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Abstract: Sequence alignment is a bioinformatics application that determines the degree of similarity between 

nucleotide sequences which is assumed to have same ancestral relationships. This sequence alignment method reads 

query sequence from the user and makes an alignment against large and genomic sequence data sets and locate targets 

that are similar to an input query sequence. Existing accurate algorithm, such as smith-waterman and FASTA are 

computationally very expensive, which limits their use in practice. The existing search tools, such as BLAST and WU-

BLAST, employ heuristics to improve the speed of such searches. However, such heuristics can sometimes miss targets, 

in which many cases are undesirable. Considering the rapid growth of database sizes, this problem demands ever-

growing computation resources and remains as a computational challenge. Most common sequence alignment 

algorithms like BLAST, WU-BLAST and Sequance Comparasion Tool (SCT) searches a given query sequence against 

set of database sequences. In this paper, Biological Data Base Compression Tool using Minimum Perfect Hash 

Function (BioDBMPHF) tool has been developed to find pair wise local sequence alignment by preprocessing the 

database. Preprocessing is done by means of finding Longest Common Substring (LCS) from the database of sequences 

that have the highest local similarity with a given query sequence and reduces the size of the database based on 

frequent common subsequence. In this BioDBMPHF tool fine-tuned enhanced suffix array is constructed and used to 

find LCS. Experimental results show that hash index algorithm reduces the time and space complexity to access LCS. 

Time complexity to find LCS of the hash index algorithm is O(2+γ) where ‘γ’ is the time taken to access the pattern. 

Space complexity of fine-tuned enhanced suffix array is 5n bytes per character for reduced enhanced Longest Common 

Prefix (LCP) table and to store bucket table it requires 32 bytes. Data mining technique is used to cross validate the 

result. It is proved that the developed BioDBMPHF tool effectively compresses the database and obtains same results 

compared to that traditional algorithm in approximately half the time taken by them thereby reducing the time 

complexity. 
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1. Introduction 

In the recent years, advances in molecular biology and 
the data available for research in biological field have 
facilitated the increasingly rapid sequencing of large 
portions of the genomes of several species. Biology has 
increasingly turned into a data-rich science, so the need 
for storing [9] and communicating large datasets has 
grown tremendously. The apparent examples are the 
nucleotide sequences and the protein sequences. 
Bioinformatics provide solutions for these issues, 
challenges, new possibilities and new algorithms 
created by these databases. Nucleic acid sequences 
cover the majority of such databases. The human 
genome project and many other efforts in molecular 
biology aim to sequence chromosomes of humans and 
other species are to expose the genetic information 
contained in these sequences and to find the homology 
between the sequences by finding similarity with the 
help of sequence analysis. 

Sequence analysis is the most common task in 
bioinformatics. It is a way of arranging the primary 
sequences of DNA, RNA or protein to identify regions 
of similarity that may be a consequence of functional, 
structural or evolutionary relationships between the 
sequences. This paper is mainly focused on 
reducingthe time complexity of DNA sequence 
analysis. DNA consists of only four letters A, G, C 
and T. Sequence analysis is useful for identifying 
sequence similarity, producing phylogenetic trees or 
evolutionary tree which is a branching diagram or 
“tree” showing  evolutionary relationships among 
various biological species or other entities based upon 
similarities and differences in their genetic 
characteristics and developing homology models of 
protein structures. There are two types of alignments 
local and global alignment. 

