
370 The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015

Solving QBF with Heuristic Small World

Optimization Search Algorithm

Tao Li
1

and Nanfeng Xiao
2

1
Modern Education and Technology Center, South China Agricultural University, China

2
School of Computer Science and Engineering, South China University of Technology, China

Abstract: In this paper, we use gaifman graph to describe the topological structure of the Quantified Boolean Formulae

(QBF), we mainly study the formula family with the Small World (SW) network topology. We analyze the traditional Davis,

Putnam, Logemann and Loveland (DPLL) solving algorithm for QBF, then we improve the DPLL algorithm and propose the

solving algorithm framework based on Small World Optimization Search (SWOS) algorithm, we apply this SWOS algorithm to

determine the order of the DPLL branch variable. Our result proves that SWOS algorithm has a certain degree of effectiveness

to improve the solving efficiency. It is valuable as an incomplete solution algorithm for search-based solver.

Keywords: QBF, SW, search algorithm, optimization algorithm.

Received July 26, 2012; accepted February 11, 2013; published online August 17, 2014

1. Introduction

Boolean Satisfiability (SAT) solvers have become

powerful enough to solve many practically relevant

problems and they are currently used in numerous

industrial tools for circuit and software verification.

Building upon this success, the research community has

begun to consider the more general, but also more

complicated Quantified Boolean Formula (QBF)

domain. This allows researchers to encode problems

encountered in black box or partial circuit verification,

bounded model checking and AI planning more

naturally and compactly than in SAT. However, since

QBF problems are generally more difficult (PSPACE-

Complete vs. NP-Complete), they require dedicated

algorithms and increased computation power to solve

relevant instances [15]. In this context, the use of

different heuristic and especial algorithms is a possible

and interesting solution.
In fact, nearly all effective QBF solvers are found on

Davis, Putnam, Logemann and Loveland (DPLL)
algorithms [6] the main factor affect the efficiency of
algorithm is the choice of branch variable. For this
reason, the researcher adopt various approach to decide
the branch choice, such as random method, walksat
heuristic and survey propagation [9, 29]. This paper
highlights this problem and provides new heuristic
algorithm to improve the branch choice within the
DPLL algorithm framework. We use the graph
structure to research QBF solving, some QBF which
have a Small World (SW) network structure are very
difficult to resolve [22, 23]. For the purpose of
improving the solution efficiency for this particular
type of formula, we develop a heuristic Small World
Optimization Search (SWOS) algorithm to seek the
optimal variable and then we adopt the optimal variable
as the branch variable. To our best knowledge, it is the

first time to research the special QBFs having the SW
network topological structure.

The paper is structured as follows: Section 2 will
start with a description of the QBF problem and how
QBF solvers work (section 2.1 and 2.2). In section 3
we introduce our solving architecture for QBFs. In
section 4 we introduce the heuristic SWOS algorithm
for branch choice. In section 5 we give some technical
details and experimental results about our
implementation. Section 6 will conclude this paper
and giving some future research directions.

2. Preliminaries

2.1. Overview of the QBF Problem

There are many ways to encode a QBF problem [15]
but, in our context, they are defined in Conjunctive
Normal Form (CNF). A problem in CNF form starts
with a variable definition. The variable definition
quantifies each variable (either existentially or
universally) and assigns each variable to a specific
quantification level. Once the variable definition is
complete, a set of clauses is given that defines the
problem. More formally, a QBF is an expression of
the form:

 ()1 1 2 2 n nφ=Q z Q z … Q z Φ n³0

Here, every Qi(1≤ i≤ n) is a quantifier, either
existential ∃ or universal ∀, z1, …, zn are distinct sets
of variables and Φ is a propositional formula. Q1 z1, Q2
z2, …, Qn zn is defined as the prefix and Φ, the
propositional formula would contain a set P of clauses.
While a variable is defined as an element of P, an
occurrence of that variable or its negation in a clause
is referred to as a literal. In the following, the literal
l is defined as the negative occurrence of the variable
|ɭ| in P and ɭ is the positive occurrence. In the

(1)

Solving QBF with Heuristic Small World Optimization Search Algorithm 371

following, we also, use true and false as abbreviations
for the empty conjunction and the empty disjunction,
respectively. For example, an entire problem definition
might be as follows:

