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Abstract: Intrusion detection is the essential part of network security in combating against illegal network access or malicious 

attacks. Due to constantly evolving nature of network attacks, it has been a technical challenge for an Intrusion Detection 

System (IDS) to recognize unknown attacks or known attacks with inadequate training data. In this work, an innovative fuzzy 

classifier is proposed for effectively detecting both unknown attacks and known attacks with insufficient or inaccurate training 

information. A Fuzzy C-Means (FCM) algorithm is firstly employed to softly compute and optimise clustering centers of the 

training datasets with some degree of fuzziness counting for inaccuracy and ambiguity in the training data. Subsequently, a 

distance-weighted k-Nearest Neighbors (k-NN) classifier, combined with the Dempster Shafer Theory (DST) is introduced to 

assess the belief functions and pignistic probabilities of the incoming data associated with each of known classes. Finally, a 

two-stage intrusion detection scheme is implemented based on the obtained pignistic probabilities and their entropy function to 

determine if the input data are normal, one of the known attacks or an unknown attack. The proposed intrusion detection 

algorithm is evaluated through the application of the KDD’99 datasets and their variants containing known and unknown 

attacks. The experimental results show that the new algorithm outperforms other intrusion detection algorithms and is 

especially effective in detecting unknown attacks. 
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1. Introduction 

With the explosive growth of internet and network 
usage recently, the computer network security has 
become one of the most important issues for 
networking systems and information infrastructure due 
to increasingly widespread cyber theft, fraud and abuse 
[7]. Intrusion Detection Systems (IDS) have been a 
critical part of the cyber security systems because they 
are capable to identify all types of malicious network 
connections in real-time and to trigger cyber-
countermeasures to minimize or even eliminate any 
potential damage or security breaches to networking 
and local data systems. Therefore, IDS has drawn 
significant research attentions recently [30].  Basically, 
there are mainly two types of IDS: Anomaly intrusion 
detection and misuse or signature-based intrusion 
detection [10, 12, 24]. Anomaly intrusion detection 
tries to identify if the data traffic pattern is abnormal 
by comparing it with previously obtained normal 
traffic profiles; while the misuse methods detect 
intrusions by matching the data signature or feature 
vector to that of one of the known attacks. Although, 
theoretically capable to detect unknown attacks, 
anomaly IDS are generally inefficient, time-consuming 
and very difficult to implement with poor performance 
due to the lack of training data. On the other hand, 
misuse IDS are very efficient in data classification, but 
they can only detect known attacks and suffer from 
high error detection rate especially when the attacks 
are unknown or the classifier is not properly or sufficiently 

sufficiently trained. Most of current IDS algorithms are 
based on modern classification methods. The current 
classifying algorithms used in IDS are typically 
designed based on the naïve Bayesian method [15, 19], 
support vector machine [2, 4, 18, 25, 32], particle 
swarm optimization [6, 11], generic algorithm [29], 
neural networks [9, 13, 20, 22], k-Nearest Neighbor 
(kNN) methods [14, 17], Fuzzy C-Means (FCM) 
methods [23, 27], Dempster-Shafer theory of evidence 
[1, 8, 21, 32] or other decision-tree based ad-hoc 
methods [31]. However, the detection performance of 
the current IDS are generally sensitive to the 
mismatching between the training and test data; and 
they could perform very poorly in the case of slight 
deviation of intrusive data pattern from known patterns 
or of an unknown attack. It is well-known that the 
forms of cyber attacks and internet hacking tactics are 
constantly changing and evolving and new internet 
“viruses” are created almost every day. Therefore, it is 
imperative that the performance of IDS is not markedly 
degraded when a known intrusion is morphed into a 
different form of attack or a new intrusion has a 
completely different profile. In this work, we will 
introduce an innovative two-stage fuzzy classifier 
embedded with “soft” and error-tolerant classification 
mechanism for effective detection of various malicious 
intrusions including unknown attacks. Fuzzy classifiers 
are known for tolerating training or test data errors or 
variations due to “soft” clustering and classification 
techniques involved, but none of the current fuzzy 
classifiers is capable to effectively detect both known 
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and unknown attacks simultaneously. In addition, with 
this proposed IDS, the Dempster Shafer Theory (DST) 
[28] is seamlessly combined with a distance-weight 
kNN algorithm by fusing multiple “soft” independent 
evidences in order to assess the belief value of the 
input data belonging to each of the known classes. The 
two-stage classification in the scheme is set firstly to 
determine whether the incoming traffic is normal or an 
attack and subsequently to determine whether it is an 
unknown attack if the first stage detection is positive as 
abnormal connections. The rest of the paper is 
organized as follows. Section 2 describes the proposed 
two-stage fuzzy kNN-DST IDS in detail. Section 3 
presents the experimental results using the proposed 
IDS. Section 4 draws some conclusions on this work. 

