
The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016 635

RPLB: A Replica Placement Algorithm in Data
Grid with Load Balancing

Kingsy Rajaretnam, Manimegalai Rajkumar, and Ranjith Venkatesan
Department of Computer Science and Engineering, Sri Ramakrishna Engineering College, India

Abstract: Data grid is an infrastructure built based on internet which facilitates sharing and management of geographically
distributed data resources. Data sharing in data grids is enhanced through dynamic data replication methodologies to reduce
access latencies and bandwidth consumption. Replica placement is to create and place duplicate copies of the most needed file
in beneficial locations in the data grid network. To reduce the make span i.e., total job execution time, storage consumption
and Effective Network Usage (ENU) in data grids, a new method for replica placement is introduced. In this proposed method,
all the nodes in the same region are grouped together and replica is placed in the highest degree and highest frequency node
in the region. The node to place replica should be load balanced in terms of access and storage. The proposed dynamic
Replica Placement algorithm with Load Balancing (RPLB) is tested using OptorSim simulator, which is developed by
European Data Grid Projects. In this paper, two variants of the proposed algorithm RPLB, namely RPLBfrequency and
RPLBdegree are also presented. The comparative analysis of all the three proposed algorithms is also presented in this paper. A
Graphical User Interface (GUI) is designed as an interface to OptorSim to get all values for grid configuration file, job
configuration file and parameters configuration file. Simulation results reveal that the performance of the proposed
methodology is better in terms of makespan, storage consumption and replication count when compared to the existing
algorithms in the literature.

Keywords: Replica placement, load balancing, ENU, data grid, data replication.

Received June 17, 2013; accepted April 28, 2014; Published online December 23, 2015

1. Introduction
Grid computing [15] provides co-ordinated resource
sharing in geographically distributed, dynamic and
virtual organizations. There are two types of grid
systems, namely, computational grid and data grid
[42]. Data grid is an important branch of grid
computing. It is a collection of geographically
distributed computers and storage to share data and
resources [2, 11, 23]. According to [3, 12] data grid
architecture consists of the following layers, namely,
fabric, connectivity, services and application. The
distributed resources in the fabric layer are connected
as a wide area network using high bandwidth. The
fabric layer consists of computing, storage and
networking resources which is analogous to physical
layer. The data transfer protocol in the connectivity
layer is responsible for copying data from resources in
the fabrication layer. The data grid service layer
provides core services such as: Resource monitoring,
replication management and resource allocation.

Most of the scientific applications such as: High
energy physics [39], human genome project [20],
human brain project [21], earth system grid [40] and
meteorology data grid system [42] are implemented in
application layer. Usually these applications generate
huge amount of data on daily basis. In all these
applications data management is an important task for
efficient data access. Data replication is a key
technique to manage large data sets in a distributed job.
way [28, 30]. It also reduces data access time for a grid

If the required data file is stored in the job running site,
then the communication delay of a data transfer is
reduced; else it has to be transferred from remote site
during job execution. This transfer takes long time
when the size of the file is too large and the bandwidth
is limited [14].

In general, data replication is broadly classified into
two categories, namely, static replication and, dynamic
replication. Static replication techniques store and
delete replicas manually. Job scheduling is quick in
static replication techniques [11, 38]. But they are not
scalable when the number of users and data is
drastically increased in the data grid. Dynamic
replication strategies create and delete replicas
dynamically depending on the resources and behavior
of the users [6, 8, 17, 23, 24, 32, 45]. A dynamic
replication technique can be implemented in either
centralized or distributed fashion. Some of the
advantages of dynamic replication strategies when
compared to static replication technique are improved
availability, reliability, scalability, adaptability and
performance.

The proposed dynamic replica placement strategy
places the replica in the job running site or nearby site
depending on the load in order to provide better
performance in terms of makespan, effective network
and storage usage. The proposed algorithm, namely,
Replica Placement with Load Balancing (RPLB) is
explained in section 3.

636 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

The rest of the paper is organized as follows: The
related work is discussed in section 2. Section 3,
discusses the proposed algorithm, RPLB and its two
variants, namely, RPLBfrequency and RPLBdegree. The
experimental results obtained using the proposed
algorithms are presented in section 4. Section 5
concludes the paper and gives directions for future
work.