{ } { } { }
{ } { }

y1 2 2 2

1 2

y1 2

x x y x x
x y x

x y x

∃ ∀ ∃
∨ ∨ ∧ ∨ ∧

∧ ∨ ∧ ∨

  
 
  

We say that (1) is in CNF when Φ is a conjunction of

clauses, where each clause is a disjunction of literals as

shown in Equation 2 and that Equation 1 is in

Disjunctive Normal Form (DNF) when Φ is a

disjunction of cubes, where each cube is a conjunction

of literals1. We use constraints when we refer to

clauses and cubes indistinctly. We also define:

1. The level of a variable zi, to be 1+the number of

alternations Qj zj, …, Qj+1 zj+1 in the prefix with j≥ i

and Qj≠Qj+1.

2. The level of a literal ɭ is the level of |ɭ|.

3. The level of the formula 1 is the level of z1.

4. So for example, in Equation 2, x2 is existential and is

quantified on level 1, y is universal and is on level 2,

x1 is existential and is on level 3.

QBF solvers are interested in answering the question of

whether or not Equation 1 ϕ expresses a true or false

assertion, i.e., whether or not ϕ is true or false. The

reduction of a CNF formula Φ by a literal ɭ is the new

CNF Φ|ɭ which is Φ with all clauses containing ɭ

removed and
 ¬

ɭ the negation of ɭ, removed from all

remaining clauses. For example, let ϕ=∀xz∃y(ӯ, x,

z)˄(x , y)), then ϕ|x=∀z∃y(ӯ, z). The semantics of a

QBF can be defined recursively in the following way:

1. If Φ is the empty set of clauses then ϕ is true.

2. If Φ contains an empty clause then ϕ is false.

3. ∀vϕ is true if both ϕ|v and ϕ|¬v are true.

4. ∃vϕ is true if at least one of ϕ|v and ϕ|¬v is true.

In this paper, we only study the formula with

conjunctive normal form.

2.2. QBF Solver

The sequential QBF solvers usually apply one single

algorithm to resolve the whole formulae set at runtime.

There are many sequential QBF solvers [18, 21]. Most

solvers like QuBE, yQuaffle and sSolve are in principal

based on the DPLL algorithm [2, 6, 10, 11, 20]. Others,

like Quantor or Nenofex [4, 12] try to resolve and

expand the formula until no universally quantified

variables remain. This allows them then to send their

remaining, existentially quantified problem to a SAT

solver. This works well on many problems, but it can

result in an explosion with respect to the size of the

formula. On the other hand, solvers like sKizzo [3] do

the opposite of Quantor [1] and use symbolic

skolemization to eliminate all the existentially

quantified variables in the formula. Some so-called

incomplete solvers are also based on stochastic search

methods and they can be very effective in solving

some categories of problems, but are not able to prove

the value of unsatisfiable formulas. A few alternative

algorithms for QBF are emerging, e.g., and-Inverter

Graphs. Their usage in QBF satisfiability algorithms

have been explored at least in [19]. Finally, AQME

[21] is a portfolio of solvers considered and the best

one is selected using machine learning techniques

[25]. In the parallel solving domain, there exist three

implementations of parallel solvers for the problem of

validity of QBF: PQSOLVE, PaQube and QMiraXT

[8, 15, 16].

2.3. SW Network

In mathematics, physics and sociology, a SW network

is a type of mathematical graph in which most nodes

are not neighbors of one another, but most nodes can

be reached from every other by a small number of

hops or steps. Specifically, a SW network is defined to

be a network where the typical distance L between two

randomly chosen nodes (the number of steps required)

grows proportionally to the logarithm of the number

of nodes N in the network, that is [27]:

L log N∝

To formalize the notion of a SW, Watts and Strogatz
define the clustering coefficient and the characteristic
path length. The path length is the number of edges in
the shortest path between two nodes. The
characteristic path length L is the path length averaged
over all pairs of nodes. The clustering coefficient is a
measure of the cliqueness of the local neighborhoods.
For a node with k neighbors, then at most k(k-1)/2
edges can exist between them (this occurs if they form
a k-clique). The clustering of a node is the fraction of
these allowable edges that occur. The clustering
coefficient C is the average clustering over all the
nodes in the graph.

