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Abstract: Compression of Hyper Spectral Image (HSI) is an important issue in remote sensing applications due to its huge 

data size. An efficient technique for HSI compression is proposed based on Discrete Wavelet Transform (DWT) and Tucker 

Decomposition (TD) with Adaptive Least Squares (ALS) method. This technique exploits both the spatial and spectral 

information in the images. ALS method is used to compute the TD which is applied on the DWT coefficients of HSI spectral 

bands. DWT is used to segment the HSIs into various sub-images, while TD is used to conserve the energy of the sub-images. 

Run Length Encoding (RLE) performs quantization of the component matrices and encoding of core tensors. The experiments 

are conducted with HSI compression based on DWT, TD with ALS method and HSI compression methods based on lossless 

JPEG (JPEG-LS), JPEG2000, Set Partitioning Embedded Block (SPECK), Object Based (OB)-SPEC and 3D-SPECK and the 

results of our work are found to be good in terms of Compression Ratio (CR) and Peak Signal-to-Noise Ratio (PSNR). 
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1. Introduction 

Many military and civil applications involve the 

detection of an object or activity such as a military 

vehicle or vehicle tracks. Satellites must transmit a 

great amount of information to control on earth for its 

later processing. If the satellite carries out a 

preprocessing step in order to extract only the relevant 

information the communication process will be highly 

optimized. 

Hyper Spectral Images (HSIs) are used in several 

applications such as soil analysis, forest monitoring, 

river flow analysis, environmental studies and other 

geographical analysis. HSI sensors are advanced 

digital color cameras with spectral resolution at a 

specific illumination wavelength. These sensors 

measure the radiation reflected by each pixel in a large 

no of visible or invisible frequency (or wavelength) 

bands. HSIs are considered as 3D data in compression 

methods known as third-order tensor, composing of 

two spatial dimensions and a spectral dimension. HSI 

applications are oriented toward classifying or 

grouping similar pixels, many instances of which are 

typical of each class of pixel since, interpretation of the 

scene is based on the clustering of the majority of 

pixels. 
The compression of HSIs can be effected by 

detecting the spatial redundancies and spectral 
redundancies. The two main divisions of HSI 
compression methods are lossy compression and 
lossless  compression.  Lossless  compression  methods  

are preferred in hyper spectral imaging  because  of  
the huge quantity of data and data loss must be 
negligible. 

Many traditional compression algorithms for HSIs 

have only considered the spectral value in a feature 

space whose dimension were spectral bands. Basic 

compression methods for HSIs includes transform 

coding based algorithm, Vector Quantization (VQ) 

based algorithm, Differential Pulse Code Modulation 

(DPCM) algorithm and Adaptive DPCM (ADPCM). 

Some compression algorithms may increase the 

computational complexity and also lead to distortion. 

DPCM compression techniques involve expensive 

image decoder and multiple sampled signals rather 

than one. 

The advantage of Discrete Wavelet Transform 

(DWT) is the temporal resolution in both frequency 

and time. The decomposition into sub-bands is highly 

flexible in terms of resolution scalability. Wavelets 

play a significant role in many image processing 

applications. Tucker Decomposition (TD) obtains a 

higher Compression Ratio (CR). This decomposition 

technique permits the allocation of any values for each 

dimension of the core tensor. TD is one of the most 

popular tensor decomposition methods for the 

compression of HSIs. 

The proposed HSI compression algorithm is based 

on DWT and TD with Adaptive Least Squares (ALS) 

method. Applying 2DWT to each spectral band using 

biorthogonal wavelet will take care of the first stage 

compression by applying along the rows of the image 
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first and then the results are decomposed along the 

columns. TD is applied to the four wavelet sub-images 

to enhance the CR. The ALS method is used to 

compute the TD which is applied on the DWT 

coefficients of HSI spectral bands. Run Length 

Encoding (RLE) is used for the quantization of the 

component matrices and encoding of the elements of 

the core tensors. 

The experiments were conducted for an HSI of the 

little Colorado River with the HSI compression based 

on DWT, TD with ALS method and existing HSI 

compression methods based on Lossless JPEG (JPEG-

LS), JPEG2000, Set Partitioning Embedded Block 

(SPECK), Object Based (OB)-SPECK and 3D-SPECK 

and our work is found to be good in terms of CR and 

Peak Signal-to-Noise Ratio (PSNR). 