Local sequence alignment plays a main role in the 
analysis of DNA and protein sequences [4, 5, 6, 17]. It 
is the basic step of several other applications like 
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detecting homology, finding protein structure and 
function, deciphering evolutionary relationships, etc., 
there exist a number of local sequence alignment 
programs that use well-known algorithms BLAST and 
FASTA [4, 13] or their heuristic versions PSI-BLAST, 
FASTA3 [4, 5, 14, 15, 16]. Database search is a special 
case of pair wise local sequence alignment, where the 
second sequence is a database which consists of many 
sequences. Recently, there have been many 
improvements in alignment program features [7] using 
difference blocks, new parameters and multiple scoring 
matrices, in an attempt to incorporate more biological 
features in the alignment algorithm. Considering the 
rapid growth of database sizes, this problem demands 
ever-growing computation resources, and remains as a 
computational challenge. Existing Sequence 
Comparison Tool (SCT) [7] preprocesses the database 
by reducing the size of the database using extended 
suffix tree. The space consumption of the extended 
suffix tree is a bottleneck in large-scale applications 
such as genome analysis.  

Hence, in this paper Biological Data Base 
compression tool using Minimum Perfect Hash 
Function (BioDBMPHF compression tool) has been 
developed to perform local pairwise sequence 
alignment. This method reduces the size of the database 
using improved fine-tuned enhanced suffix array. 
Objective of this paper is to improve the computation 
time of the alignment compared to the existing methods 
while preserving the accuracy by reducing the size of 
the database. 

Instead of comparing user given sequence withthe 
large database, the size of the database is reduced with 
the help of improved fine-tuned enhanced suffix array 
using Minimum Perfect Hash Function (MPHF) using 
newly developed hash function hash index. The main 
idea is to find matched patterns of the query sequence 
and identify sequences in the database which share a 
large number of these matched patterns, thereby 
compressing the size of the database to very few 
sequences. Consistency of the result is verified using 7 
fold cross validation technique. 

The paper is organized as follows: Pair wise 
sequence is explained in section 2. Section 3 presents 
the basic definition of suffix array and enhanced suffix 
array followed by how to find Latest Common 
Substring (LCS) using MPHF which is used for bio 
data base compression. Bio database compression is 
explained in section 4. Experiments and results are 
presented in section 5. 

 

2. Pairwise Sequence Alignment 

Sequence alignment is simply a special case of string 
matching, a research field with a long history in 
computer science. The alignments are simply the 
mathematical models whose behaviours can be 
modified using parameters. Different models exist, 
which are designed to encapsulate a variety of physical 
characteristics of biological sequences.   

Pair wise sequence alignments are used to find 
diagnostic patterns that characterize the two DNA 
families; to detect or demonstrate homology between 
new sequences and existing families of sequences. 
Two general models view alignments in different 
ways: The first considers similarity across the full 
extent of the sequences (a global alignment); the 
second focuses on regions of similarity in parts of the 
sequences only (a local alignment). It is important to 
understand these distinctions, to appreciate that 
sequences are not uniformly similar and there is no 
value in performing a global similarity on sequences 
that have only local similarity. 

In many biological applications, two DNA 
sequences may not be highly similar in their entire 
length, but may contain regions that are highly similar, 
because only some internal sections of those strings 
may be related. While comparing such DNA 
sequences, local alignment becomes critical because 
local similarity finds out highly conserved regions in 
the DNA sequence and it is the preferred choice for 
biological applications. The reason for choosing local 
alignment, algorithm is it highlights conserved regions 
between two sequences and it yields more 
homological information. Database search is a special 
case of pair wise local sequence alignment, where the 
second sequence is a database which consists of many 
sequences. Every sequence in the database is aligned 
with the user given query sequence. If the size of the 
database is large, time taken to align all the sequence 
is also high. So, instead of comparing user given 
sequence with the large database, the size of the 
database is reduced using the developed BioDBMPHF 
compression tool using improved fine-tuned enhanced 
suffix array.  

 
3. Enhanced Suffix Array 

In recent years, the enhanced suffix array [3, 12] 
became the data structure of choice for indexing 
biological data and solving versatile tasks. This is due 
to its reduced memory consumption compared to the 
suffix tree and its improved cash performance. 
Enhanced suffix array is constructed using suffix array 
with additional tables Longest common prefix table 
(Lcptab) and child table. 