Watts and Strogatz define a SW graph as one in
which L≥ Lrand and C>>Crand where, Lrand and Crand are
the characteristic path length and clustering coefficient
of a random graph with the same number of nodes n
and edges e. Rather than this simple qualitative test, it
might be useful to have a quantitative measure of
“small worldliness”. We can then compare the
topology of different graphs. To this end, we define
the proximity ratio µ as the ratio of C/L normalized by

Crand/Lrand. In graphs with a SW topology, the
proximity ratio µ>>1. By comparison, the proximity
ratio µ is unity in random graphs and small in regular
graphs like lattices.

3. Solving Architecture

3.1. Problem Model

Given a QBF ϕ on the set of variables Z={z1, ..., zn},
its gaifman graph has a vertex set equal to Z with an
edge (z, z') for every pair of different elements z, z'∈ Z

(2)

372 The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015

that occur together in some clause of ϕ. A scheme for a
QBF ϕ having prefix P is a supergraph (Z, E) of the
gaifman graph of ϕ along with an ordering z1', ..., zn' of
the elements of Z such that:

1. The ordering z1', ..., zn' preserves the order of P, i.e.,

if i< j then zj' comes after zi' in P.

2. For any zk', its lower numbered neighbors form a

clique, that is, for all k , if i< k, j< k, (zi', zk')∈E and

(zj', zk')∈E, then (zi', zj')∈E [20, 23].

In Figure 1, we show the gaifman graph

corresponding to the structure of Equation 3. The graph

is comprised of five nodes and there is an edge between

all the variables occurring together in some clause of 3.

(()

()

() ()

() ()

() ())

1 1 2 2 3 1 2 2

1 2 2 3

1 2 3 1 1 3

1 2 2 1 2 2

1 1 2 3 2 3

y x y x x y y x

y ¬y ¬x ¬x

y ¬x x ¬y x x

¬y y x ¬y y ¬x

¬y ¬x ¬y ¬x ¬x ¬x

∀ ∃ ∀ ∃ ∃ ∨ ∨ ∧

∨ ∨ ∨ ∧

∨ ∧ ∨ ∨ ∧

∨ ∧ ∨ ∨ ∧

∨ ∨ ∨ ∧ ∨

∨

∨

Figure 1. Gaifman graph of the QBF (3).

 Pulina et al. [21, 23] found there are some formulas

families are very difficult to solve, at least by search-

based solvers. The author investigated this phenomenon

by studying the purely propositional structure of the

gaifman graphs of these formulas, with respect to the

original formulas, these graphs have an increased

clustering coefficient C and a decreased average path

length L, i.e., these formulas have SW topology, in a

propositional sense. This means that there are clusters

of densely connected variables, with occasional cross-

cluster connections. It is an important conclusion that

the more the structure of the formula resembles a SW,

the more it is difficult to solve [5].

The reason for this phenomenon is explained in [26,

27]. In a graph with a SW topology, nodes are highly

clustered yet the path length between them is small.

Such a topology can make search problems very

difficult since local decisions quickly propagate

globally. It shows that graphs associated with many

different search problems have a SW topology and that

the cost of solving such search problems can have a

heavy tailed distribution. The strategy of randomization

and restarts appears to eliminate these heavy tails. A

novel restart schedule in which the cutoff bound is

increased geometrically appears particularly effective.

In this paper, we develop a heuristic SWOS

algorithm to seek the optimal variable in gaifman

graphs and then we adopt the optimal variable as the

branch variable, then we can use the DPLL algorithm

framework to solve the formulas. In this way, we can

improve the solve efficiency to some extent.

3.2. Solving Algorithm Framework

The DPLL algorithm is the most efficient algorithm in

SAT solving domain. At the present time, almost all

the QBF solver is designed on the base of DPLL

algorithm. The basic framework of DPLL algorithm

for solving QBF problem is showed in Algorithms 1

[6, 29].

In Algorithms 1, Cϕ is the empty clause, C∀ is the

clause composed of universal literals, ɭv is the literal

corresponding to the variable v, ɭ∃ is a set of existential

literals, ɭ∀ is a set of universal literals, Q.E|v=true is the

formula set through assigning a true value to variable

v, Q.E|v=fulse is the formula set through assigning a false

value to variable v. In the preprocess stage, the DPLL

algorithm uses some inference rules, such as pure

literal rule, unit literal rule to simplify the QBFs, thus,

we can decide whether the conditions for terminating

the algorithm is satisfied. If the formula set is empty

after simplification, the original formula is satisfiable;