The remaining part of the paper is organized as 

follows: Section 2 involves the works related to HSI 

compression techniques. Section 3 involves the 

generation of the three-dimensional HSI. Section 4 

involves the detailed description of the DWT-TD 

(ALS)-RLE based HSI compression technique. Section 

5 involves the performance analysis and comparison of 

the proposed HSI compression method and existing 

compression techniques based on JPEG-LS, 

JPEG2000, SPECK, OB-SPECK and 3D-SPECK. The 

paper is concluded in section 6. 

2. Related Works 

This section deals with the works related to recent HSI 

compression techniques. Hou et al. [13] proposed an 

HSI lossy-to-lossless compression using 3D Embedded 

ZeroBlock Coding (3D-EZBC) algorithm. This 

algorithm involves 3D transform based on spatial 

integer 2DWT and spectral integer 1D Karhunen-

Loève Transform (1D-KLT). Context-based Adaptive 

Arithmetic Coding (AAC) and bit-plane zero-block 

coding are used for entropy coding. Lopez et al. [18] 

reviews the various reconfigurable hyper spectral 

imaging techniques in onboard systems. DWT is used 

to transform the HSI from the spatial domain to 

another domain and for both spatial and spectral decor 

relation. DWT-based compression techniques involve 

JPEG2000, Set Partitioning in Hierarchical Trees 

(SPIHT) and Embedded Zero-tree Wavelet (EZW). 

García-Vílchez et al. [9] the impact of lossy HSI 

compression is studied using supervised Support 

Vector Machine (SVM) classification and spectral 

unmixing. Here, DWT is used to decor relate the input 

HSI in the spatial domain. 

Mažgut et al. [19] proposed a decomposition 

method of binary tensors. A Tucker model denoted as 

tensor-to-tensor projections are used for the 

decomposition of real tensors. The tucker model gives 

lesser reconstruction errors than the Parallel Factor 

analysis (PARAFAC) model. The tucker model is used 

as a link function and multi-linear predictor to correlate 

the multi-linear predictions with the response 

variables. Shoham and Malah [21] used a 

Concatenative Text-To-Speech (CTTS) compressor for 

a larger acoustic database. This compressor employing 

3D Shape-Adaptive Discrete Cosine Transform (3D-

SADCT) can also be extended to hyper spectral 

imaging. Here, the coefficients of the 3D quantization 

matrix are coded using run-length encoding scheme. 

Hendrix et al. [11] proposed an enclosing algorithm 

for abundance determination and end-member 

identification in HSIs. The noise in the HSI is 

minimized by a least squares method. Acevedo and 

Ruedin [2] proposed a lossless HSI compression 

technique employing dynamic Look-Up Tables 

(LUTs). A least squares estimator is used for the 

determination of scaling factor for the neighboring 

pixels in an HSI. In [1] a least-squares estimator was 

used to fasten the involved differential Huffman 

encoding. 

The existing compression techniques employ 

encoding techniques like, JPEG-LS [25], Joint 

Photographic Experts Group (JPEG2000) [5], SPECK 

[22], 3D-SPECK [23], Lattice Vector Quantizer 

(LVQ)-SPECK [8], Discrete Wavelet Packet (DWP)-

SPECK [8], Shape-Adaptive Reversible Integer 

Lapped Transform (SA-RLT) [16] and OB-SPECK 

[16]. Zhou et al. [27] designed uni-chip VLSI 

architecture for wireless image sensing. It involves 

Color Filter Array (CFA) preprocessing and JPEG-LS 

compression method. Song et al. [24] proposed a 

differential prediction and JPEG-LS based lossless HSI 

compression technique. Yin-Tsung et al. [26] proposed 

a lossless HSI compression method based on 

hardware/software code sign. The median predictor 

used in this model is defined in JPEG-LS format for 

intraband predication. 

Lilian and Leila [17] review the data compression 

systems involved in satellite imagery. Lossless JPEG is 

basically a low complexity lossless compression for 

images. It consists of a modeling phase and an 

encoding phase. The encoding includes run length, 

differential coding, and Huffman code. Sriraam and 

Shyamsunder [23] proposed a 3D medical image 

compression involving multiple 3D wavelet coders. 