3.1. Basic Definition  

Let S be a string of length ‘n’ over an ordered alphabet 
‘∑’. It is assumed that the size of the alphabet is a 
constant, i.e., ‘n’<232. The latter implies that an 
integer in the range [0: n] can be stored in 4 bytes and 
also assumed that the special symbol ‘$’ is an element 
of ‘∑’ (which is larger than all other elements) but 
does not occur in S. S[i] denotes the character at 
position ‘i’ in S, for 0≤ i< n. For i ≤ j, S [i...j] denotes 
the substring of S starting with the character at 
position ‘i’ and ending with the character at position 
‘j’. The substring S [i...j] is also denoted by the pair of 
positions (i, j).  
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3.2. Suffix Array 

Suffix array is designed for efficient searching of a 
large text. It requires only 4n bytes (4 bytes per input 
character) in its basic form. Searching a text can be 
performed by binary search using the suffix array. 
Suffix arrays will prove to be better than suffix trees for 
many genome applications [3]. The suffix array 
(denoted by Ssuftab) of the string S is an array of 
integers in the range ‘0’ to ‘n’, specifying the 
lexicographic ordering of the ‘n+1’ suffixes of the 
string S$ as shown in the column Ssuftab. That is, 
Ssuftab [0]; Ssuftab [1], …, Ssuftab[n] is the sequence 
of suffixes of S$ in ascending lexicographic order. For 
example the suffixes generated for the string 
S=acaatatacat$ is listed in Table 1. 

Table 1. Suffixes of S=acaatatacat$ 

Index Ssuftab[i] 

0 aatatacat$ 

1 acaatatacat$ 

2 acat$ 

3 at$ 

4 atcaat$ 

5 atatacat$ 

6 caatatacat$ 

7 cat$ 

8 tacat$ 

9 tatacat$ 

10 t$ 

11 $ 

 

The basic enhancement of the suffix array is the 
longest common prefix table denoted by Lcptab shown 
in Table 2. The Lcptab is an array of integers in the 
range 0 to n.  lcptab[0]=0 and Lcptab[i] is the length of 
the Longest Common Prefix (LCP) of Ssuftab [i-1] and 
Ssuftab[i], for 1≤ i≤ n. Since, Ssuftab[n]=$, it always 
have Lcptab[n]= 0. The Lcp-table can be computed as a 
by-product during the construction of the suffix array. 
The Lcp-tab for the string S=acaatatacat $ is shown in 
Table 2. In this Table 2 Lcptab [0]=0 and Lcptab 
[1]=LCP of ‘aatatacat$’ and ‘acaatatacat$’=‘a’=1. 
Lcptab [2]=Lcp (‘acaatatacat$’ and ‘acat$’)=‘aca’=3.  

Table 2. LCP table of S=acaatatacat$. 

Index Suftab Lcptab S(suftab[i]) 

0 2 0 aatatacat$ 

1 0 1 acaatatacat$ 

2 7 3 acat$ 

3 9 1 at$ 

4 5 2 atcaat$ 

5 3 3 atatacat$ 

6 1 0 caatatacat$ 

7 8 2 cat$ 

8 6 0 tacat$ 

9 4 2 tatacat$ 

10 10 1 t$ 

11 11 0 $ 

 

An interval [i...j], where 0≤ i≤ j - n, in an Lcp-array 
is called an Lcp-interval of Lcp-value ℓ (denoted by ℓ-
[i...j]) if: 

• Lcptab[i]< ℓ. 

• Lcptab[k]≥ ℓ for all k with i+1≤ k≤ j . 

• Lcptab[k]= ℓ for at least one k with i+1≤k≤ j . 

• Lcptab [j+1]< ℓ. 