otherwise, if the formula set contains the empty clause

or contains a clause composed by universal literals

merely, the original formula is unsatisfiable. If we can

not decide whether the original formula is satisfiable

or unsatisfiable, then we split the and/or tree according

to the variable constraint by the outermost layer

quantifier, in this way, we get two formula collection

Q.E|v=true and Q.E|v=fulse If the variable which we choose

to split the and/or tree is an existential literals, the

original formula is satisfiable at least one of Q.E|v=true

and Q.E|v=fulse is satisfiable. If the variable which we

choose to split the and/or tree is a universal literals,

the original formula is satisfiable only if both Q.E|v=true

or Q.E|v=fulse are satisfiable. From the procedures of

DPLL algorithm, one of the key factor affecting the

entire algorithm efficiency is how to choose an

appropriate variable for splitting the and/or tree.

We design the SW algorithm for solving Small

World_QBF (SW_QBF) algorithm on the base of

DPLL algorithm, the algorithm framework is showed

in Algorithms 2. The notations of the SW_QBF

algorithm are same to the DPLL algorithm. Cϕ denotes

the empty clause, C∀ denotes the clause composed all

by universal literals, Q.E|v=true is the formula set

through assigning a true value to variable v, Q.E|v=false

is the formula set through assigning a false value to

variable v. In the preprocess stage, the SW_QBF

algorithm uses some pure literal rule to simplify the

QBFs. In the branch selection stage, SW_QBF

algorithm adopts the SWOS algorithm as the heuristic

(SWOS_Choosevariable()), it determines the branch

variable through providing the global information,

reduces the searchspace, thereby decreases the

algorithm’s rollback times, we will introduce the

y1

y2

x3 x2

x1

(3)

Solving QBF with Heuristic Small World Optimization Search Algorithm 373

SWOS algorithm in chapter 4. In the branch process

stage, we apply the conflict reasoning rules to infer the

QBFs, this procedure will produce three return value,

they are respectively conflict, satisfaction and

undetermined. If the original formula E has false value

on the current assignment, the algorithm returns

conflict, then continue the conflict driven learning. If

the original formula E has true value on the current

assignment, the algorithm returns satisfaction, then

continue the satisfiability directed implication learning.

If the value of formula E can not be determined on the

on the current assignment, the algorithm returns

undetermined, then continue the branch selection. In

this stage, we use some reasoning technology such as

conflict driven learning and satisfiability directed

implication learning to decrease the searchspace,

accelerate the problem solving.

• SubFunction DPLL(Q.E)

Algorithms 1: DPLL algorithm

1. Preprocess (Q.E).

2. if E=Ø then return SAT.

3. if (CØ∈ E)∨(Call∀∈ E) then return UNSAT.

4. v←choosevariable(Q.E).

5. if (ɭv∈ ɭ∃)

6. then return DPLL(Q.E|v=true) or DPLL(Q.E|v=false)

7. if (ɭv∈ ɭ∀)

8. then return DPLL(Q.E|v=true) and DPLL(Q.E|v=false)

• SubFunction SW_QBF(Q.E)

Algorithms 2: Solving QBF with SWOS algorithm

1. preprocess(Q.E).

2. if (E = ∅) then return SAT.

3. if (CØ∈ E)∨(Call∀∈ E) then return UNSAT.

4. result=deduce();

5. if (result=conflict)

6. then analyze_conflict().

7. if (result=satisfaction)

8. then analyze_satisfaction();

9. v←SWOS_Choosevariable(Q.E).

10. if (ɭv∈ ɭ∃)

11. then return SW_QBF(Q.E|v=true) or SW_QBF(Q.E|v=false)

12. if (ɭv∈ ɭ∀)

13. then return SW_QBF(Q.E|v=true) and SW_QBF(Q.E|v=false)

4. Branch Variable Choice Based on SWOS

Algorithm

We can explain the basic thinking of branch choice

(subfunction SWOS_Choosevariable) which is based

on SWOS algorithm as followed [28].

We adopt the gaifman graph showed in Figure 1 to

indicate the structure of QBFs, each variable is the node

in SW network. We apply the SWOS algorithm in the

SW network, assign the variable group in improved SW

structure, each variable individual can get more

information from other individual, in this way and thus,

we can achieve the goal which seeks the optimal branch

variable. We take the variable found in searching each

time as the branch variable chosen at that time.