2. A New Fuzzy kNN-DST Classifier for 

Unknown Intrusion Detection 

The framework of the proposed fuzzy kNN-DST 

classifier is shown in Figure 1. Since, the new 

classifier should be capable to detect unknown 

intrusions and mutated versions of known intrusions; 

we choose to use the kNN for its robust performance 

and its tolerance for inaccuracy and random errors in 

the input data.  

In our developed new classifier, a belief value of a 

test connection associated with a known class is softly 

measured based on the distance between the input data 

and the centroid of the class and the DST is 

incorporated into the framework to fuse multiple 

evidences generated from a weighted kNN to form a 

pignistic probability of a test connection belonging to a 

known class. The centers of known classes are softly 

defined and computed using a semi-supervised FCM 

method from the training data.  Stage one classification 

in Figure 1 determines if a connection is normal data or 

an intrusion. If it is an abnormal intrusion, stage-two 

classification is needed to determine if it is one of 

known attacks or unknown attack. The details of the 

new classifier are given in the next two subsections. 

              

Figure 1. Two-stage fuzzy kNN-DST learning and classifying 

schemes for unknown attack detection. 

2.1. Semi-Supervised FCM Learning Algorithm 

Let us assume the training set X={x1, x2, x3, …, xN} 
contains N network traffic connections and each of 
them is either normal connection or known attack. 

Each connection is represented by a distinct feature 
vector with positive numeric values. Normally, for 
computer network connections, the extracted feature 
vector consists of the source and destination bytes, the 
connection type or the duration of a connection. The 
set of features generated from all data connections are 
assumed to be: 

                             { }1 2 3
, , , ...,

N
F f f f f=  

We denote the set L={l1, l2, l3, …, lP} as P possible 
data classes, which include known attacks and the 
normal data stream. To avoid the crisp definition of a 
connection belonging to one of the classes, we employ 
the FCM algorithm allowing one traffic connection to 
belong to more than one class/cluster with varying 
membership values. Firstly, we will try to divide the N 
traffic connections into P clusters/classes and each 
cluster is represented by its centroid, which is an 
element of C={c1, c2, c3, …, cP}. In addition, a 
membership partition matrix U of size N×P is used to 
measure the closeness of a data connection to each of 
the class centers. The membership matrix elements are 
defined by: 
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Where uiq of a value between 0 and 1 is the 

membership grade of the input data connection i in the 

cluster q, β (β>1) is the weighting exponent 

representing the degree of the fuzziness for the 

membership grades and ||fi, cq|| represents the 

Mahalanobis distance between the data feature vector fi 

and the centroid cq of cluster q and is defined as: 
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Where qΣ is the covariance matrix of the centroid 
vector of cluster q. Equation 3 becomes the Euclidean 
distance when qΣ  is the unity matrix.  

The centroid of cluster q is further defined as:  
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The cluster centroids are iteratively optimized by 

minimizing the following dissimilarity function J(U, 

C): 

                     

2

1 1

1

( , ) || , ||

: 1,

N P
β

iq i q

i = q=

P

iq

q=

J U C = u f  c

Subject  to   u = " i

∑∑

∑
  

With the FCM algorithm, we keep on upgrading cq and 

uiq iteratively until the dissimilarity function J(U, C) is 

minimized. The optimal cluster centroids cq for the 

fuzzy classifier are found when the iteration stops with 
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η η ε+ − < , where ε is a pre-selected threshold 

between 0 and 1 and η is the number of iterations. The 

initial values of the cluster centroids in Equation 2 are 

obtained from the labelled training data directly. 