Every index ‘k’, i+1≤ k≤ j, with Lcptab [k]=Ssuftab is 
called ‘ℓ’ index. The set of all ‘ℓ’ indices of an ‘ℓ’ 
interval [i...j] will be denoted by ‘ℓ’ Indices (i...j). If 
[i...j] is an ℓ-interval such that ω=S [suftab [i], ..., 
Suftab[i]+ℓ-1] is the LCP of the suffixes Ssuftab [i]; 
Ssuftab[i+1], … , Suftab[j], then [i...j] is also called ω 
- interval [3].  

The parent-child relationship between the LCP-
intervals generated in Table 2 constitutes a conceptual 
(or virtual) tree which is called LCP-interval tree of 
the suffix array. The root of this tree is the 0-interval 
[0-n] as shown in Figure 1 where all the LCP-intervals 
are plotted, along with arrows representing the parent-
child relationship between them. Each individual 
suffix Ssuftab[l] of the suffix array can be considered 
as a singleton interval [l..l] and can be virtually placed 
as a leaf in the LCP-interval tree. The LCP-interval 
tree of S=acaaacatat $ is shown in Figure 1. 

 

Figure 1. The Lcp-interval tree of S=acaaacatat$. 

In Figure 1 Ssuftab[i], Ssuftab[i +1], ..., Ssuftab[j] 
of an ℓ-[i..j] share the prefix ω=S[suftab[i], ..., 
suftab[i]+ℓ-1] which is a branching character of Lcp-
interval tree. As an example, consider the column 
Lcpinterval in Table 3. The interval [0-5] is a 1-
interval because Lcptab[0]=0<1, lcptab[5+1]=0< 1, 
lcptab[k]≥1 for all k with 1≤ k≥ 5 and lcptab[3]= 
lcptab[10]=1. Furthermore, 1-[0-5] is the a-interval 
i.e.,) all the suffixes share the prefix ω=a. 

Table 3. Reduced enhanced Lcp table of S=acaaacatat$. 

Index Suftab Lcptab S(suftab[i]) Lcpinterval 

0 2 0 aatatacat$ [0-5] 

1 0 1 acaatatacat$ [0-1] 

2 7 3 acat$ [1-2] 

3 9 1 at$ [3-5] 

4 5 2 atcaat$  

5 3 3 atatacat$  

6 1 0 caatatacat$ [6-7] 

7 8 2 cat$  

8 6 0 tacat$ [8-9] 

9 4 2 tatacat$ [9-10] 

10 10 1 t$  

11 11 0 $  

3.3. Enhanced Suffix Array 

Enhanced suffix array, a new data structure is 
constructed with the help of suffix array, LCP-interval 
table and an additional table-child-Table [2, 3]. This 
enhancement is used to determine all child interval at 
constant time for any ℓ-interval [i...j]. The child-table 
is a table of size n+1 indexed from 0 to n and each 
entry contains three values: up, down and next ℓ 

a c t 

1 [0-5] 

2 [3-5] 2 [6-7] 

0 [0-11] 

1 [6-7] 1 [8-11] 

3 [1-2] 2 [8-9] 

a a t c 
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Index. Space complexity to construct enhanced suffix 
array with Ssuftab, Lcptab and child table is 6n bytes 
for each entry [2]. For a given pattern ‘p’ in the string 
‘S’ the time complexity of enhanced suffix array to find 
all the occurrences of the pattern  is O(m+z) where ‘z’ 
is number of occurrences of ‘p’ in S and ‘m’ is the 
length of the pattern [2].  

In the developed BioDBMPHF tool, the enhanced 
suffix array is constructed using MPHF with the help of 
bucket table instead of using child table. This method 
reduces the time complexity by O(2+γ) where ‘γ’ is the 
number of occurrences. Space complexity of enhanced 
suffix array is 5n bytes + 32 bytes. 