Four variants of daubechies and Cohen-Daubechies-

Feauveau (CDF) wavelets are used in the first stage 

and encoders such as 3-D SPECK, 3-D SPIHT and 3-D 

BISK (binary set-partitioning using k-d trees) used in 

the second stage for the compression. Chang et al. [5] 

proposed a group and region based parallel HSI 

compression technique. This method employs a band 

clustering and signal subspace projection. A 

combination of Principal Component Analysis (PCA) 

and JPEG2000 are used to enhance the CR. 
Wavelet coders such as SPECK and BISK are also 

used volumetric coding based EEG image compression 
[22]. They possess progressive resolution and quality 
during the compression process. Dutra et al. [8] 
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proposed a successive approximation wavelet coding 
for HSI compression. It involves two modules, first a 
LVQ codebook for processing of multiple samples and 
the next one is DWP-SPECK for DWP decomposition. 
DWP-SPECK involves 1D-DWT and simultaneous 
encoding of the huge number of spectral bands. Jiao et 
al. [16] proposed a lossless Region of Interest (ROI) 
coding for two-dimensional remote sensing images 
based on SA-RLT. This model can be a 3D model for 
HSIs by performing the following steps: Compute the 
SA-RLT in spatial domain, décor relate the spectral 
redundancy using integer DWT, and encode the 
transformed coefficients using 3D OB-SPECK or 3D 
OB-SPIHT. Rawat and Meher [20] introduced a hybrid 
image compression scheme (i.e., DCT and fractal 
image compression). The color image was compressed 
using DCT. Fractal image compression was employed 
for preventing the compression on the same blocks of 
the image. 

3. Generation of 3D HSI 

The source of an HSI is an imaging spectrometer 
which collects the images simultaneously in several 
spectral bands that can reach an approximately 
contiguous spectral sample. Higher amount of spectral 
bands increases the processing time and complexity. 
HSIs can be characterized as 3D data represented as: 
DR

   1 2 3S S S× ×
, where R

   1 2 3S S S× ×
 is an S1×S2×S3 

dimensional real vector space and S1×S2×S3 is the size 
of the HSI. 

HSIs contain two types of simultaneous correlation 
namely, spectral correlation within the spectral bands 
and spatial correlation within the images. Generally, 
spectral correlation is higher than spatial correlation. 

3.1. 2DWT 

DWT decomposes the signals into lower resolution 

with finer details. DWT consists of consecutive Low-

Pass Filter (LPF) and High-Pass Filter (HPF). At each 

decomposition level, the HPF generates main 

information given as: Horizontal (H), Vertical (V) and 

Diagonal (D) information. The LPF affiliated with the 

scaling function generates the finer details represented 

as Approximate (A) information. 2DWT is applied to 

each band of HSIs. An image band comprises of S1 

rows and S2 columns. On application of 2DWT four 

sub-band images namely A, H, V and D, each 

containing S1/2 rows and S2/2 columns are obtained. 

Images of sub-band A possess the highest energy 

among the coefficients of the remaining sub-band 

images, as shown in Figure 1. 

 

Figure 1. Decomposition of HSI. 

The 2DWT of the function h(x, y) with size 

coordinates S1 and S2 is given in terms of coefficients 

as: 
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Here, m= {H, V, D}, φ is the scaling function and ψ is 

the wavelet function. The coefficients Wφ(s1,s2) give an 

approximation of h(x, y). The coefficients Wψ(q, s1, s2) 

provide the H, V and D information. Conventionally, 

s1=s2=2
q
 is selected so that q=0, 1, …, Q–1. The 

functions 
1 2
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q s s x yψ are expressed in 

terms of wavelet filter coefficients cφ and cψ 

respectively. 

The wavelet filtering is performed by biorthogonal 

wavelet. The inverse 2DWT is calculated as: 
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3.2. Computation of TD 

The third-order tensor AR
 

1 2 3
S S S× ×

is decomposed by TD 

into an unknown core tensor MR
 1 2 3Q Q Q× ×

 multiplied by 

a set of component matrices A, B and C. The TD 

process is shown in Figure 2. 

 

 

Figure 2. Third-order tensor decomposition by TD. 

ˆA= M.A.B.C+ E = A + E  

Tensor Â  is an estimation of tensor A  and is 

dependent on the dimensions of the core tensor, i.e., 

(Q1, Q2, Q3). E  gives the estimation error during the 

decomposition process. 

ALS algorithm is used to compute the TDs and 

CANDECOMP (CANonical ECOMPosition)/ 

PARAFAC (PARAFAC analysis) decompositions. 

This algorithm is adaptive in nature which in turn 

computes the TDs easily for dynamic tensors and 

suitable for higher order tensors. 