2. Related Works

In data management, data replication is used for
creating and managing multiple copies of a file. The
problem of data replication in data grid is studied by
many researchers. This section discusses some of the
important and recent data replication and placement
strategies that are available in the literature. Nukarapu
et al. [29] have proposed a centralized data replication
strategy for data intensive scientific applications. The
problem is formulated as a graph and a greedy
algorithm is devised for efficient replication. The total
running time of the algorithm is O(pn), where p: Is the
total number of data files, and n: Is the number of sites
in the data grid. They have also, introduced the
distributed caching concept which is based on the
centralized replication algorithm in order to reduce
work load of the server.

Six different replication strategies, namely, no
replication or caching, best client, cascading
replication, plain caching, caching plug, cascading
replication and fast spread are proposed in [32].
Random access, temporal locality and geographical
locality are the three access patterns used for
evaluating these replication strategies. From simulation
results, it is observed that fast spread strategy performs
the best when random access is used. The cascading
replication strategy works better in geographical and
temporal locality. Chang and Chang [9] have proposed
a dynamic data replication mechanism called Latest
Access Largest Weight (LALW) in which all historical
data are assigned weight based on their data access.
The most recent accessed data has the largest weight.

Park et al. [30] have proposed a replication
algorithm in data grid called Bandwidth Hierarchy
Replication (BHR). It takes the advantage of network
level locality, i.e., the required file is located in a site
with high bandwidth. The BHR algorithm reduces data
access time by avoiding network congestions in data
grid network. It is implemented using tree level
hierarchical structures. Sashi and Thanamani [35] have
proposed modified BHR Region Based Algorithm to
overcome the limitations of standard BHR algorithm.
The modified BHR algorithm is improved to reduce
data access time and to avoid unnecessary replication.
It replicates files in a region and stores them in a
frequently accessed site. The modified BHR algorithm
increases data availability and reduces unnecessary
replication [35].

An optimal replica placement algorithm is proposed
in [16] to select the candidate sites where the replicas
are to be placed. The Optimal Placement of Replicas
(OPR) is implemented using dynamic programming to
find optimal placement of k replicas in data grid
systems. The OPR algorithm minimizes the read and
storage cost. The time and space complexity at worst
case is O(nhk) where n is the number of nodes, h is the
height of data grid tree and k is number of replicas.
Tang et al. [37] have proposed two dynamic
replication mechanisms, namely, Simple Bottom Up
(SBU) and Aggregate Bottom Up (ABU) for multi-tier
data grids. SBU strategy creates replicas when the
predefined threshold of a data file is exceeded.
Whereas, the ABU strategy creates replicas for
frequently accessed data files. The performance of
SBU and ABU are compared with fast spread strategy.
It is observed that ABU is superior to SBU and fast
spread in terms of average response time and average
bandwidth cost.

Distributed Popularity Based Replica Placement
(DPBRP) algorithm is proposed by Shorfuzzaman et
al. [36] for allocating replicas in a hierarchical data
grid with minimal replication cost. The replication cost
is the sum of read cost of all the decendants of a node
V and the update cost for the replica on V. The
popularity of a file is calculated based on access
history and two preset thresholds. DPBRP reduces both
execution time and bandwidth consumption when
compared to the algorithms [32].

The Data Replication Service (DRS) [13] and the
Physics Experimental Data Export (PheDex) [33] are
real time data replication implementations. DRS
replicate files in their storage and register them in
replica catalog. In PheDex, data is distributed in
hierarchical manner and the data transfer is based on
user subscription. Hong et al. [18] have proposed fast
cascaded replication strategy. Replicas are created on
the next level when the numbers of replica requests
exceed a certain threshold. OptorSim [43] is used for
simulation and the results obtained using the proposed
strategies are compared with fast diffusion [32], LRU
and Economy-zipf [6].

Three replica placement algorithms, namely, p-
center, p-median and multi-objective model have been
proposed by Rahman et al. [31]. The p-center is used
to place replica in a grid site for minimizing the
response time. But the p-median model places replica
to the grid sites for optimizing the weighted average
response time. Both p-center and p-median objectives
are combined in multi-objective model to decide where
to place a new replica. A replica maintenance
algorithm for relocating replicas is also proposed in
this paper. A distributed approximation algorithm
called Distributed Greedy Replication (DGR) is
proposed by Zaman and Grosu [46]. It provides a 2-
approximation solution for a distributed replication

RPLB: A Replica Placement Algorithm in Data Grid with Load Balancing 637

group. DGR performs 97.28% better in all cases and
provides a gain of up to 26.9%.

Xiong et al. [44] have proposed QoS-aware replica
placement for data intensive applications. It has also
proposed a replica placement algorithm based on
dynamic programming to minimize replication cost,
storage cost and communication cost. The QoS-aware
placement [44] is compared with proportional
placement [1] in terms of replication cost. The
proposed replica placement algorithm outperforms
proportional placement in [1].