3.4. Accessing the LCP Table using MPHF 

It is possible to achieve the time complexity by 
O(log|∑|) time by reorganizing the child-table [10]. 
Fischer and Heun [8] achieved the same complexity but 
based on a data structure supporting range minimum 
queries. Abouelhoda and Dawood [1] solves exact 
pattern matching using fine-tuned enhanced suffix array 
in O(m) time and O(n) space where ‘m’ is the size of 
the pattern and ‘n’ is the size of the string. In this paper 
enhanced suffix array is fine-tuned using developed 
new hash index algorithm. Time complexity to find a 
given pattern is O(2+γ) access time where ‘γ’ is the 
time taken to access the pattern within the lcp-interval. 

MPHF are widely used for memory efficient storage 
and fast retrieval of items from static sets such as words 
in natural languages, reserved words in programming 
languages or interactive systems, Universal Resource 
Locations (URLs) in web search engines or item sets in 
data mining techniques. There are applications for 
minimal perfect hash functions in information retrieval 
systems, database systems, language translation 
systems, electronic commerce systems, compilers, 
operating systems, biological data and the enhanced 
suffix array among others. 

Though DNA consists of long sequence of string, it 
consists of only four letters A, G, C, and T. If these 
letters are arranged as a two letter combination there 
are only 16 different combinations for the substring 
Ssuftab[i] which forms the enhanced suffix array. The 
idea of the developed algorithm is to store for each 
LCP-interval a perfect hashing data structure containing 
the list of branching characters suf-start and the 
respective LCP-interval index. hash index algorithm as 
shown in Algorithm 1 is used to find a hash value 
which is attached to each LCP-intervals. 

ASCII value of first character of S (suftab[i]) is 
shifted right and moved to ShrFtr and the ASCI value 
of the second character of S (suftab[i]) is shifted right 
and moved to shrsnd. Then, hash index is calculated 
using HashInd function as shown if Algorithm 1. 
Bucket table is formed with the help of this hash index 
as shown in the Table 4. Because of DNA two letter 
combinations consists of only 16 rows, each entry in 
bucket table requires 2 bytes. So, space complexity to 

store bucket table is only 32 bytes using developed 
hash index algorithm. 

Algorithm 1: Hash index algorithm 

Input: C1 and C2 ← first and second of S (suf [i]) 

Output: Hash index for S (suf [i]) 

Function HashIndex (C1, C2) 

{ 

Ftr ← ASCI (C1); 

ShrFtr  ←shr (Ftr); 

Snd ← ASCI (C2); 

Shrsnd ←shr(Snd); 

HashInd=(Ftr % 97) + (Snd % 97); 

{ 

if(Ftr>Snd) 

{ 

HashInd=(HashInd+ShrFtr+ Shrsnd) 

% 98; 

 } 

HashInd = HashInd % 16; 

} 

} 

Table 4. Bucket Table. 

Suf- 
start 

 

aa Index 
Suf 

Tab 

Lcp 

tab 
S(suftab[i]) Lcpinterval 

Ac 0 2 0 aatatacat$ [0-5] 

At 1 0 1 acaatatacat$ [0-1] 

Ag 2 7 3 acat$ [1-2] 

Ca 3 9 1 at$ [3-5] 

Ct 4 5 2 atcaat$  

Cc 5 3 3 atatacat$  

Cg 6 1 0 caatatacat$ [6-7] 

Ta 7 8 2 cat$  

Tc 8 10 0 tacat$ [8-11] 

Tg 9 6 2 tatacat$ [9-10] 

Tt 10 4 1 t$  

Ga 11 11 0 $  

Gt 

Gc 

Gg 

Given a pattern ‘p’ of length ‘m’, one traverses the 
bucket table over the fine-tuned enhanced suffix array. 
The crucial part of this algorithm is to locate a pattern 
with a branching characters AA, AC, AG, AT=P [x, y] 
for some x, y Є [0, ..., m-1]. P [0, 1]=S (suftab[i]).  
First two character of the pattern such that P [0, 1]=S 
[suftab[i]] is identified. During the next access S 
(suftab[i]) is searched against the next alphabetical 
combination because S(suftab[i]) is arranged in 
alphabetical order. For example, if first two characters 
from the pattern are AA then second access in the S 
(suftab[i]) is searched against either AC or AG or AT. 
Interval between the first and second access is called 
child-interval. So, the pattern exists only in this child-
interval. If the child-interval is empty then the given 
pattern does not exist. 

