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Abstract: The Multiple Targets Tracking (MTT) problem is addressed in signal and image processing. When the state and
measurement models are linear, we can find several algorithms that yield good performances in MTT problem, among them,
the Multiple Hypotheses Tracker (MHT) and the Joint Probabilistic Data Association Filter (JPDAF). However, if the state and
measurement models are nonlinear, these algorithms break down. In this paper we propose a method based on particle filters
bank, where the objective is to make a contribution for estimating the trajectories of several targets using only bearings
measurements. The main idea of this algorithm is to combine the Multiple Model approach (MM) with Sequential Monte Carlo
methods (SMC). The result from this combination is a Nonlinear Multiple Model Particle Filters algorithm (NMMPF) able to
estimate the trajectories of multiple targets.
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1. Introduction

Multiple Targets Tracking (MTT) problems have
received a wide attention in literature [3, 5, 6]. It is a
special kind of dynamic state estimation problem. To
perform MTT the observer has at his disposal some
measurements collected from different sensors. In fact,
the estimation of the states in MTT problem requires
the assignment of the measurements to multiple
targets. Generally, MTT presents two basic problems:
the estimation and data association.

Many problems in science require estimation of the
state of a system that changes over time using a
sequence of noisy measurements made on the system.
The most widely used estimator for nonlinear systems
is the Extended Kalman Filter (EKF). However, in the
case of a highly nonlinearities, EKF suffers from some
limitations that make it inapplicable

In order to, accurately estimate states or
measurements models of nonlinear targets with non
Gaussian noises, it is necessary to substitute the EKF
by a nonlinear one. This nonlinear filter is called
Sequential Monte Carlo (SMC) methods or particle
filtering methods. The basic idea of this filter is to
propagate a weighted set of particles to estimate the
Probability Density Function (PDF) of the state
conditioned on the observations, and updating particles
weights using Bayes formula. More details are found
in [19, 21]. SMC methods have been used in very
different areas for Bayesian filtering and can be
applied under very general hypotheses, under different
names: the bootstrap filter for target tracking [12] and
the condensation algorithm in computer vision [15] are
two examples among others.

In the case of linear state and measurement models,
we can find several algorithms that yield good

performances in MTT problem, among them, the
Multiple Hypotheses Tracker (MHT) [5] and the Joint
Probabilistic Data Association Filter (JPDAF) [1, 6].
However, if the state and measurement models are
nonlinear, these algorithms break down. In this paper,
another algorithm based on particle filter bank for
MTT is proposed and is called Nonlinear Multiple
Model Particle Filters algorithm (NMMPF) [19]. The
main idea of this algorithm is based on running several
parallel filter bank at the same time and is obtained by
the combination between Multiple Model (MM)
approach and SMC methods. It results from this a bank
of particle filters and each filter is designed to track
one target.

This work is organized as follows. In section 2, we
present the mathematic formulation of an aircraft
motion models in horizontal plan. In section 3, we
describe the particle filter bank: Starting by SMC
methods with adaptive resampling and finishing by the
combination with MM approach. It results from this: A
NMMPF algorithm for tracking multiple targets.
Finally, in section 4 we present the simulation results
obtained by the application of NMMPF algorithm in
MTT problem to track three targets.

2. Problem Formulation

In Air Traffic Control (ATC), civilian aircraft has two
basic modes of flight: Uniform motion and maneuver.
More details can be found in [2, 4, 19, 22].

The aircraft flight in (X, Y) plane can be modeled
by:

1. A constant velocity model for the uniform motion In
discrete time, the constant velocity model with noise
is given by [17]:
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Where T: Is the sampling time, Xk: Is the state vector
including the position and velocity of the aircraft,
defined as:

[ ]X       

With  and  denoting the orthogonal coordinates of
the horizontal plane, and Vk is a zero-mean Gaussian
white noise representing the accelerations, with an

appropriate covariance
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2. A nearly constant-speed turn model for a maneuver
the turn of a civilian aircraft is characterized by
constant turn rate and constant speed and known as
Coordinated Turn (CT) [2, 17]. The CT model is a
nonlinear one if the turn rate is not a known
constant. By adding the turn rate Ω to the state
vector [ ]X        , results from this a new
state vector defined as follows:

][   X

The nearly constant-speed turn is defined as follows [2,
4, 17]:
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Note that, Vk in Equation 1 and Vk in Equation 4 have
not the same dimension. The equation of observations
is given according to:

( )k kY arctan W
 
 


 


Where (X, Y): Is the position of the target and kW is
gaussian noise with covariance 2

w .