A Dynamic Hierarchical Replication algorithm
(DHR) is proposed by Mansouri and Dastghaibyfard
[25]. It is the extension of the work done in [19]. DHR
is suitable for small storage size grid sites. A modified
version of [25] is proposed in [26]. It is a combination
of Modified DHR Algorithm (MDHRA) and
Combined Scheduling Strategy (CSS). Network traffic
is reduced in [26]. An enhanced version of [25] is
proposed in [27]. It is a combination of Weighted
Scheduling Strategy (WSS) and Enhanced Dynamic
Hierarchical Replication (EDHR). It improves file
access time. OptorSim is used to test the proposed
methodologies in [25, 26, 27]. Different data
placement algorithms are discussed in [4, 22]. A
detailed comparison chart is given in [22] to identify
the best replica placement algorithm.

3. RPLB: Replica Placement with Load
Balancing

In general large number of files is required to execute a
job in a data grid. Data replication is crucial to increase
data availability in data grid. In [30] grid sites that are
located in the same region are grouped together. The
popular files are replicated many times and stored in a
site which has broad bandwidth. But in [35], if the
requested file is not available in the local region, it is
replicated in the most frequently accessed site. Chen et
al. [10] have proposed a methodology for creating
replicas based on highest degree and highest
frequency. This method reduces makespan and storage
consumption. Rasool et al. [34] have introduced a
replica placement strategy to balance the work load
and storage usage. It reduces both the parameters,
number of replicas to be created and mean response
time. Fair share replication strategy in [34] is
implemented only in local grid not in InterGrid.

In this work, replica is placed at a region which
contains the job running site. The site selection for
replica placement is done based on highest degree and
highest frequency [10] with balanced storage and load
[34]. In this work, the grid network is represented as a
graph for simulation. A graph, G=(V, E), is a set of
vertices (V) and set of edges (E). V is a finite non-
empty set that represents grid sites. E is a set of pair of
vertices representing edges connecting vertices. These

edges act as communication links across sites in the
grid.

At first, network graph is split into regions by
removing articulation points. Let G=(V, E) be a
connected, undirected graph. An articulation point of
G is a vertex whose removal disconnects G. A bridge
of G is an edge whose removal disconnects G [41]. A
graph is split into several regions by removing
articulation points in it. A connected graph is
biconnected if it has no articulation point. A
biconnected component of G is a maximal set of edges
such that any two edges in the set lie on a common
simple cycle [41].

A bi-connected component of an undirected graph
G= (V, E) is a maximal subset, B, of the edges with the
property that the graph GB=(VB, B) is bi-connected,
where VB is the subset of vertices incident to edges in B
[5]. Finding articulation point can be done by using
Depth-First Search (DFS). In a DFS tree of an
undirected graph, a node u is an articulation point, for
every child v of u, if there is no back edge from v to a
node higher in DFS tree than u. That is, every node in
the decedent tree of u has no way to visit other nodes
in the graph without passing through the node u, which
is the articulation point [5, 41].

The proposed algorithm replicates files within a
region if the frequency of requested files is greater than
the average frequency access of all files in the same
region [34]. In a region, the best node to place the
replica is selected based on highest degree and highest
frequency with balanced load. If the highest degree
node and the highest frequency node are the same,
then, this node is selected as the best node for replica
placement. If the highest degree node and highest
frequency node are different, then, the node with
minimum cost is selected as the best node. The cost is
calculated using Equation 1.

i i iC NH NR 

Where iC : Is the cost of a node, iNH : Is the number of
hops to the requesting site, and iNR : Is the number of
Replicas in the node A site which has at least 20% free
space may become a best node. If the prospective best
nodes have maximum access and storage load, then,
they may not be considered as the best node. The grid
topology used for simulation is shown in Figure 4.
When the user submits a job to the grid, all files which
are not available in the site are transferred to the site by
the Replica Manager (RM) before job execution [25].

3.1. Replica Decision

The request for a file is updated in the history table. If
the frequency of requested file is greater than the
average access frequency of all the files, then it is
decided to replicate the required file.

(1)

638 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

3.2. Replica Selection

In general, several replicas of the same file are
available in the network. The RPLB selects the replica
with less number of requests as the best file for
replication.

3.3. Replica Replacement

If the requested file is not available in the site but
available in the local region, then, it is accessed
remotely. If the requested file is not available in the
local region and if there is no sufficient space to store
the replica, then, older files are deleted using Least
Recently Used Algorithm (LRU).