In this paper, enhanced suffix array is fine-tuned 
using new hash index algorithm as shown in 
Algorithm 1. Time complexity of the above algorithm 
is O(2+γ) where ‘γ’ is the time taken to access the 
pattern within the child-interval. Each entry to space 
complexity of fine-tuned enhanced suffix array is 5n 
bytes, for reduced enhanced Lcptab and to store 
bucket table it requires 32 bytes. 
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4. Bio Database Compression 

The fine-tuned enhanced suffix array is generated for 
all the sequences oryza sativa DNA sequences and is 
named as GFTES Array. The substring of a string S in 
GFTESArray is used to identify similarity between 
homologous sequences, because similar sequences 
contain conserved regions. Significantly similar 
sequences are identified with the help of a score. A 
given pattern with high score carries important 
information that belongs to a family of sequence with a 
highly conserved region. It is calculated based on the 
length of the pattern and frequency i.e., number of 
occurrences in the database. The given pattern p is 
classified as significant if it satisfies the following 
constraints: 

• The length of p≥a given length-threshold: A 
significant pattern must be sufficiently long to carry 
important biological information. 

• The score of p≥a given score-threshold: A 
Significant pattern must have a sufficiently high 
score. 

GFTESArray is constructed for the entire sequences in 
the database. While constructing GFTESArray, at each 
node i, the length L(Pi) and the frequency F(Pi) (i.e., the 
number of occurrences of p in the database) is stored 
for the corresponding pattern pi this frequency is 
incremented for every new node. Then the score 
function W(Pi) is calculated using the Equation 1: 

                    

i i
i

F(P ) * L(P )
W(P )=

|DB |
 

Where: 

• W(Pi)=Function value of the pattern. 

• F(Pi)=Frequency of the node. 

• L(Pi)a=Length of the label of prefix. 

• i=Node number. 
• |DB|=Database size.  

The score function W(Pi) is used as a measure to 
determine whether a particular pattern is significant to 
be included in the post-processing for evaluation of 
sequences, to determine the closest set of sequences. 
Then, the query sequence and number of sequences to 
be selected from the database is read from the user 
temporarily added onto GFTESArray. 

This enables to determine which suffixes of the 
query are shared by the sequence in the database. The 
query sequence is only temporarily added to the tree so, 
that BioDBMPHF compression tool is not affected for 
future sequence searches. Initially all the nodes in the 
GFTESArray are 0. When the query sequence is added 
as a suffix, the nodes visited are set to 1. This expedites 
the search for common patterns within the 
GFTESArray because only those paths in the tree for 
patterns that contain substrings of the query sequence 
are examined. In depth-first manner, starting at the root 
all the nodes is visited to check the value 1. If the 
current node has no child whose value is 1, then the 
search backtrack to its parent node. During this 

traversal all the significant patterns are collected. The 
sequence may have other common patterns that are not 
significant. An optimal alignment between these two 
sequences in an ideal case contains all significant 
patterns. After this process the query sequence from 
GFTESArray is deleted. Top ten significant patterns 
are selected and stored. The sequence that contains 
significant patterns is extracted and stored. Reverse 
check is made to obtain the accuracy of the results; it 
computes how many chosen patterns are being shared 
by each of the sequences extracted already. Higher the 
number (weight), greater will be the similarity of the 
corresponding sequence to the query. Based on this 
weight, the sequences are ranked. A top ‘n’ sequences 
are transferred to new database. Algorithm for the 
developed BioDBMPHF compression tool is shown in 
Algorithm 2. 