3. Particle Filters Bank

3.1. General Framework

We suppose that r is the number of targets. The state
vector that we have to estimate is made by
concatenating the state vector of each target model at
time k,  1 r

k k kX X ,..., X follows the state Equation 8
decomposed in r partial equations [10, 13, 14]:

 1 1i i i i
k k k kX F X ,V i ,....r 

( )
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k
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k
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i i . The measurement vector at time k is denoted

by 1( )mk
k k ky y ,..., y and given by:

( )j i i j
k k k kY H X ,W

Where mk is the available measurements at time k, with
mk can be different to r. Again, the noises ( )

j

k
W and

'

( )
j

k
W are only supposed to be white noises,

independent for '
j j .

3.2. SMC Methods

The dynamic system is represented by the stochastic
process ( )

nx
k

X R whose evolution is given by the state

equation [10, 13, 20, 21]:

),( 1 kkkk VXFX 

The objective is to estimate the state vector (Xk) at
discrete times via the measurement equation:

),( kkkk WXHY 

Where the functions Fk and Hk are not assumed linear
and the processes ( )

nv
k

V R and ( )
nw

k
W R are assumed

independent white noises.
The original particle filter, which is called the

bootstrap filter [8, 14, 20], estimates the densities (Lk)k

by a weighted sum of N particles.
In the prediction step the particles of the set Sk-1 are

propagating according to Equation 8. During the
correction step the weights of particles are updated
using Equation 10:
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In the most general setting of SMC methods [9, 11, 23]
for more details, the displacement of particles is
obtained by sampling from an appropriate density f.
These two steps called Sequential Importance
Sampling algorithm (SIS) which is given in Algorithm
1. The degeneracy is the principal drawback of the SIS
algorithm; most of particles become dispose of very
small weights and the others keep high weights. To
remedy this drawback, we need another step to
eliminate the particles of smaller weights; this latter is
called the resampling step.

Algorithm 1: SIS algorithm.

Initialisation: 0 0

0

1
1

n

n

s ~p( X )
n ,...,N .

/ N


 
For   k= 1, ...,Tend :

Proposal: Sample n

k
s from

1 1( ) 1n
k k k k kf X X s ,Y y for n ,...,N .   

Weighting
1

1

1

1

:
( )l ( )

1
( )

1

n n n
k k k k kn n

k k n n
nk k k

n k
k nN

n k

compute un normalized weight
p s s y ; s

for n ,..., N
f s s , y

normalize weights: for n ,..., N

 















 

   







(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)



Parallel Particle Filters for Multiple Target Tracking 709

Return 1( ) ( )n nN
nk k kEg X g s . 



After the resampling step the new particles will have
new weights equal to 1/N [12].

But before this step, it will be necessary to calculate
the effective sample size 2

11 ( )
nN

neff kN̂ /   to measure the
degeneracy of the algorithm [16, 18].

As advocated in [9], the resampling step can be
done only if ˆ

eff threshold
N N . This enables the particle set

to better learn the process and to keep its memory
during the interval where no resampling occurs. As
shown in Algorithm 2 [9, 14, 16, 18, 24].

Algorithm 2: Sequential Importance with Adaptive
Resampling (SIAR).
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3.3. MM Approach

In this approach the system is one of r models [2, 7,
19], it starts with the prior probabilities of each model
to obtain the corresponding posterior probabilities.

The prior probability that Mi is in mode i is:

P(Mi|Y0)=μi(0) i=1, ..., r (11)

Where Y0: Is the prior information and
1
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3.3.1. Model Probabilities

The posterior probability that the model i is being
correct can be calculated recursively as [2] for more
details:
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Which p(y(k)| Mi, Yk-1) is the likelihood function, this
latter is obtained under Gaussian assumptions by:
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Where γi and Si are the innovation and its covariance.
More details in [2, 5, 18].

3.3.2. Combined Estimate

We find in the output of each filter the state

estimate ˆ ,
i

X the covariance Pi and the likelihood
function i . After the initialization, the filters run
recursively in the same time [2, 25].

The models probabilities μi(k) are updated using
their likelihood functions iΛ .

These latters are used to obtain the mean estimate
from the elemental estimates:
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MM approach with r filters bank is given in Figure 1.

Figure 1. MM approach with r filters bank.

3.4. NMMPF Algorithm

To study accurately the MTT problem, we present the
proposed algorithm called NMMPF algorithm [19].

The combination between MM approach and SMC
methods is its basic idea. It consists of running at the
same time r particle filters based on different motion
models. For each measurement, we combine the states
of the r particle filters weighted by a probability factor
of each filter to obtain an aggregate state estimate for
one target. Algorithm 3 presents a general description
of NMMPF algorithm for multiple targets.
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Algorithm 3: NMMPF algorithm for MTT.

State and covariance initialization filters: 0
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The combination between MM approach and particle
filtering methods requires the calculation of additional
conditional probabilities P(M(k))=Mi|Yk-1 which allow
an adequate mixing of the modal estimates to produce
an aggregate state and covariance estimates.