The complete RPLB algorithm is presented in
Algorithms 1 and 2. Table 1 gives the details of the
terminologies used in the algorithms.

Algorithm 1: RPLB replica placement.

for each file fi in the access history table, H (nodeid, fileid,
frequency)

if (freq(fi)>=freqavg)
mark the file for fi replication

end-if
end-for
//Select the best node to replica placement
for each file fi marked to replicate
{

if replica of fi is not available in the local region
{
1. find all p nodes in local region who received

the request for file fi

2. rank all p nodes in descending order of
frequency fi and create list L1

3. rank all p nodes in descending order of degree
di and create list L2

4. remove the nodes have highest access load and
storage load from the list L1 and L2

5. Select pk and qk as the highest rank node in
both L1 and L2

6. if (pk = qk)
BNi = pk

else
find the smallest cost nodes Ncf & Ncd from
both L1 and L2

if (Ncf < Ncd)
BNi = Ncf

else
BNi= Ncd

end-if
end-if

7. if more than one node have highest degree and
highest frequency rank

8. Select the BNi as the node with smallest cost
if (Available_Space (BNi)< Size (fi))

Evacuate() using LRU
end-if

}
}

9. Replicate (fi , BNi)

Algorithm 2: Evacuate function.

// Delete the LRU files from the
// best node BNi

Evacuate(fi)// fi – The file to be placed in BNi

{
1. Create a list of all files, L, that are available in

BNi

2. Sort the list, L, using LRU
3. While(List, L, is not empty)

{
if(Not enough space available to place fi in

BNi)
{

Delete LRU file from the
list,

L, in order to create space fi in BNi

}
Place file fi in BNi

}
}

Table 1. Terminology used.

freq(fi) Access frequency of a file i
freqavg Average access frequency of all files
BNi Best Node i
Size(fi) Storage space required by file i
Ncf Communication cost of highest rank node in L1

Ncd Communication cost of highest rank node in L2

4. Experiments and Results

4.1. Simulation Tool

OptorSim [6] is a simulator used to evaluate the
performance of the proposed replica placement
strategy. It was developed by European Union (EU)
data grid project team. The OptorSim architecture [4]
is shown in Figure 1. It mainly consists of four
components: Computing Elements (CEs), Storage
Elements (SEs), Resource Broker (RB) and RM. The
jobs submitted to the grid are scheduled to the
computing elements by resource broker based on the
policies of the selected scheduling algorithms such as
random scheduling, access cost scheduling, queue
access cost scheduling and shortest queue scheduling.
The data files are stored in the SEs. The RM which is
available in each site manages the data flow between
sites and act as an interface between computing
elements and SEs. It has a replica catalog to maintain
replica location information. An optimizer which is
available in the RM creates, selects and deletes
replicas.

Grid Job

User Interface

Resource Broker

Grid Site

gr

Replica Manager

Replica
Optimizer

Computing
Element

Storage
Element

Grid Site

gr

Replica Manager

Replica
Optimizer

Computing
Element

Storage
Element

Figure 1. OptorSim architecture.

RPLB: A Replica Placement Algorithm in Data Grid with Load Balancing 639

4.2. Configuration Files

The following four files are available in OptorSim:
Parameter file, grid configuration file, job
configuration file and bandwidth configuration file.
Parameter file consists of parameters such as number
of jobs, scheduling algorithm, queue length, etc., which
are needed for simulation. Grid configuration file
consists of grid topology and the contents of each site.
Figure 2 shows the data grid model and the bandwidth
configuration used in the proposed algorithm. The data
grid model used in the simulation has 20 sites. Each
site consists of 1000MB storage and a CE with a
worker node. The simulation configuration parameters
are shown in Table 2.

Figure 2. Data grid model.

Table 2. General configuration parameters.