The algorithm is provided for third order tensors 

and is stated in its general form as: 

1. Given an order-r tensor Â , declare a set of 

projection matrices U
(1)

, U
(2)

, …, U
(r)

. 

2. Let ii= 1. 

(1)

(2)

(3)

(4)
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3. The equation for U
(ii)

 is solved keeping the other 

matrices constant. 

The matricized form of A on mode i is represented as 

U
(ii)

. It is equal to the product of two terms, where the 

first term is an n-ary Khatri-Rao product and the 

second term is a moore-penrose pseudo inverse. The 

aforementioned three steps are repeated for all ii from 

1 to rr until convergence is attained. 

While the above algorithm improves the 

convergence in all iterations, it is inefficient as it 

requires huge amount of required iterations for 

convergence. 

The PARFAC components are generally estimated 

by the minimization of the quadratic cost function. 

       2

1

( , , )
R

r =

f A  B  C = M - arobrocr∑

 

The minimization of Equation 5 involves two 

problems: 

• The decomposition of core tensor M can be 

computed when Equation 5 becomes zero. 

• The best rank R approximation to the core tensor M 

can be calculated when the minimum of Equation 5 

is distinct from zero. 

Equation 5 is the generally minimized by the ALS 
algorithm in which the components are updated per 
mode. The components of the PARAFAC 
decomposition are 2×2×2 tensors. The tensors may be 
2×2 matrices or 2×3 matrices, depending on the rank R 
of the tensor. The rank of the tensor is 1, 2 or 3. The 
component matrices are defined as: 

                          
1 2, , ,( )RA a a a= …  

                         
1 2, , ,( )RB b b b= …  

                         
1 2, , ,( )RC c c c= …  

With vectors ai, bi, ci and i= 1, 2, …, R as columns. 

The quadratic cost function is rewritten as: 

                    2
( , , ) [ , , ]f A B C = M - A  B  C   

ALS algorithm is used to solve Equation 9 as shown in 

the following steps: 

• Initially, the ALS algorithm determines A under 

constant B and C. 

• The component matrix B is updated under constant 

A and C. 

• Once component matrix B is updated, component 

matrix C is updated under constant A and B. 

• The updating process is repeated till a convergence 

criterion is satisfied. 

4. Proposed Compression Method 

TD decreases the spectral and spatial correlations 
simultaneously to enhance the CR. The flow of the 
proposed HSI compression based on DWT and TD 

with ALS method is given in Figure 3. 

 

Figure 3. Working of proposed HSI compression based on DWT 

and TD with ALS method. 

The HSI is simultaneously split into several spectral 
bands which are obtained from the imaging 
spectrometer. The HSI compression involves four 
stages. The first stage involves the application of 
biorthogonal wavelet based 2DWT to each band of 
HSIs to obtain four sub-band images (A, H, V, D) for 
each spectral band. The tensor modeling process 
structures a tensor for each sub-band image (A, H, V, 
D). 

In the second stage, the four tensors are subjected to 
TD algorithm constructed upon the ALS method. The 
size of the core tensor is selected manually for each 
tensor. Tensor A contains the lowest frequency 
components with the majority of the wavelet 
coefficient energy. The values of (Q1A, Q2A, Q3A) are 
higher than those of other tensors. The values of (Q1D, 
Q2D, Q3D) are higher than the other remaining tensor 
values (Q1H, Q2H, Q3H) and (Q1V, Q2V, Q3V). 

CR is defined as the ratio of the number of bits in 
the original HSI to the number of transmitted bits. The 
number of transmitted bits is denoted as P. 
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The four core tensors for A, V, D, H and the component 
matrices for each core tensor are transmitted in the 
third stage. In the fourth stage, RLE performs 
quantization of the component matrices A, B, C and 
encoding of core tensors MR

 1 2 3Q Q Q× ×
. The quantization 

process involves the compression of the data values in 
the component matrices to a single quantum value. The 
components in the frequency domain divide by a 
constant and then rounded to the nearest integer. 

Each core tensor is scanned row-wise for 
determination of repetitive pixels and they are grouped. 
These groups contain the pixel value and the frequency 
of repetition. When a pixel value occurs only once it is 
not replaced with its frequency value as it would cause 
an overhead in compression. Consider the following 

(5)

(6)  

(7)

(8)

(9)

(10)

(11)
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example in a core tensor: 

Input Stream: 55 55 55 98 98 98 98 45 12 12 12 12 

Encoded Stream: 355 498 45 412 

The fifth stage involves the decoding of the transmitted 
compression data. The final sixth stage involves the 
inverse 2DWT for obtaining the reconstructed HSIs 
D̂ . 