Therefore, the iterations in Equations 2, 3, 4 and 5 

normally can converge quickly. Since, the class 

information of the labelled training data is used in the 

FCM algorithm, the learning process is considered to 

be semi-supervised. 

2.2. A Two-Stage kNN-DST Classifier  

With the centroids of the known clusters found through 
the FCM algorithm, we try to employ a weighted kNN 
approach in our classifier by considering the kNN of a 
new test data connection xv in the training dataset. Let 
us associate the test data connection xv with the class lq 
of one of the kNN fq by defining a fuzzy membership 
function uvq based on the distance between the test data 
and the class centroid cq that is similar to Equation 2.  
However, the association between the test data and 
class lq also should be affected by the distance between 
the test data xv and the training neighbor fq. If there is a 
large distance between xv and one of the k-nearest 
training records, the probability of xv and the training 
record belonging to the same class is small. Therefore, 
the membership grade of a test data record belonging 
to a class should be weighted based on the distance 
between the test data and its nearest neighbors in the 
kNN algorithm. We assume that  the kNN training data 
records of xv are represented by the set of their feature 
spaces F={f1, f2, …, fk} and {||fv, f1||, ||fv, f2||, ..., ||fv, fk||} 
is the set of the corresponding distances between the 
test data feature fv and the K nearest training samples fv 
in ascending order. Hence, the membership grade of a 
test data record belonging to a class in the weighted 
kNN algorithm should be weighted with the following 
coefficient.  
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Where f1 is the first nearest neighbor of fv and fk is the 
k

th
 nearest neighbour of fv and the weight wY is 

assigned to modify the association between the 
connection fv and the class of its Y

th
 nearest neighbor. 

The closer the neighbors are the greater weights they 
are assigned to. In the weighted kNN algorithm, each 
of the kNN and its class designation contribute to the 
classification by providing an independent piece of 
evidence. Since, DST is an evidence theory that can be 
used to combine separate pieces of evidence to 
determine the probability of an incident [24], we will 
use the DST in our classifier to fuse the class 
information obtained from all kNN to facilitate the 
intrusion detection work. The goal is to try to classify 
the new connection fv into one of the members in class 
label set L={1, 2, ..., P}. DST describes the probability 
of a test data sample belonging to a class using belief 

functions and the degree of belief is quantified by a 
mass function denoted as m. The term my(lq) of fy can 
be treated as a piece of evidence that contributes to our 
belief that fv belongs to class lq. Since, only a part of 
our belief is committed to lq and represented by my(lq), 
the rest of the belief is assigned to the whole frame of 
discernment represented by my(L). Specifically, the 
belief functions of the input data connection fv 
belonging to class lq and the whole frame L due to the 
evidence from one of its neighbor fy are defined, 
respectively, as: 
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Where q is the class number, uvq is the fuzzy 
membership grade of fv associated with class lq and is 
used to measure the belief of fv belonging to class lq, 
and ξ is a fixed factor used to normalize the total mass 
function. 

Since, there are K nearest neighbours {fy, y= 1, 2, ..., 
K} of fv, each of them can be treated as a piece of 
evidence supporting our belief that fv belongs to class 
lq. By using the dempster rule of combination [28], we 
can fuse the mass functions of all kNN fy belonging to 
the same class lq to form a combined mass function 
through orthogonal sum of the mass functions, 
represented as: 

               
1 2

( ) ( ) ( ) ,  , ( )
q q q q K q

m l m l m l m l< > = ⊕ ⊕ ⊕L    

Based on the mass functions that are assigned to class 
q for all training data connections {fy, y= 1, 2, ..., K} in 
the kNN, the combined mass functions for the data 
sample assigned to class q and the whole frame L are 
given, respectively by:
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The difference between our work and the classifying 
algorithm in [24] is that, as shown in Equations 10 and 
11, all K-neighbors rather than a subset of the K 
neighbors contribute to the belief that the test sample 
belongs to class lq, making the classification more 
tolerable to training/test data variations.  