Parameters Value
Number of Sites 20
Number of Storage Elements (SEs) 18
Storage Capacity at each Site (MB) 1000
Number of Jobs (Maximum) 500
Number of Job types 6
Size of a Single File (MB) 100
Job Delay (ms) 2500
Maximum Queue size 100
Access Pattern Sequential

4.3. Experimental Results

This section presents experimental results achieved
using the proposed algorithm, namely, RPLB,
RPLBfrequency and RPLBdegree. The experimental results
achieved using the proposed algorithm are also
compared with that of the existing algorithms such as
Always Replicate, Eco-zipf Optimizer, No Replication
(Simple), BHR [30] and MBHR [35]. Figure 3 shows
the storage utilization by various data replication
algorithms when sequential access pattern is employed
during job selection. The storage consumption is very
less when no replication algorithm is used because the
data files are stored in only one site. When compared
to Always Replicate, Eco-zipf Optimizer and No
Replication algorithms, the proposed RPLB algorithm
performs better in terms of storage consumption. It
should be noted that the variants of the proposed
algorithms, namely, RPLBfrequency and RPLBdegree

consume more memory when the number of jobs is

200 and 400. The results obtained for the parameter
make span is presented in Figure 4. No replication
strategy has the largest make span and the proposed
RPLB algorithm has minimum make span. The make
span is low using the proposed algorithm because; the
replicas are placed in the local region and are selected
from the best (nearest) site possible. Interestingly, the
variants, RPLBfrquency and RPLBdegree also have less
make span most of the time.

Storage Vs Number of Jobs

%
 o

f
S

to
ra

ge
 C

on
su

m
ed

Number of Job

Figure 3. Storage utilization by various data replication algorithms.

Make Span Vs Number of Jobs

M
ak

e
Sp

an
 (

m
s)

Number of Job

Figure 4. Make span using various data replication algorithms.

Figure 5 shows the number of replicas created by
various data replication algorithms during job
execution. The proposed RPLB algorithm has
generated less number of replicas than the other
algorithms. As the always replicate strategy, creates a
new replica whenever a request is made, it is not
suitable when the grid has limited storage constraint.
But the proposed RPLB algorithm creates a new
replica only when the file is not available in the local
region.

Number of Replicas Vs Number of Jobs

N
um

be
r

of
 R

ep
li

ca
s

Number of Job

Figure 5. Number of replicas generated by various data replication
algorithms.

We know that file replication takes extra time and
little network bandwidth. The Effective Network
Usage (ENU) ranges from 0 to 1. It is calculated using
Equation 2 in [7].

remote _ file _accesses file _ replication

remote _ file _accesses local _ file _ replication

N N
ENU

N N





(2)

640 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

Where Nremot_file_accesses: Is the number of times the CE
reads a file from a SE on a different site, Nfile_replication:
Is the total number of file replications done during the
job execution and Nlocal_file_replication: Is the number of
times a CE reads a file from a SE on the same site.

The ENU is better in RPLBfrequency and RPLBdegree

because the replica is present in the job running site.
The proposed RPLB algorithm has less ENU compared
to BHR algorithm. The ENU of different data
replication algorithms is shown in Figure 6. Figure 7,
clearly shows that the proposed RPLB algorithm takes
less makespan compares to RPLBfrquency, RPLBdegree,
BHR and MBHR. The storage space used for different
data replication algorithms is depicted in Figure 8.
When compared to the RPLBfrequency, RPLBdegree, BHR
and MBHR algorithms, RPLB algorithm performs
better. Configuration files are generated using a
specific GUI designed, which is shown in Figure 9.
The simulation results for 100 and 500 jobs are
presented in Table 3.

P
ro

ba
bi

li
ty

of
 N

et
w

or
k

U
sa

ge

RPLB
RPLB
(Freq)

RPLB
(Degree)

BHR MBHR

Figure 6. ENU for executing 100 jobs.

M
ak

e
sp

an
 in

 M
.S

ec

RPLB
RPLB
(Freq)

RPLB
(Degree)

BHR MBHR

Figure 7. Make span for executing 100 jobs.

P
er

ce
nt

ag
e

of
 S

to
ra

ge
 u

se
d

in
 M

B

RPLB
RPLB
(Freq)

RPLB
(Degree)

BHR MBHR

Figure 8. Storage used for executing 100 jobs.

Figure 9. GUI for generating parameters configuration file.

Table 3. OptorSim results for 100 and 500 jobs.

Sl.
No.

Replication
Algorithms

Make Span
Percentage of
Storage Used

No. of Replicas ENU

100 jobs 500 jobs 100 jobs 500 jobs 100 jobs 500 jobs 100 jobs 500 jobs

1.
No

Replication
3046 11418 8 8 0 0 0.946 0.774

2.
Always

Replicate
834 1112 20.54 23 40 168 0.086 0.025

3.
Eco-Zipf
Optimizer

1279 931 14.09 21.81 72 143 0.059 0.022

4. RPLB 127 663 11.00 16.99 12 13 0.449 0.315

5. RPLBfrequency 781 1023 13.90 21.36 59 151 0.054 0.024

6. RPLBdegree 521 1269 13 24.81 68 176 0.043 0.038

5. Conclusions

Data replication is an efficient technique to increase
data availability in data grid. Since, grid is dynamic in
nature, the user behavior and network may change in
time. The replica must be managed in terms of its
creation, placement and deletion. In this paper, an
efficient data replication algorithm RPLB and its two
variants, namely, RPLBfrequency and RPLBdegree are
proposed. Instead of storing replicas in many sites,
they are stored in the best site to reduce storage
consumption. The proposed RPLB algorithm generates
less number of replicas and consumes less
make span for executing grid jobs. The proposed data
replication algorithm in this work can be combined
with scheduling algorithm to achieve better
performance in terms of number of replicas created and
makespan.