5. Performance Analysis 

The experiments were conducted for an HSI of the 
little Colorado River with the proposed HSI 
compression method and existing HSI compression 
methods based on lossless JPEG [25], JPEG2000 [5], 
SPECK [22], 3D-SPECK [23] and OB-SPECK [16]. 
The performance of the compression techniques is 
analyzed and compared in terms of computational 
complexity, CR and PSNR. 

5.1. Experimental Results 

The HSI compression steps of the little Colorado River 
using the HSI compression method based on DWT-TD 
(ALS)-RLE is highlighted in Figure 4. The input HSI 
is loaded and is split into seven spectral bands. The 
DWT for band 7 of the input HSI with Level 1 
decomposition is shown in Figure 5. 
 

  

a) Input HIS. b) Spectral band 7 of split input HIS. 

  

c) Spectral band 7 of transformed HIS. d) Reconstructed HIS. 

Figure 4. Compression steps for a HSI of little colorado river. 

 

Figure 5. DWT for band 7 of HSI with level 1 decomposition. 

5.2. Computational Complexity 

The DWT of the proposed HSI compression technique 
involves biorthogonal wavelet and a unity 
decomposition level. This possesses a computational 
complexity of the order O(S1S2S3). The maximum 
computational complexity of TD is of the order 
O(QASA

3
), where SA is the average number of pixels of 

the A tensor and QA is the average of the size 
dimensions of the A core tensor. 

The total computational complexity of the (DWT-
TD (ALS)-RLE) compressor is estimated as 

(O(QASA
3
)+O(S1S2S3)), whereas the computational 

complexity of HSI compression using DWT and TD 
alone resulted in a higher total computational 
complexity of (O(4QASA

3
)+O(9S1S2S3/7)), because it 

involves 4 core tensors and a (9/7) biorthogonal 
wavelet [15]. 

The computational complexities of existing HSI 
techniques like 3D-EZBC [13], Kronecker sensing [7], 
Iterative Spectral Mixture Analysis (ISMA) [14] and 
DWT-TD [15] are analyzed and compared in Table 1. 
3D-EZBC and DWT-TD employed AVIRIS dataset 
images of low altitude and cuprite respectively [10]. 
Kronecker sensing used Smoothed Particle 
Hydrodynamics Code (SPHC) data cube [7]. ISMA 
method applied the splib06 dataset mentioned in [4]. It 
is observed that the DWT-TD (ALS)-RLE 
compression method performs satisfactorily in terms of 
computational complexity compared to the other 
existing methods. 

Table 1. Performance analysis-computational complexity. 

Image/Data Method/Application Computational Complexity 

Low Altitude 3D-EZBC O(SA
2
) + O(2(S – 2)) + O(S – 2) 

Cuprite DWT-TD O(4QASA
3
) + O(9S1S2S3/7) 

SPHC data cube Kronecker sensing O(SA log SA) 

splib06 ISMA O((S1S2S3)
3
) 

Little Colorado River Our work-Avg. O(QASA
3
) + O(S1S2S3) 

5.3. Compression Ratio 

The CR of the existing JPEG-LS compression [25] and 
the DWT-TD ALS-RLE compression is analyzed and 
compared for four HSI datasets in Figure 6. CR for 
HSI-1 in our work is significantly higher than that of 
JPEG-LS compression. Then, CR decreases gradually 
in our work compared to JPEG-LS compression, for 
datasets HSI-2, HSI-3 and HSI-4. It is observed that on 
an average basis CR for the DWT-TD ALS-RLE 
compression is slightly higher than that of JPEG-LS 
compression. The small rise in CR for the proposed 
compression over JPEG-LS compression is because 
they are only lossless compression techniques 
concentrating mainly on conservation of the huge data. 

C
o
m

p
re

ss
io

n
 R

at
io

 

 
 

      HSI-Datset 

Figure 6.  CRs of JPEG-LS compression and DWT-TD ALS-RLE 

compression. 