4. Simulation Results

In order to, evaluate the effectiveness of NMMPF
algorithm in MTT, a simulated example is presented in
this section using the Matlab simulation. We consider
the following scenario where three targets follow:

 Target 1: A constant velocity model without
acceleration noise.

 Target 2: A constant velocity model with
acceleration noise.

 Target 3: A nearly constant-speed turn model or
(CT model).

Initial states vectors that contain positions and
velocities of the three targets are:
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With σX= σY=0.05M/s2.
We suppose that each measurement is related to one

target according to Equation 5 at each time T=4s with
σw=0.02rad (about 1.5degree). The Targets trajectories
and their bearings are plotted in Figures 2 and 3.

Figure 2. Real targets trajectories.

Figure 3. Simulated bearings of three targets in radians.

In order to, track these targets, it has been necessary
to put in place a bank of filters composed from three
particle filters, their mean vectors and covariance
matrixes initialization according to a Gaussian law are:
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For each measurement, the initial probabilities of the
three particle filters are:

1 2 31 3 1 3 1 3 1 2 3i i i/ ; / ; / ; i , ,     

That is to say: The three particle filters models have
the same chance to be chosen in the beginning.

The application of the NMMPF algorithm in this
example has been done with:

 100 Monte Carlo runs.
 Particles number N=500.
 Resampling threshold Nthreshold=0.8N.

In order to measure the accuracy of NMMPF algorithm
in tracking, we have chosen the Root Mean Square
Error (RMSE) as the performance measure of this
algorithm.

a) First measurement.

b) Second measurement.

c) Third measurement.

Figure 5. Models probabilities.

Figure 4. Targets trajectories (real and esteemed).

From Figure 4 it appears that the esteemed
trajectories are indistinguishable from the real ones.

The power of NMMPF algorithm appears in the
assignment of the measurements to their right targets,
it needs to one or two samples to assign each
measurement to the right target and these results are
plotted in Figure 5-a, b and c.

(X, Y) position RMSE, (X, Y) velocity RMSE and
angular velocity RMSE are plotted in Figure 6-a and b,
Figures 7-a, b and 8. These smallest RMSE
demonstrate and confirm that the NMMPF algorithm is
a good estimator for MTT problem and prove the
results plotted in Figure 4.

a) X Position error.

b) Y Position error.

Figure 6. RMS positions errors.

a) X Velocity error.

b) Y Velocity error.

Figure 7. RMS velocities errors.

Real traj

Esteemed traj

Time step k

Time step k

Time step k
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Time step k

Time step k
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Figure 8. RMS angular velocity error (rad/s).

Figures 9 and 10 present the real and the esteemed
trajectories of the three targets for N=1000 particles
and N=2000 particles respectively.

Figure 9. Targets trajectories (real and esteemed) for N=1000
particles.

Figure 10. Targets trajectories (real and esteemed) for N=2000
particles.

Generally, when we increase the particles number
N, the estimation error decreases, but the time
calculation for each iteration or time step k increases.
Table 1 presents the necessary time for one iteration
when we execute the NMMPF algorithm by PC
Pentium IV, 3.40GHz with N=500, N=1000 and
N=2000.

Table 1. Time calculation for one iteration of NMMPF Algorithm.
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Time of One Iteration of NMMPF Algorithm in
Milliseconds (ms)

420 ms 945 ms 2300ms

A biased initialisation by the mean vectors:

1 2 3
0 0 0

2500
3500 1000

11
11 9

( ) ( ) ( ) 1000
1000 2500

4
4 4 5

0 00323

mean mean meanX ; X ; X

.
.
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 

Gives us the results plotted in Figure 11.

Figure 11. Targets trajectories (real and esteemed) with biased
initialisation, for N=500 particles.

We can say that the initialisation is still a main
problem for particle filters and all suboptimal filters.

From these results we can say that while
maintaining good tracking performance, the NMMPF
algorithm is a pertinent solution to nonlinear MTT
problem. The RMSE formula is given by Equation 18.

 2
1

( ) ( )
( )

1, ..., 200

j

real esteemed
k

j

X k X k
RMSE X

j

 for j =






5. Conclusions

Under the combination technique between MM
approach and SMC methods, we have presented in this
work a NMMPF algorithm for an efficient tracking of
three targets with nonlinear state and/or measurement
models and non Gaussian noises. The SMC methods
estimate the targets states vectors, where the MM
approach plays the assignment task of measurements to
their targets models.

In the case of linear MTT, the JPDAF and the
PMHT estimators are the leaders because of the
Kalman filter optimality. However, if the process
and/or measurement models are nonlinear, the EKF is
no longer optimal and presents several drawbacks. We
substitute the EKF by the SMC methods to overcome
these drawbacks and to combine them with MM
approach. The results simulations of the used example
demonstrate that the NMMPF algorithm tracks
accurately the targets trajectories and also assigns each
measurement to the right target model.
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