Acknowledgement

The authors would like to thank the Management and
Principal of Sri Ramakrishna Engineering College, and
the Head of the Department of Computer Science and
Engineering, for their support in completing this work.

References

[1] Abawajy J., “Placement of File Replicas in Data
Grid Environments,” in Proceedings of the 4th

International Conference on Cognitive Systems,
New Delhi, pp. 66-73, 2004.

[2] Allcock W., Bester J., Bresnahan, J., Chervenak
A., Foster I., Kesselman C., Meder S., Nefedova

RPLB: A Replica Placement Algorithm in Data Grid with Load Balancing 641

V., Quesna D., and Tuecke S., “Data
Management and Transfer in High Performance
Computational Grid Environments,” Parallel
Computing Journal, vol. 28, no. 3, pp. 749-771,
2002.

[3] Allcock W., Bester J., Bresnahan J., Chervenak
A., Foster I., Kesselman C., Meder S., Nefedova
V. Quesnel D., and Tuecke S., “Secure, Efficient
Data Transport and Replica Management for
High-Performance Data-Intensive Computing,”
available at: https://arxiv.org/ftp/cs/papers/
0103/0103022.pdf, last visited 2001.

[4] Amjad T., Sher M., and Daud A., “A Survey of
Dynamic Replication Strategies for Improving
Data Availability in Data Grids,” Future
Generation Computer Systems, vol. 28, no. 2, pp.
337-349, 2012.

[5] Articulation Points Detection Algorithm.,
available at: http://www.ibluemojo.com/school/
articul_algorithm.html, last visited 2012.

[6] Bell W., Cameron D., Capozza L., Millar A.,
Stockinger K., and Zini F., “OptorSim-a Grid
Simulator for Studying Dynamic Data
Replication Strategies,” available at:
https://dcameron.web.cern.ch/dcameron/talks/Op
torSimIJHPCA2003.pdf, last visited 2003.

[7] Cameron D., Millar A., and Nicholson C.,
“OptorSim: A Simulation Tool for Scheduling
and Replica Optimization in Data Grids,”
available at: http://vis.lbl.gov/~kurts/research
/OptorSimCHEP2004.pdf, last visited 2004.

[8] Cibej U., Slivnik B., and Robic B., “The
Complexity of Static Data Replication in Data
Grids,” Parallel Computing, vol. 31, no. 8, pp.
900-912, 2005.

[9] Chang R. and Chang H., “A Dynamic Data
Replication Strategy Using Access-Weight in
Data Grids,” Journal of Supercomputing, vol. 45,
no. 3, pp. 277-295, 2008.

[10] Chen D., Zhou S., Ren X., and Kong Q.,
“Methods for Replica Creation in Data Grids
using Complex Network,” the Journal of China
Universities of Posts and Telecommunications,
vol. 17, no. 4, pp. 110-115, 2010.

[11] Chervenak A., Deelman E., Foster I., Guy L.,
Hoschek W., Iamnitchi A., Kesselman C., Kunst
P., Ripeanu M., Schwartzkopf B., Stockinger H.,
Stockinger B., and Tierney B., “Giggle: A
Framework for Constructing Scalable Replica
Location Services,” in Proceedings of
ACM/IEEE 2002 Conference on
Supercomputing, pp. 58, 2002.

[12] Chervenak A., Foster I., Kesselman C., Salisbury
C., and Tuecke S., “The data Grid: Towards
Architecture for the Distributed Management and
Analysis of Large Scientific Datasets,” Journal
of Network and Computer Applications, vol. 23,
no. 3, pp. 187-200, 2001.

[13] Chervenak A., Schuler R., Kesselman C.,
Koranda S., and Moe B., “Wide Area Data
Replication for Scientific Collaboration,” in
Proceedings of the 6th IEEE/ACM International
Workshop on Grid Computing, Seattle, 2005.

