the Department of Computer

Science and Engineering,

Pondicherry Engineering College,

Puducherry. Completed his Under

graduate BTech in Computer

Science and Engineering from Pondicherry

Engineering College, ME from College of

Engineering, Anna University, and Chennai. He has

obtained his doctorate in the area of Information

Security at Pondicherry Engineering College under

Pondicherry University.

Praveena Narayanan currently,

working as Assistant Professor in

Department of Information

Technology, Alpha College of

Engineering and Technology,

Puducherry. She completed BTech

in Information Technology from

Bharathiyar College of Engineering and Technology

and MTech Information Security from Pondicherry

Engineering College under Pondicherry University.

Kaviarasan Ramu currently,

working as Assistant Professor in

Department of Computer Science

and Engineering, Alpha College of

Engineering and Technology,

Puducherry. He completed BTech

in Information Technology from

Bharathiyar College of Engineering and Technology

and MTech Information Security from Pondicherry

Engineering College under Pondicherry University.