A global mass function is further defined by 

considering all possible classes for the test data sample 

fv in estimating the belief value of the sample 

belonging to class lq. Hence, the global mass 

function 1( ) ( ) ( )v v q v Pm m l m l m lv= ⊕ ⊕L L of the test sample 

belonging to class lq and the whole frame L are 

modified as: 
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The belief function Bel is widely used to measure the 
credibility of a hypothesis in classifying a test data 
sample. One can assign the mass function in Equation 
12 to Belv(lq) as the probability of the input data sample 
xv belonging to class lq. In this work, considering the 
inaccuracy and randomness in test/training data, we 
will apply the pignistic probability, which includes a 
measure of plausibility for more tolerance of 
test/training data inaccuracy in the classification. The 
pignistic probability BetP for an input sample xv 
belonging to class lq is defined as: 

               ( )
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v q v q

m L
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P
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Unlike regular intrusion detection algorithms in which 
the incoming data are classified as either the normal 
data or one of the known attacks based on the 
maximum likelihood of all known classes, in this work 
we will introduce a two-stage intrusion detection 
mechanism to identify the input data as either normal 
data, one of known attacks or unknown attack. The 
first stage detection is to identify if the input data are 
the normal data or an attack based on the pignistic 
probability of each class hypothesis. If the class type of 
the maximum pignistic probability is the normal data 
lnorm or the following equation holds:  

                          ( ) ( )norm v v q
q

l x = arg max BetP l  

The input data connection xv is considered to be a 
normal data connection. Since, the classifier is fully 
and reliably trained with the labelled normal data, if 
Equation 16 is true, the classification result becomes 
final and no further test is needed. However, if 
Equation 16 is false, the input data are either one of the 
known attacks or a novel attack with unknown features 
and the following second-stage entropy-based test is 
needed to determine the attack type of the incoming 
data. 
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Where µ is predetermined threshold between (0, 1). If 
the hypothesis in Equation 17 is true, i.e., the entropy 
of the generated pignistic probabilities is relatively 
small, the input data connection xv is strongly 
correlated to one of known attacks. Therefore, xv is 
considered to be one of the known attacks and its class 
index q* in the class set is given by: 

                          ( ) ( )
v q

q

q* x = arg max BetP lv  

However, if Equation 17 is not true, the classification 
result is not credible and the input data are an unknown 
attack. The decision tree of the two-stage fuzzy 
classifier for known and unknown intrusion detection 
is shown in Figure 2. 
 

          

Figure 2. The decision tree of the proposed two-stage fuzzy 

classifier for unknown attack detection. 

3. Experimental Results 

We used DARPA KDD99 [16] intrusion detection 
evaluation dataset as a part of the benchmark for 
evaluating the performance of the proposed IDS in 
detecting known intrusions. In addition, we have 
generated an unknown attack dataset from Software 
Wireshark [5] to test the performance of the new 
algorithm for detecting unknown attacks. There are 
three subset components in the KDD benchmark 
dataset that includes the whole KDD, 10% KDD and 
Corrected KDD datasets. The 10% KDD dataset is a 
concise version of the whole KDD with 22 attack types 
and more instances of attacks than the normal 
connections. The corrected KDD dataset contains 14 
more attacks with different statistical attack 
distributions from those of the other two datasets.  