[14] Chervenak A., Schuler R., Ripeanu M., Amer M.
A, Bharathi S., Foster I., and Kesselman C.,
“The Globus Replica Location Service: Design
and Experience,” IEEE Transaction on Parallel
and Distributed Systems, vol. 20, no. 9, pp. 1260-
1272, 2009.

[15] Foster I. and Kesselman C., The Grid: Blueprint
for a New Computing Infrastructure, Morgan
Kaufmann, 1999.

[16] Garmehi M. and Mansouri Y., “Optimal
Placement Replication on Data Grid
Environments,” in Proceedings of the 10th

International Conference on Information
Technology, pp. 190-195, 2007.

[17] Hanandeh F., Khazaaleh M., Ibrahim H., and
Latip R., “CFS: A New Dynamic Replication
Strategy for Data Grids,” The International Arab
Journal of Information Technology, vol. 9, no. 1,
pp. 94-99, 2012.

[18] Hong L., Xue-dong Q., Xia L., Zhen L., and
Wen-xing W., “Fast Cascading Replication
Strategy for Data Grid,” in Proceedings of
International Conference on Computer Science
and Software Engineering, Wuhan, pp. 186-189,
2008.

[19] Horri A., Sepahvand R., and Dastghaibyfard H.,
“A Hierarchical Scheduling and Replication
Strategy,” International Journal of Computer
Science and Network Security, vol. 8, no. 8, pp.
30-35, 2008.

[20] Human Genome Project., available at:
http://www.nhgri.nih.gov/, last visited 2013.

[21] Human Brain Project., available at: http://www-
hbp.scripps.edu, last visited 2013.

[22] Kingsy G. and Manimegalai R., “Dynamic
Replica Placement and Selection Strategies in
Data Grids-A comprehensive Survey,” Journal of
Parallel and Distributed Computing, vol. 74, no.
2, pp. 2099-2108, 2014.

[23] Lamehamedi H., Shentu Z., Szymanski B. and
Deelman E., “Simulation of Dynamic Data
Replication Strategies in Data Grids,” in
Proceedings of the 17th International Parallel
and Distributed Symposium, pp.100-102, 2003.

[24] Lee M., Leu F., and Chen Y., “PFRF: An
Adaptive Data Replication Algorithm Based on
Star Topology Data Grids,” Future Generation
Computer Systems, vol. 28, no. 7, pp. 1045-1057.
2011.

[25] Mansouri N. and Dastghaibyfard G., “A
Dynamic Replica Management strategy in Data
Grid,” Journal of Network and Computer
Applications, vol. 35, no. 4, pp. 1297-1303, 2012.

642 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

[26] Mansouri N., Dastghaibyfard G., and Mansouri
E., “Combination of Data Replication and
Scheduling Algorithm for Improving Data
Availability in Data Grids,” Journal of Network
and Computer Applications, vol. 36, no. 2, pp.
711-722, 2013.

[27] Mansouri N., Dastghaibyfard G., and Mansouri
E., “Enhanced Dynamic Hierarchical Replication
and Weighted Scheduling Strategy in Data Grid,”
Journal of Parallel Distributed Computing, vol.
73, no. 4, pp. 534-543, 2013.

[28] Meroufel B. and Belalem G., “Managing Data
Replication and Placement Based on
Availability,” AASRI Conference on Parallel and
Distributed Computing Systems, AASRI
Procedia, pp. 147-155, 2013.

[29] Nukarapu D., Tang B., Wang L., and Lu S.,
“Data Replication in Data Intensive Scientific
Applications with Performance Guarantee,”
IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 8, pp. 1299-1306, 2011.

[30] Park S., Kim J., Ko Y., and Yoon W., “Dynamic
Data Replication Strategy Based on Internet
Hierarchy BHR,” available at:
https://pdfs.semanticscholar.org/6b32/05fc21cba
61f5aec0a0321f4095b85e420c0.pdf, last visited
2004.

[31] Rahman M., Barker K., and Alhajj R., “Replica
Placement Strategies in Data Grid,” Journal of
Grid Computing, vol. 6, pp. 103-123, 2008.

[32] Ranganathan K. and Foster I., “Identifying
Dynamic Replication Strategies for a High
Performance of Data Grids,” in Proceedings of
the 2nd international workshop on Grid
Computing, Berlin, pp. 75-86, 2005.

[33] Rehn J. Barrass T., Bonacorsi D., and Wu Y.,
“Phedex: High-Throughput Data Transfer
Management System,” in Proceedings of
Computing in High Energy and Nuclear Physics,
2006.