4.1. Algorithm Analysis

In the process of our algorithm, there are three type of
variable, they are respectively discoverer variable,
pursuer variables and patrolman variables.

In each iterative searching, the variable individual
which has the optimum fitness in variable group is
chosen as the discoverer variable, other variables are
divided into pursuer variables and patrolman
variables. In our SW search algorithm, each variable
individual has it own angle of aspect, and the angle of
aspect will be updated in very iteration. The
discoverer variable and patrolman variables
implement the mechanism of angle searching. The
discoverer variable inspects three position variables
nearby itself through rotating its searching angle, thus,
it is expecting finding a better place. The patrolman
variables choose a random orientation to execute a
local search through rotating its searching angle
randomly, thus it increases the diversity of variables
group. The pursuer variables do not implement the
mechanism of angle searching, but it close with the
discoverer variable directly.

It is supposed that the i
th
 variable individual in the

group is pursuer variables when the algorithm
implements the k

th
iteration, then the location update

method of variable i is explained in Equation 4:

 ()
k +1 k k k

i i 3 p i
X =X + r X - X

In Equation 4,
k

i
X is the current location of variable

individual I,
k 1

i
X

+
is its location after update, r3 is a

random number which distributes uniformly ranged
from 0 to 1. In our algorithm, the pursuer variables
have the largest number in the variables group, so the
update mechanism of pursuer variables affects the
algorithm performance mostly.

 In this paper, we introduce the influence of

distance on communication into the small world

model, i.e., one variable node decide the probability P

of adding the edge through considering the distance

between itself and other variable. At the same time,

the value of P will increase with the increment of

iteration times. In this paper, the value of P decreased

as an exponential function with the increment of

distance among the variable nodes, simultaneously,

the value of P increases linearly with increment of

iteration times.

In swarm intelligence algorithm, we look on the

variable group as a network, each variable is a node in

the network. These variable nodes implement co-

learning and coevolution through sharing information

each other, in this way, the variable group achieves the

collective goal. Just like the animal hunting in reality,

the animal which join the hunting not only pay

attention to the discoverer, but also watch the other

individual’s behavior in its view. In this mode, it has a

(4)

374 The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015

great probability to watch the surrounding companion,

at the same time, it also has a smaller probability to

watch the distant companion. So, we make use of this

idea in our search algorithm.

It is supposed that we implement searching in a

group having M variable in an N-Dimension Space, at

the Kth computation, the i
th
 variable is pursuer variables.

At first, we compute the probability k

i
p which decide

whether to connect with other variables according to

the current iteration times and the distance between

itself and other variables, the pursuer variables choose

its conjoint variable according to ,k

ip thus it can

constitute the neighborhood with itself. The

probability k

i
p connecting variables i and j is showed as

follows Equation 5:

() ()

k

k ij

ij 1

max

1

Disk
p = w * + 1 - w exp

MaxInt l

In Equation 5, MaxInt is the maximum iteration time,
k

ij
Dis is the Euclidean distance between variables i and

j, w1 is a weight coefficient (0≤ w1 ≤1), ɭmax is the

maximum step-size in search, ɭmax can be computed in

Equation 6:

 ()
n

2

max z z
z =1

l = U - L = U - L∑

In Equation 6, Uz is the upper bound of the z

dimension’s border and Lz is the corresponding lower

bound.
Because the small world requires 0≤

k

ijp ≤1, we can
know from Equation 5, each item in the expressions is
nonnegative, so 0≤ ,k

ijp when k=MaxInt and 0,k

ijDis = k

ij
p

has the maximum value w1+(1-w1)=1, so our algorithm
model satisfies the requirement of small world network.

In our algorithm, the pursuer variable connects to a
certain number of other variables in accordance with
the improved small world model in very iteration, in
this way it structures its neighborhood, then it choose
the variable which has the best fitness as the local
optimum variable. The pursuer variable refers
simultaneously the local optimum and global optimum.

It supposed that in the k
th
 iteration, the local

optimum variable in the neighborhood of the i
th

individual variable is ,k

iLbest the value of
k

iLbest is
.k

liX The improved pursuer variable’s position is
updated in Equation 7，r4 is a random number which
uniformly distribute between 0 and 1.

 () ()
k +1 k k k k k

i i 3 p i 4 li i
X = X + r X - X + r X - X

In our algorithm, after the variable updates its position,
it evaluates the fitness immediately and then compares
itself with the current global optimum, if the current
variable’s position is better than current global
optimum variable; The current global optimum variable
is replaced. In this way, if the new global optimum
variable is generated in the process of iteration, the
variable which has not been updated will receive this

message and update its position through referring the
new global optimum variable.

4.2. Algorithm Processes

The process of the SWOS algorithm can be explained

as followed:

• Step l: All the individual variable’s position X and
search angle ϕ are initialized randomly. The
algorithm computes the orientation of individual
variable, give a fitness evaluation to each individual
variable’s position, get the average fitness R and
then select the individual which has the best fitness
as the discoverer variable (optimal variable).

• Step 2: The algorithm judges whether the terminal
condition is satisfied, if the terminal condition is
satisfied, then output the result, if not satisfied, go
to Step 3.

• Step 3: Each individual variable in the candidate

variable group executes the operation followed:

• Step 3.1: The algorithm judge whether the
individual variable is a discoverer variable, if it
is, check three position and then give a fitness
evaluation to these three position, if a better
position is found, then jump to the better place,
otherwise, keep the current position. If the
discoverer variable does not find a better place
for continuous α generation’s iteration, then the
search angle returns the value before
α generation’s iteration. If discoverer variable
does find one, then go to step 3.2.

• Step 3.2: A random number rand between 0 and
1 is generated for the variable i, if rand < R, then
the variable i is a pursuer variable, go to step 3.3,
otherwise, it is a patrolman variable, go to step
3.5.

• Step 3.3: The algorithm computes the distance
k

ij
Dis (j≠i) from variable i to other variable, then
computes the probability k

ij
P which decides

whether variable i connect other variable in the
current iteration according to the expression (2).
A random number rand between 0 and 1 is
generated for the other variable j, if
rand< ,k

ijP then the variable i connects with the
variable j.

• Step 3.4: The variables which are connected with
the variable i constitute the neighbors of variable
i. Then, the algorithm selects the variable which
has the best fitness as the local optimum
variable .k

iLbest Thus, the variable i updates its
own position according to the Equation 4, go to
step 3.6.

• Step 3.5: The patrolman variable updates its
position.

• Step 3.6: The algorithm evaluates the fitness of

variable i. if the fitness of variable i is superior

to the current discoverer variable, then the

variable i is chosen as the new discoverer

variable.

• Step 4: Return to step 2.

(5)

(6)

(7)

Solving QBF with Heuristic Small World Optimization Search Algorithm 375

The pseudo code of the SWOS algorithm is showed

in followed Algorithms 3.

• SubFunction SWOS_Choosevariable (Q.E)

Algorithms 3: Branch selection based on SWOS

algorithm.

1. { RandomInitialization(Q.E.X, ϕ);

2. Best=Evaluate(Q.E.X);

3. While(No better)

4. { Return discoverer;

5. { if(Q.E.X= discoverer)

6. { While(α)

7. { PositionDetection();

8. Evaluate(Q.E.X);

9. if(better)

10. Go the BetterPosition; }

11. SearchingAngle(α); }

12. rand=Rand(i);

13. if(rand<R)

14. { Q.Ei= pursuer;

15. (
k

ij
Dis ,

k

ij
P)=Compute();

16. rand=Rand(j);

17. if(rand<
k

ij
P)

18. { Connect(i,j);

19.
k

i
Lbest = Evaluate(Neighbor(i));

20. updatePosition(i); }}

21. else

22. { Q.Ei= patrolman;

23. updatePosition(i);

24. if(Evaluate(Q.Ei)> discoverer);

25. Q.Ei = discoverer;}}}

5. Experimental Evaluations

To evaluate our algorithm architecture, we ran few
preliminary tests on some benchmark of QBFLIB
(www.qbflib.org). All the experiments that we present
hereafter ran on a single PC, running the environment is
Ubuntu-11.10-desktop/GNU Linux. On all test runs the
CPU time limit was set to 600 seconds.

In order to compare the solution efficiency, we
choose three state-of-the-art solvers, namely a hybrid
solver AQME10, two sequential solvers QuBE7 and
sKizzo. AQME10 is an adaptive QBF Multi-Engine
solver; it is robust and efficient than state-of-the-art
single-engine sequential solvers. QuBE7 is an efficient
search-based solver for QBFs. Maybe it is the best
search-based solver. sKizzo is a powerful solver based
on a new technique, called symbolic skolemization and
on a related form of symbolic reasoning. This approach
makes it differ from all the previous QBF solvers. This
approach makes it differ from all the previous QBF
solvers. All the solvers run the same benchmarks on the
same single machine. In our experiments, we ran all the
solvers with their default settings, i.e., we did not
attempt to optimize any of their parameters for the
problem at hand.

Our experiments are to run the solvers on different
QBF encodings, with the goal of confirming the
validity of the selection above. In particular, we wish to
show that the encodings considered are challenging

enough given the current state of the art and that the
algorithms featured by the solvers are orthogonal, i.e.,
solvers have complementary abilities across different
families.

To prove the effectiveness of our methods, we
choose the QBFs family counter, C432, Debug, s3271,
term1 as the test set, they are in the formal verification
domain. The QBFs made up by encoding of formal
verification problems represent a reasonably difficult
test set. Family counter has 88 instances; we only
describe the experiments result of 10 instances
because of the space restraint of this paper. Family
debug has 38 instances, we only choose 10 instance.

Table 1 is the cumulative CPU time to solve the
benchmarks family counter (unit is second(s)).
SMQBF is the solver which applies the SWOS
algorithm. We can see from the table that our solver
SMQBF have not much different with other three
solvers. Two sequential solvers QuBE7 and sKizzo
spend no time from cnt01 to cnt05, because these
instances are very easy formula, the sequential can
resolve them directly. But, AQME10 and our solver
are hybrid solver, it must spend a little time to run the
classification algorithm in order to accomplish the best
algorithm selection. For the more hard formula
instances cnt09 and cnt10, four solvers all spend much
time, the time gap is not very obvious. We can see the
similar result from Table 2. From the above
benchmarks, we can see the SMQBF is almost as
strong as QuBE7. But, it is slightly worse than QuBE7
because QuBE7 apply some top reasoning technology.

Table 1. Solving time for family counter of domain formal
verification.

Instances AQME10 QuBE7 sKizzo SMQBF

cnt01 0.403 0 0 0

cnt02 0.2906 0 0 0

cnt03 0.2956 0 0 0

cnt04 0.301 0 0 0

cnt05 0.3166 0 0 0

cnt06 0.3352 0.02 0.12 0.03

cnt07 0.3483 0.05 0.34 0.05

cnt08 0.4656 0.15 0.81 0.16

cnt09 0.9728 0.63 1.22 0.68

cnt10 3.27 3.19 5.01 3.21

Total 6.9987 4.04 7.5 4.13

Table 2. Solving time for benchmarks of domain formal
verification.

Benchmarks AQME10 QuBE7 sKizzo SMQBF

Counter(10) 6.9987 7.47 7.5 7.56

C432(8) 6.1362 7.34 6.54 7.68

Debug(10) 8.345 8.53 8.56 8.67

s3271(8) 7.829 8.12 8.09 9.32

term1(8) 7.632 7.96 7.99 8.12

Total 36.972 39.42 35.22 41.35

From the above benchmarks, our SMQBF does not

have an advantage over other solvers. The reason is

that the above benchmark’s original QBFs structure is

not close to a small world topology, the structure of

these formulas is closer to a random world topology.

An important fact to be mentioned is that the gaifman

376 The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015

graphs corresponding to the above formulas encodings

are sparse. So, the solver apply the SWOS algorithm

does not exceed other solvers.

The second experiment detailed in this section is

carried out on the same computing platforms above, but

here we focus on the following QBF encodings:

• Katz: QBFs resulting from the encoding of symbolic

reachability for industrially relevant circuits (20

instances) [7].

• Tipdiam: QBFs resulting from the encoding of

symbolic diameter calculation for a variety of

circuits (40 instances) [13].

These two families are the formulas whose gaifman
graphs have typical small world structure. Some
relevant features of the above encodings are
summarized Pulina and Tacchella [23] analyze these
two families and gets this conclusion. The density
distribution of these familie’s graph structure can reach
relatively high values. These two set match the small
world topology more closely than the above families.

Table 3 is the cumulative CPU time to solve the
benchmarks family Katz and Tipdiam, it reports the
number of instance solved by four solvers (Number)
and the total CPU time spent on such instances (Time).
A dash on both columns means that the solver does not
solve any formula. We can see that all the solvers fell
hard to these two families. They all can’t resolve all the
formulas. The hybrid solver AQME10 is the best in
other three solvers, but our solver SMQBF can resolve
more numerous formulas than AQME10, even it spends
less time. The largest number of instance solved by
SMQBF exceed the second about one-third. It proved
that heuristic SWOS algorithm is very effective in
branch selection for DPLL split.

Table 3. Solving time for benchmarks of small world formula

family.

Benchmarks
AQME10 QuBE7 sKizzo SMQBF

Number Time Number Time Number Time Number Time

Katz(20) 9 75.65 9 80.76 -- -- 12 70.43

Tipdiam(100) 78 312.73 75 340.45 65 720.52 85 290.34

From the experimental data, we know that the time

gap is not very obvious in formulas have random world
topology. On the contrary, but for the more hard
formula instances in the formulas have SW topology,
the solver based on heuristic SWOS algorithm surpass
other three advanced solvers. It is an important result
that the more the structure of the instance resembles a
SW, the more it is difficult to solve-at least by search-
based solvers, but the improved SWOS algorithm can
optimize the branch selection and accelerate the
solution process. The search-based solvers also can
overcome this difficulty and gain the most. Its
relatively good performances on this dataset indicate
that SWOS algorithm be the key for efficient reasoning.

In the third experiment, we use a large test set having
350 formulas, including Katz, Tipdiam and Formal
Verification domain problem. Most of them are formula
having a SW topology. We run the above four solvers
on this special test set. We record the number of

instance solved at some time node, i.e., how many
formulas are solved when time pasts 10s, 100s and
200s. As shown in Figure 2, the SMQBF is in fact able
to solve more instances than other solvers, because
most of the test set is made up of Katz, Tipdiam, etc.,
SW topology formula. At the beginning, SMQBF does
not show the advantage, however, as time grows, it
can solve more formula than other solvers. When the
time pasts 200s, Performance of AQME and QuBE are
declining, performance of SMQBF is stable growth
trend. This shows that it has a better robustness.
Hence, by simply employing SWOS algorithm, it is
possible to gain an advantage over such sophisticated
QBF solvers as QuBE in some respects. But, the
advantage is not obvious, the small improvement in
the efficiency of SMQBF has to be weighted against
the performance of QUBE, which shows that the
internal preprocessing of SMQBF is adding useless
overhead on these encodings. Such overhead is
partially reduced by SWOS algorithm.

 N

u
m

b
er

 o
f

S
o
lv

ed
 I

n
st

an
ce

s

 Time(second)

Figure 2. Time scale comparison of several solvers on small world

topology benchmarks.

From the above result, it is fair to say that SMQBF
alone is able to solve a fairly large number of
instances, and most of these instances are those that
cannot be solved by search-based solvers in their
original formulation. It shows how SMQBF can be
beneficial independently of the algorithm featured by
the solver and after a branch selection with SWOS
they are able to solve more hard formulas. The
improvement is more substantial with search based
engines rather than variable-elimination ones. This
explains also, why SMQBF improve the performances
of search-based solvers more than what happens for
variable-elimination-based ones.

6. Conclusions

In this paper, we use gaifman graph to describe the

topological structure of the QBF, mainly study the

formula family with the SW network topology. We

analyze the traditional DPLL solving algorithm for

QBF and then we improve the DPLL algorithm and

propose the solving algorithm framework based on

SWOS algorithm, we apply this SWOS algorithm to

determine the order of the DPLL branch variable. Our

result also proves that SWOS algorithm has a certain

degree of effectiveness to improve the solving

efficiency for a particular type of formula. It is

Solving QBF with Heuristic Small World Optimization Search Algorithm 377

valuable as an incomplete solution algorithm for

search-based solver. The work in the future include the

more accurate optimization search algorithm for SW

network and develop more intelligent heuristic

algorithm to strategic decision and schedule in choose

the branch variable [24]. On the other hand, it is

necessary to combine variable elimination and search

so that they can interleave during the decision process.

Maybe it can further improve the solution efficiency

[14, 17].

Acknowledgment

This work is supported by the National Natural Science

Foundation of China (Grant No. 61171141), Special

Cooperation Research Projects for China Ministry of

Education and Guangdong Province

(2012B091100448).

References

[1] Baader F. and Voronkov A., “Evaluating QBFs

via Symbolic Skolemization,” in Proceedings of

Logic for Programming, Artificial Intelligence

and Reasoning, