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A Hierarchical Neuro-Fuzzy MRAC of a Robot in
Flexible M anufacturing Environment
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Abstract: In one hand, the Model Reference Adaptive Control (MRAC) architecture has been widely used in linear adaptive
control field. The control objective is to adjust the control signal in a stable manner so that the plant’s output asymptotically
tracks the reference model’s output. The performance will depend on the choice of a suitable reference model and the
derivation of an appropriate learning scheme. While in the other hand, clusters analysis has been employed for many yearsin
thefield of pattern recognition and image processing. To be used in control the aimis beingto find natural groupings among a
set of collected data. The mean-tracking clustering algorithmis going to be used in order to extract the input-output pattern of
rules from applying the suggested control scheme. Theseruleswill be learnt later using the widely used Multi-layer perceptron
neural network to gain all the benefits offered by those nets. A hierarchical neuro-fuzzy MRAC is suggested to control robots
in a flexible manufacturing system. This proposed controller will be judged for different simulated cases of study to
demonstrate its capability in dealing with such a system.
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controllers are not suitable for red-time FMS

1. Introduction

Recently, low cost, smal and middle production is
made possible by a Flexible Manufacturing System
(FMS). FHexible manufacturing systems represent
efficiently grouped machine tools linked together for
batch processing. The FMS consists of work cells, each
cdl is responsble of producing a group of parts with
smilar production processes [1, 16]. FMS is designed
to accept raw materials a its input and automatically
processes these raw materials into a certain product,
which  will be ddivered a its output. The
manufacturing process of these materias may take
place on different work cells. Hence the capability and
throughput of these systems are affected by the
efficiency of the robots that move the product to and
from these work cells. Moreover, insde each cdll
severd machines may share to complete the
manufacturing process [2]. In this case, the robot will
play an important role in dedivery, disposa and
transport systems between cells and machines inside
each cell.

The dynamic equations of the robot are a set of
highly nonlinear differentia equations. Therefore, the
movement of the end effecter in a particular trgjectory
requires an efficient controller, which generates control
signas applied by the robot joint actuators. There are
many control strategies that can be applied to control
robot joints. The traditiona controllers cannot
effectively control the motion of the robot. A controller
based on the theory of the nonlinear control is suitable
for the robot control [6]. Unfortunately, such

gpplications. This leads to think about controllers with
intelligent capabilities to control the robot's operations
in uncertain environments.

There are several types of control agorithms that
can be used for joint control of the robot. Some of
these use classical controllers, such as Proportiona-
Integral-Derivative (PID) [7] and adaptive controllers
[10, 13], others use inteligent controllers based on
neural nets [5 8 andlor fuzzy logic [11, 15].
Conventiond PID controller is sill widdy used in
robotics. The performance of such a controller is not
optima and its parameters require readjustment, since
the joint parameters are varying with time. Severa
tuning methods [17] have been published to obtain the
controller parameters; however, most of these methods
require the mathematicad model of the robot. The
nonlinear dynamic interactions of the robot joints are
effectivdly minimized by applying diding mode
controllers [14]. Such a controller requires prior
information about the robot parameters.

This paper dedls with design and implementation of
a neuro-fuzzy controller extracted from a model
reference adaptive controller. The resultant functional
controller is built based on the rules derived from
applying a certtain correcting formula to drift the
system to behave as close as possible to the selected
model. This can be applied to any joint in the
manufacturing system, which represents the control
activity in hierarchica control in order to make it
suitable for rea-time applications. The proposed
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controller will improve the system performance by
distributing the control tasks on multilevels.

2. Hierarchical Architecture

In our previous work [1, 2], the design and
implementation of a hierarchica rout planner for FMS
were proposed, as illustrated in Figure 1. The aim of
the FMS rout planner is to obtan the optimal
manufacturing routes for jobs according to wdll-
designed cost function. The sequencing and monitoring
module will monitor the competitive jobs to use the
manufacturing cells and the required machines and
robots. Also, this module can reveal the abnorma
conditions in the system and generates feedback
sgnals to the route planner to modify the old
manufacturing routes to avoid the problems that may
occur.
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Figure 1. System organization.

For an FMS, severd tasks of measurement, control,
planning, operator communications, ec. can be
distributed among a number of computers linked
together and configured in a hierarchical structure. For
the proposed system, given in Figure 2, five levels are
recommended, these are;

Measurement and actuation level: Provides on-line

measurement and actuation database for the whole

system.

Control cdculations level: Generates the required

control signal for each joint.

Controller parameters tuning level: Updates the

controller parameters according to the actua

behavior of the joint and the required trgjectory.

Robot trgectory planning level: Determines the

input commands for each joint according to the

robot trgjectory.

Planning and sequencing level: Obtains the optimal

manufacturing routs for jobs, and then selects the

required manufacturing cells, machines and robots.
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It is assumed that the higher levels in the hierarchy,
that is planning and sequencing, ded with a more
abstract view of the control problem and do so in less
precise terms. Moreover, the action-taking place at the
higher levels affects the behavior of the system over a
longer time span whereas the lower levels in the
hierarchy operate on afaster time scale.

Figure 3 outlines the general layout of a robot
sysem. It consists of a manipulator, and an
input/output interface. A feedback interface is required
to convert the position sensor signa of each joint into a
digital code. The actuating signd generated by the
control agorithm is loaded to the actuator of each joint
through a feedforward interface.
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Figure 3. Robot system layout.
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3. Model Reference Adaptive Control

The MRAC architecture has been widely used in the
linear adaptive control field as shown in Figure 4 The
control objective is to adjust the control signd in a
stable manner so that the plant's output y(t),
asymptotically tracks the reference modd’s output
Ym(t). The performance of this algorithm depends on
the choice of a suitable reference model and the
derivation of an appropriate learning mechanism.
Researchers in the sixties found that smple gradient-
based learning rules were sometimes insufficient and
there is no reason why this should not also be the case

for more generd nonlinear plant models and
controllers[3, 4, 12].
Plant
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Figure 4. Model reference control architecture.

3.1. Control Strategy
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The man function of the learning algorithm is to
obtain the correct control signa (ud) corresponding to
the desired output (yg). The difference between the
desired response (Yq) and the measured process output
(y) is called the learning error (eL). It is expected that
this error will asymptoticaly approach zero, or a
predefined small region, with increasng number of
trials. The proposed learning scheme is shown in
Figure5.

Learning
Algorithm

Input Plant

Reference
Model

Figure 5. Block diagram of the proposed MRAC system.
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3.2. Learning Algorithm

The object of the learning control is to determine the
control input ugy(t) by repetitive tria such that the error
asymptatically tends to zero, or a prespecified small
vaue, in the time interval of interest. The following
eror and derivative correction learning agorithm is
proposed:

Ui 1(0)= ui(t) + Pey(t+?) + Qep(t+ ?) (@)
Where k denotes the instant number, ? is the time
advances and p, g are learning gains for error signa
and its derivative respectively.

It is noted that the error between the step command
signa and the controlled output y(t) cannot be used as
alearning basis because such alearning objective (step
output) is clearly unredistic. Therefore, a reference
mode is introduced, which specifies an achievable
performance one would like to attain. Then, the
learning error is used as a learning signal; see Figure 5.
Equation (1) is used throughout the simulation for
Single Input Single Output (SISO), P and Q are just
scaar gains.

The main bottlenecks of this dgorithm reside in
choosing a suitable reference model and the time-
consuming trail and eror procedure in finding the
suitable settings of the learning gains. The complete
derivations of the previoudly discussed learning control
agorithms are given by Linkens et al. [9].