[34] Rasool Q., Li J., Oresu G., and Munir E., “Fair-
Share Replication in Data Grid,” Information
Technology Journal, vol. 7, no. 5, pp. 776-782,
2008.

[35] Sashi K. and Thanamani A., “Dynamic
Replication in a Data Grid using Modified BHR
Region Based Algorithm,” Future Generation
Computer Systems, vol. 27, no. 2, pp. 202-210,
2011.

[36] Shorfuzzaman M., Graham P. and Eskicioglu R.,
“Distributed Popularity Based Replica Placement
in Data Grid Environments,” in Proceedings of
International Conference on Parallel and
Distributed Computing, Applications and
Technologies, Wuhan, pp. 66-77, 2010.

[37] Tang M., Lee B., and Yeo C., “Dynamic
Replication Algorithm for the Multi-tier Data

Grid,” Future Generation computer systems, vol.
21, no. 5, pp. 775-790, 2005.

[38] Tatebe O., Morita Y., Matsuoka S., Soda N. and
Sekiguchi S., “Grid Datafarm Architecture for
Petascale Data Intensive Computing,” in
Proceedings of 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid,
pp. 102, 2002.

[39] The Large Hadron Collider (LHC)., available at:
http://public.web.cern.ch/Public/en/LHC/LHC-
en.html, last visited 2012.

[40] The Earth System Grid Project., available at:
http://www.earthsystemgrid.org/, last visited
2013.

[41] Thomas H., Charles E., Leiserson, Ronald L.
Rivest, Clifford Stein, Introduction to
Algorithms, MIT Press Cambridge, 2001.

[42] Thuy N., Anh T., Thanh D., Tung D., Kien N.,
and Giang T., “Construction of a Data Grid for
Meteorology in Vietnam,” in Proceedings of
International Conference on Grid Computing
and Applications, pp. 186-191, 2007.

[43] Viger F. and Latapy M., “Efficient and Simple
Generation of Random Simple Connected Graphs
with Prescribed Degree Sequence,” in
proceedings of the 11th Conference of Computing
and Combinatoric, pp 440-449, 2005..

[44] Xiong F., Xin-xin Z., Jing-yu H., and Ru-chuan
W., “QoS-aware Replica Placement for Data
Intensive Applications,” the Journal of China
Universities of Posts and Telecommunications,
vol. 20, no. 3, pp. 43-47, 2013.

[45] Yuan Y., Wu Y., Yang G., and Yu F., “Dynamic
Data Replication Based on Local Optimization
Principle in Data Grid,” In Proceedings of GCC,
pp. 815-22, 2007.

[46] Zaman S. and Grosu D., “A Distributed
Algorithm for the Replica Placement Problem,”
IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 9, pp. 1455-1468, 2011.

Kingsy Rajaretnam has graduated
in Computer Science and
Engineering from Noorul Islam
College of Engineering, India, in
2003 and completed her M.E.
Computer Science and Engineering
in 2005 from Karunya Institute of

Technology, India. Currently she is pursuing her Ph.D
at Anna University, Chennai, India. Her areas of
interest include Grid Computing and Cloud
Computing. Her research focus is on Dynamic replica
placement and selection strategies in data grid. She has
about 10 years of teaching experience. She is currently
working as an Assistant Professor in CSE, Sri
Ramakrishna Engineering College, Coimbatore, India.
She is life member of ISTE.

RPLB: A Replica Placement Algorithm in Data Grid with Load Balancing 643

Manimegalai Rajkumar
has graduated from PSG College of
Technology in Computer Science
and Engineering. She is also an
alumnus of College of Engineering
Guindy, Anna University and IIT
Madras where she has done her

Master’s and Doctorate respectively. She has more
than twenty years of experience in teaching, research
and industry put-together. Currently she is working as
a Professor and Research Director with Park College of
Engineering and Technology, Coimbatore, India. She
holds life membership in CSI, IE (India) and ISTE.
She is also a member of IEEE and VLSI society of
India. Her areas of interest include Reconfigurable
Computing, VLSI/FPGA Algorithms, Distributed
Systems and Cloud Computing. She has widely
published in journals and conferences and is guiding
several PhD research scholars.

Ranjith Venkatesan has completed
his BE degree in Computer Science
and Engineering at Sri Ramakrishna
Engineering College, Coimbatore in
2013. Currently, he is working as
Member Technical Staff in Zoho
Corporation, Chennai, India. His

areas of interests include grid computing, cloud
computing and data base management systems.