3.1. Dataset Selection and Pre-Processing  

In this experimental work, the 10% KDD dataset were 
used as the training dataset to train the FCM algorithm 
and finalize the optimal feature space centers of the 
known classes. Subsequently, the two-stage fuzzy 
classifier is built based on the training results.  Finally 
the corrected KDD 99 dataset and the unknown attack 
data generated from Wireshark are employed to 
evaluate the performance of our new classifier. Besides 
the normal data class, the KDD 99 datasets contain 
four types of known attacks, including the Denial of 
Service attacks (DoS), the User to Root attacks (U2R), 
the Remote to Local attacks (R2L) and the Probing 
attacks (Probe). However, even for the concise 
10%KDD dataset, as its attack distribution statistics, 
the data sizes are still overwhelmingly large for 
practical training and test applications. In addition, the 
data records in KDD 99 for different attacks are not 
equally represented and those in the same class are 
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unbalanced for training dataset (10%KDD) and the test 
dataset (Corrected KDD). For instance, the percentages 
of U2R and R2L attacks in the training dataset are 
0.105% and 2.279%, respectively, while those in the 
testing dataset are 0.733% and 5.204%. The 
discrepancies in data sizes and class distributions could 
make the classification results unreliable. Furthermore, 
in the original KDD datasets, there are invalid and 
duplicated data records that need to be pre-processed 
and removed for algorithm training and testing.  
Therefore, the cleaned and rebalanced KDD 99 
datasets with a reduced and manageable size have been 
created for our experimental work by randomly 
sampling the 10% KDD and corrected KDD datasets, 
in which the redundant and invalid data records are 
removed. The statistics of the size-reduced KDD 
datasets we generated for this work are listed in Table 
1. In addition to the data records generated from the 
KDD datasets, we created additional 5074 data records 
containing unknown attacks using a self-built lab 
networking system and the wire shark software. The 
types of the unknown attacks are summarized in Table 
2 and they include some of the recently created 
Internet viruses including adware, spyware and their 
variants. The features of the unknown attacks may or 
may not be represented by those of the known attacks 
in KDD datasets. The unknown attack data records are 
used to test the proposed classifier and evaluate its 
performance in detecting unknown intrusions without 
any training.  

Table 1. Reduced training and testing datasets UA used in this 
work. 

Data Class Total Normal DoS Probe U2R R2L UA 

Training Sets 145,585 87,831 54,572 2,131 52 999 0 

Testing Sets 51,041 47,913 23,568 2,682 215 2913 5074 

Table 2. UA used in testing datasets or this work. 

UA Type Number of Connections Percentage 

Botnet 1988 39.18% 

Adware 875 17.24% 

Spyware 869 17.13% 

Backdoor 412 8.12% 

Hijacker 275 5.42% 

Trackware 181 3.57% 

Downloader 187 3.69% 

Trojan 287 5.66% 

All UA Types 5074 100% 

3.2. Dataset Features for Classification 

For the KDD datasets, there are 41 different features 

for each data connection that are used by the classifiers 

for intrusion detection. Those features are listed in 

KDD99 datasets. The features can be grouped into four 

categories: Basic features that derived from packet 

headers; content features that are obtained from the 

payload of original packets; time-based traffic features 

that are used to capture the properties of the data 

connections over a 2second temporal widow; and host-

based traffic features that are used to characterize the 

connection data properties based on a window of 100 

connections. The feature space of each connection in 

the KDD99 datasets and the unknown attack dataset 

we generated is composed of 41 feature components. 

For the KDD training data and unknown attack dataset, 

there is additional labelling information indicating 

which type of class the connection belongs to.  

3.3. Performance Evaluation  

To minimize the variations of our experimental results, 

we randomly divide both our training and test datasets 

into 10 subsets of equal sizes, and then we apply the 

new classifier to each pair of 10 training-testing 

subsets to evaluate its performance. We measure the 

performances of classifiers based on False Positive 

Rate (FPR), Detection Rate (DR) and Overall Error 

Rate (OER). FPR, DR and OER for detecting one of 

the known intrusions or an unknown attack (Class l) 

from a batch of validation connections are defined as 

follows: 

                              l
l

l l

FP
FPR =

FP +TN
 

Where FPl is the number of the connections that are 

incorrectly classified as class l and TNl is the number 

of the connections that are correctly classified as a 

class other than class l. 

                                l
l

l l

TP
DR =

TP + FN
 

Where TPl is the number of the connections that are 

correctly classified as class l and FNl is the number of 

the connections that are incorrectly classified as a class 

other than class l. 

                      l l
l

l l l l

FP + FN
OER =

TP +TN + FP + FN
 

To compare the performance of the new classifying 

algorithm with those of the existing classifiers, we 

also, apply several popular classifiers including the 

basic kNN, evidence-theoretic kNN, naïve Bayes and 

neural network classifiers [3, 26] to the same dataset 

used by the proposed classifier. The classification 

results are displayed with the receiver operating 

characteristics ROC plots, i.e., DR vs. FPR for all 

classifiers. Specifically, ROC plots are shown in 

Figures 2, 3, 4, 5 and 6, respectively, for detecting 

DoS, Probe, U2R, U2L and Unknown Attacks (UA) by 

using existing classifiers as well as the new classifier. 