4. NeuroFuzzy Controller Design

4.1. Mean-Tracking Algorithm

Clusters analysis has been employed for many yearsin
the field of pattern recognition and image processing,
the aim is being to find natural groupings among a set
of collected data. A main problem aways is the
guestion of how many clusters there should be within a
set of collected data. In practice, however, the number

of clusters is problem dependent. The meanttracking
clustering agorithm was derived with the intention of
dedling efficiently with operating data collected from
high speed production machinery, the data is in the
form of variable information taken from sensors in the
plant, i.e; variables such as gpeed, tenson,
temperature. In this case data is plotted in an n-
dimensiona space, each data point in the gspace
corresponds to the machine state at a particular instant
of time. Natural clusters of data points are then formed;
adl of the points within a cluster depict similar
operating conditions to other points within that cluster.
The center of gravity of the search data is then found
by finding the mean value of dl the points, which lie
within the same cluster [18], see Figure 6 for
description. In the proposed functiona neuro-fuzzy
controller the controlled data, input-output variables,
are collected and clustered based on fuzzy-number
using meanttracking agorithm. The choice of the
clusters will be clarified in smulation results section

specificdly in equation (9).

Variablel
y
center of gravity

search of each window

window

path described by
search method

Vgriablez

(x)= measured data

Figure 6. The mean-tracking cluster search method.

4.2. Controller Implementation

Depending on the methods for converting quadlitative/
linguigtic labels into quantitative/ numerica values, the
structures of the resulting controllers are significantly
different. Three possible controller input modes can be
defined as in the following vectors:

z: [erri Cemiy €m2 Cem2,..... , GnT Cem-r] (2)
Z: [em $m|! QT‘IZ Seer,-..., emT $ITIT] (3)
Z= [em Cemni Lriys «e oy BT CCMT SemT] (4)

where e, ce, and se, are the measured error, change
of error and sum of error. The three input types
determined by the above representations (2, 3, 4) are
caled EC, ES, and ECS respectively. It is noted that
they are analogous to classica PD, PI, and PID
controllers respectively.

By explicitty embedding the meaning of the
linguistic labels, the contrd " rule can be written as:

If enis[Cj(en), d(ew)] and e, is [Cj(cen), dj(cen)] Then
u is[C;(u), d(u)] ©)
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where d(e.), di(cen) are the input width for error and
change-in-error respectively with centers Cj(e,) and
Ci(cen), while d(u) is the width of the control action
with center Cj(u).

Now, it is possible to teach a neural network (NN?
with only the central value vectors, i.e; the previous ™
linguistic rules become

If Ci(em) and Cj(cen) Then G(u) (6)

While leaving the width vectors implicitly treasted. One
may ask how the fuzzy concept is handled in such
paradigm. The answer as concluded before is that the
NN inherently possesses some fuzziness, which is
exhibited in the form of interpolation over new
stuations.

The clustering criterion based on mean-tracking
agorithm using fuzzy number can be done over the
vectors defined by equations (2, 3, 4) dong with their
corresponding control action (u) to get the centers of
those variables to be learned using Back-Propagation
Neura Network (BNN) of a structure shown in Figure
7. An ECS controller mode of clustered training
vectors, conducted from controlling a process using the
MRAC system are used to learn BNN of Figure 7.

hidden layer

Figure 7. ECS type BNN represents the proposed functional neuro
controller.

The functiona neuro-fuzzy controller of Figure 7
has many advantages over that of MRAC. These can
be summarized as follows:

The size of the controller architecture decreases
dramatically to offer less storage memory, less
computations time and less fuzziness. Thus more
efficient controller is available dso a less cost
hardware controller, if needed, can be essly
achieved.

More robust controller is obtaned as will be
verified in the smulation reaults.

5. Simulation Results
A robot model of an open loop type (0) second order
transfer function:

G(9 = 1/ + 7.55+ 0.09 (7)

is taken to be control using the proposed control
scheme. The closed loop response to a unit step change
in input shows the duggish over damped behavior of

the system since it has low gain with a high damping
ratio; moreover steady state error is detected. Thus the
need is raised to include the effect of proportiond,
derivative and integral actions (ECS) type.

A model reference of:

Gm(s) = 5.4/ S+5.4s+5.4 (8)

is chosen, after many trials, so that the robot system

dynamic can follow such modd with an applicable
contrd action values. Applying equation (1) with gains
p= 1.0 and ¢g= 0.0, the required data for unit step
change in input with sampling time of 0.1 sec. have
been coallected in the short-term memory to be used
later.