Algorithm 2: BioDBMPHF compression tool 

// Input:  set of DNA Sequences 

// Output:  Compressed set of DNA sequences  

S 1: Read DNA database. 

S 2: Construct GFTESArray for the input sequences, Set node 

visit=0. 

S 3: While constructing the suffix array, store the information 

of label-length, frequency at nodesand sequences traversing 

through the branches. 

S 4: Use the Equation 1 to calculate the degree of similarity of 

patterns in the form of prefixes. 

S 5: Read query sequence Q and the number of sequences n to 

select from the user. 

S 6:Temporarily add the suffixes of query to the generalized 

GFTESArray. 

S 7: While adding the suffixes highlight nodes of the paths 

which are traversed by the query sequence. 

S 8:Post process the GFTESArray to extract patterns shared 

by the query sequence, which lies above a defined threshold on 

the function-value. 

S 9:Pick the top ten of these patterns and store. 

S 10: Do a reverse check to compute the weight of each 

sequence in the subset. 

S 11: Rank the sequences according to these weights. 

S 12: Pick top n sequences from the subset and write to a new 

database. 

5. Results and Conclusions 

Cross-validation, is the statistical practice of 
partitioning a sample of data into subsets such that the 
analysis is initially performed on a single subset, while 
other subset(s) are retained for subsequent use in 
testing and validating the initial analysis. In this paper. 
7-foldcross validation is used to validate the 
consistency of the result. 

5.1. Cross Validation 

The real world DNA (GSS, EST) databases from 
oryza sativa group is extracted from NCBI website 
and enhanced suffix array is formed for all the 
sequences in the database. Based on the user given 
query sequence, the significant patterns are generated. 
The sequences in the DNA database are given weights 
according to the number of patterns they contain. The 

(1) 
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compressed database is formed by selecting top ‘n’ 
sequences with highest ranks and written into a new 
database.  

The main idea of 7 fold cross validation approach is 
to “train on 6 folds and test on 1 fold’. The data set is 
divided into 7 parts. Among the 7 parts 6/7 of the data 
are used for training data set and the remaining 1/7 is 
used for testing data set. BioDBMPHF compression 
tool is applied on training data set and then on 
WU_BLAST for single user given query sequence. For 
the same query sequence WU-BLAST alone is applied 
on the testing data set. The average of this seven runs is 
computed for analysis. In this paper such seven queries 
are taken and analyzed. 49 sequences from oryza sativa 
GSS gi: 288881557 to gi: 288881606 are taken as a 
database set, 42 sequences are used for training data set 
and 7 sequences are used for test data set. Single query 
sequence is applied first on BioDBMPHF compression 
tool, data base is compressed. WU-BLAST is 
performed on the new data base and the same query 
sequence. Then, for same sequence WU-BLAST alone 
is applied. The sequences in the training and test data 
set are interchanged and the above steps are repeated 
until every fold is used for training. The average result 
from 7 runs are calculated and stored. This is 
experimented for 7 different queries. The objective is to 
test whether the results are consistent for all the queries 
on a particular database in terms of computational time. 

Reduced database from the developed BioDBMPHF 
compression tool is cross validated using 7 fold cross 
validation approach. The cross validation result of 
seven different queries for DNA database set GSS gi: 
288881557 to gi: 288881606 are shown in Figure 2 and 
EST gi: 288886142 to gi: 288886191 are shown in 
Figure 3. Running time of developed BioDBMPHF 
Compression Tool  is measured  on a PC equipped with 
a 3.0 GHz Core 2 Duo 32 bit Processor and 3 GB 
DDR2 RAM. The PC is operated by windows 7.  

T
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e 
(m

s)
  

 
Figure 2. Computation time for BioDB compression tool, 
BioDBMPHF compression tool and WU-BLAST for the data set GSS 
gi: 288881557 to gi: 288881606. 
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Figure 3. Computation time for BioDB compression tool, 
BioDBMPHF compression tool and WU-BLAST for the data set EST 
gi: 288886142 to gi: 288886191. 