It is found that the new fuzzy DST classifier we are 

proposing almost outperforms all other existing 

classifiers by achieving higher DR and lower FDR for 

all known and unknown attacks. Since, DoS and Probe 

attacks usually reveal a sequential pattern that is 

different from normal connections, they can be 

relatively easily be differentiated from normal data 

records. However, U2R and R2L attacks do not 

(19)

(20)

(21)
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possess a similar sequential pattern and they are 

embedded in the data portions of the packets and 

normally only appear in a single connection. 

Therefore, the detection of U2R and R2L attacks from 

normal connections is more challenging than 

identifying DoS and Probe attacks; the detection rates 

of U2R and R2L intrusions with existing classifiers 

have been mostly unsatisfactory. However, using the 

new classifier, as shown in Figures 3, 4, 5, 6 and 7, the 

detection rates of U2R and R2L attacks are 

significantly improved.  
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Figure 3. ROC plot of detecting “DoS” attacks using the new 

classifier and various existing classifiers. 
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Figure 4. ROC plot of detecting “Probe” attacks using the new 

classifier and various existing classifiers. 
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Figure 5. ROC plot of detecting U2R attacks using the new 

classifier and various existing classifiers. 
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Figure 6. ROC plot of detecting R2L attacks using the new 

classifier and various existing classifiers. 
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Figure 7. ROC plot of detecting unknown attacks using the new 

classifier and various existing classifiers. 

Table 3 lists the OER in detecting different known 

and unknown attacks by using our new classifier and 

other existing classifiers. OER, as defined in Equation 

20, includes the effects of both DR and FPR for a 

classifier, therefore, is a better indicator of 

classification performance. The results in Table 5 show 

that the OER of the new algorithm is significantly 

lower than those of other existing classifiers in 

detecting the known and unknown intrusions. In 

implementing the two-stage fuzzy kNN-DST classifier 

we choose the predetermined threshold µ to be 0.85 in 
the second-stage entropy-based classification. The 

second-stage detection is used to determine if an attack 

is unknown or one of known attacks, and it is only 

needed if the first-stage detection result is an attack. 

The experimental results demonstrate that the new 

classifier is effective in identifying unknown attacks as 

well as detecting typical known attacks from normal 

data traffic.  

Table 3. The overall detection error rates of the new method and 

other IDS for detecting various known and unknown attacks 

(Evidence-Theoretic k-NN (ET k-NN); Neural Networks (NN); 
Naïve Bayes (NB)). 

Class Ours Method ET kNN kNN NN NB 

DOS 5.22% 6.87% 11.18% 8.39% 6.57% 

Probe 3.90% 7.01% 12.07% 7.80% 6.21% 

U2R 8.12% 20.47% 35.06% 8.33% 13.13% 

R2L 9.98% 19.31% 24.60% 10.29% 10.45% 

UA 11.25% 40.68% 47.94% 44.88% 44.90% 

4. Conclusions 

An innovative two-stage fuzzy kNN DST classifier has 
been developed for effective detection of unknown 
intrusions and the variants of known intrusions. The 
new algorithm overcomes the rigid requirement of 
feature vector similarity between the training data and 
the test data in current IDS by introducing fuzziness, 
“soft” distance-based neighbouring concepts and the 
DST-based evidence fusion method into the learning 
and classification schemes. Furthermore, the two-stage 
entropy-based classification approach is employed to 
identify unknown attack in the incoming connections 
without any pre-training data or labelled information 
for the attack. The robustness and effectiveness of the 
new approach are demonstrated by the application 
results of the new classifier to the traditional KDD99 
intrusion data and the newly simulated data containing 
both known and unknown attacks. The experimental 
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results also, show that the new classifier outperforms 
the existing classification algorithms in identifying 
known and unknown attacks from network traffic.  
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