CR obtained by other researchers using techniques 
like wireless image sensors [27], differential prediction 
[24] and lossless interceding [5] are analyzed and 
compared with  DWT-TD (ALS)-RLE compression in 
Table 2. These methods employed compression 
methods like least squares, JPEG-LS and JPEG2000. 
They employed test images like Airplane [3], polar iris 
images [12], etc., the test image files were also, taken 
in BIL (Band Interleaved by Line) format and BSQ 
(band Sequential) format. The comparative analysis 



440                                                             The International Arab Journal of Information Technology, Vol. 13, No. 4, July 2016  

 

 

showed that the CR of DWT-TD (ALS)-RLE 
compression is better compared to other techniques. 

Table 2. Performance analysis-CR. 

Image/Data Method/Application Main Focus CR 

Airplane Wireless Image Sensor JPEG-LS 2.99 

Avg. -BIL, BSQ Differential Prediction-Spatial JPEG-LS 2.51 

Avg. -BIL, BSQ 
Differential Prediction-

Spectral 
JPEG-LS 2.66 

CASIA V1 Polar Iris JPEG2000 2.42 

Party Scene Lossless Intra Coding JPEG-LS 1.79 

Little Colorado River Our Work-Avg. DWT-TD (ALS)- RLE 3.38 

5.4. PSNR 

PSNR (dB) is the ratio of the maximum possible power 
of input HSI to the power of error introduced by the 
compression. The quality of the reconstructed HSI is 
higher when the PSNR is higher. The quality metric 
analysis for the DWT-TD ALS-RLE compression in 
terms of PSNR for the seven bands of input HSI is 
given in Figure 7. It is observed that the PSNR value 
varies between 31.1dB and 32.1dB. The maximum 
PSNR value is obtained in the band 6 of the input HSI 
and minimum PSNR value is obtained in the band 2 of 
the input HSI. 

P
S

N
R

(d
b

) 

 
 

Band Index 

Figure 7. Quality metric analysis for the DWT-TD ALS-RLE in 

terms of PSNR. 

The PSNR values of the existing 3D-SPECK 
compression [23] and DWT-TD ALS-RLE 
compression is analyzed and compared for five HSI 
datasets in Figure 8. PSNR for HSI-1 in the case of 
proposed compression is significantly higher than that 
of 3D-SPECK compression. Then, CR increases 
gradually in the case of the 3D-SPECK compared to 
DWT-TD ALS-RLE compression, for datasets HSI-2, 
HSI-3, HSI-4 and HSI-5. It is observed that on an 
average basis PSNR for the DWT-TD ALS-RLE 
compression is higher than that of JPEG-LS 
compression by approximately 5.96dB. 

 

P
S

N
R

(d
b

) 

 
 

HSI-Datset 

Figure 8. PSNR values for DWT-TD ALS-RLE compression and 

3D-SPECK compression. 

 PSNR obtained by other researchers using 

techniques like volumetric coding [22], JPEG2000-

ROI [16] and OB-SPECK [16] are analyzed and 

compared with DWT-TD ALS-RLE compression in 

Table 3. These methods employed compression 

methods like JPEG2000 [16], SPECK [24], SA-RLT 

[16] and SA-DWT [16]. They employed test images 

like motor movement imagery and Shelter Island-BG 

(Background) and ROI. The comparative analysis 

showed that the PSNR of DWT-TD ALS-RLE 

compression is better compared to other techniques. 

Table 3. Compression of PSNR. 

Method/Application Main Focus Image/Data PSNR (dB) 

Volumetric Coding SPECK 
Motor movement- Avg. step 

size 
34.26 

JPEG2000- ROI JPEG2000 Shelter Island- ROI 32.49 

OB-SPECK SA-DWT Shelter Island- BG 27.12 

OB-SPECK SA-RLT Shelter Island- ROI 34.39 

OB-SPECK SA-RLT Shelter Island- BG 27.72 

Our Work-Avg. DWT-TD (ALS)- RLE Little Colorado River 36.67 

6. Conclusions 

The proposed HSI compression based on DWT, TD 

with ALS method reduces the size of the 3D tensors 

calculated from the four wavelet sub-images of the 

spectral bands of HSIs. The experiments were 

conducted for an HSI of the little Colorado River with 

the HSI compression based on DWT, TD with ALS 

method and existing HSI compression methods based 

on JPEG-LS, JPEG2000, SPECK, OB-SPECK and 

3D-SPECK and our work was found to be good in 

terms of CR and PSNR value. The future work involves 

the development of RLE and simplification of the 

tensor calculations to decrease the memory 

consumption, computational load and processing time 

for the HSI compression. 
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