The idea is to test whether the results are consistent 
for all queries on a particular database in terms of 
computation time. First series in the Figures 4 and 5 
represents the computation time obtained from WU-
BLAST, second series represents the result of BioDB 
compression tool [11] and the third one represents the 
result of applying developed BioDBMPHF 
compression tool. Suffix array enhanced with child 
table is used in BioDB compression tool. The Figure 
shows that the results obtained from BioDB 
compression tool [11] and developed BioDBMPHF 
compression tool are consistent and perform sequence 
comparison with a good accuracy and a practical time 
improvement is achieved over WU-BLAST.  

Existing BioDB compression tool [11] is 
constructed with the help of suffix array enhanced 
with child table. The space complexity of enhanced 
suffix array is 6n bytes to store Ssuftab, Lcp table and 
child table for single entry [2, 9]. The time complexity 
of enhanced suffix array for a given pattern ‘p’ of  the 
string ‘S’ is O(m+z) where ‘z’ is number of 
occurrences of ‘p’ in S and ‘m’ is the length of the 
pattern. 

The developed BioDBMPHF compression tool is 
implemented using fine-tuned enhanced suffix array 
using new hash index algorithm. Time complexity of 
fine-tuned enhanced suffix array is O(2+γ) where ‘γ’ 
is the Time taken to access the pattern within the 
child-interval. Space complexity of fine-tuned 
enhanced suffix array is 5n bytes for reduced 
enhanced Lcptab and to store bucket table it requires 
32 bytes.  

In this paper, the BioDBMPHF compression tool 
using improved fine-tuned enhanced suffix array has 
been developed. BioDBMPHF compression tool pre-
processes the database to create a generalized fine-
tuned enhanced suffix array and extended by adding 
frequency and length information for the patterns. 
BioDBMPHF compression tool distinguishes patterns 
by computing significance-scores. A pattern is 
regarded as important if it is lengthy enough and it 
appears frequently enough in the database. The 
scoring function takes into account a pattern’s length 
and frequency, the given threshold values and 
determines if a pattern is important. Using these, for a 
given query sequence BioDBMPHF compression tool 
compresses the database to only a few sequences that 
share the most significant patterns with the query. This 
compression in database size speeds-up the local 
alignment of the query sequence against the database. 
Experimental results have shown that BioDBMPHF 
compression tool provides a speed-up over WU-
BLAST. It is able to reduce the time of a database 
search to nearly five times originally taken by WU-
BLAST. Results from WU-BLAST have shown that 
this method is experimentally effective, as the results 
obtained by BioDBMPHF compression tool produces 
accurate alignment. Combined with the extended 
suffix array, BioDBMPHF compression tool has the 
advantage of using WU-BLAST to do the local 
sequence alignment. Latest data mining technique, 7 
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fold cross validation is applied to attain a greater 
accuracy in the results and the results are satisfactory. 
The fine-tuned Enhanced suffix array algorithm used in 
BioDBMPHF compression tool requires 5n bytes + 32 
bytes/entry where SCT requires 20n bytes which uses 
suffix tree and BioDB compression tool requires 6n 
bytes/entry. So, space complexity is approximately five 
times less than SCT and also less than BioDB 
compression tool. Experimental results show that the 
running time of BioDBMPHF compression tool is 
much better than SCT and BioDB compression tool.   

In this paper, a small domain of sequences have been 
selected from the DNA database and experimentally 
proved that, fine-tuned enhanced suffix array reduces 
space complexity by five times and time complexity is 
also reduced with the help of developed hash index 
algorithm. BioDBMPHF compression tool can also be 
applied to global sequence alignment and multiple 
sequence alignment. This work can also be applied to 
protein sequences by modifying the hash index 
algorithm.    
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