Using these input-output data, 17-extracted rules are
obtained as shown in Tablel, usng the following
clusters:

en= 001010 step0.15
cen = -0.85t0 0.0 step 0.15
sen=101t095 step 1.5 9

Table 1. ECS clustered training vector of 17 rules used to train the
BNN of Figure 7.

Center Center Center | Center of Control
of ey of can of % Action
1 0 1 6.484656
1 0.25 25 6.291598
1 -0.55 25 6.021482
0.9 -0.85 5.814579
0.75 -0.85 4 5.65887
0.6 -0.85 55 4.701158
0.45 -0.7 7 3.688067
0.45 -0.55 7 2.936129
0.3 -0.55 7 2.737491
0.3 -04 7 2.235832
0.3 -04 85 2.091233
0.15 -04 85 1.696041
0.15 -0.25 85 1.271224
0.15 -0.1 85 0.805575
0 -0.1 85 0.382604
0 -01 95 0.116563
0 0 95 0.090025

It is important to state here that since the integra
action has been included by the accumulation in
control signd, thus the sum of error will be of no use
and it is added just to keep the notation of its existence.

Generally NNs can be used to memorize or discover
the control strategy. Since the control law is extracted
based on the MRAC scheme shown if Figure 5, thus
BNN is applied here to memorize such control rules.

Applying the error back-propagation learning
agorithm to BNN with the following characterigtics.

Topology: 3-node input layer, 12-node tansh nonlinear
hidden layer, 1-node linear output layer.
Parameters setting: Random initia weights of vaues
between -0.5 to 0.5, stegpness= 1.0, threshold= 1.0,
learning rate= 0.1, momentum term= 0.0 and a
stopping criterion of 0.01.

The 17 ESC fuzzy clustered rules shown in Table 1
are used to train the BNN illustrated by Figure 7.
Convergence has been reached after 1645 iterationsto
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give fina weights set which is inherently representing
the controller behavior.

Fgure 8 illustrates the two controlled responses of
that conventional PID and neuro controllers aong with
that of uncontrolled one. The superiority of the neuro
controller can be detected directly.

output(t)
14 :
124 with PID |

1 — input(t)
081 /1 with MRAC
0.6 1
04 uncontrolled
"] time (sec.)

0 : . .

0 5 10 15 20

Figure 8. Comparisons between responses.

Many smulation tests have been achieved as well to
verify the proposed controller capabilities as below:

Robustness test: Applying a disturbance of 20% of
input value at steady state will not drift the controlled
response into instability but to a dight acceptable
steady state error of 0.037 vaue, which is within the
tolerance band as shown in Figure 9. While Figure 10
illustrates the stand till controlled response if a time
delay of 1 secisoccurred initialy.
output ()

1

effect of input (f)

081 with MRAC disturbanc
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041

0.2 1

time (sec.)
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Figure 9. Effect of disturbance on the controlled response
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FigurelO. Effect of time delay on the controlled response

Tracking ability: Although the controller is extracted
based on the unit step change in input, the
generalization feature offered by neural networks
gives the advantage of the ability to follow another
input signal successfully. This is clearly shown in
Figures 11 and 12, which illustrate the good tracking
ability to both square, and staircase waves respectively.
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Figure 11. Controlled response tracking to a square wave input.
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Figure 12. Controlled response tracking to a stair case input.

6. Conclusions

Many concluded points of high importance can be
declared as follows:

The complexity of MRAC is in choosing the
appropriate model, which the underlying controlled
system must follow.

Suitable BNN parameters setting and topology are
of high importance to gain fast convergence.
Unfortunately there is no specified setting criterion,
thus atria and error procedure is applied.
Representation of the input-output data achieved by
using the meantracking agorithm is found to
produce a robust functional neuro controller.

The number of the extracted centers should be
chosen neither large that gives a meaningless use of
the clustering criterion nor so smal that yields a bad
representation of the original data.

Generalization feature offered by neura networks
gives the flexibility and adaptivity to use the
resultant controller in many applications.

A hardware form of the neuro controller can be
eadly achieved since it will be of small sze and low
Ccost.
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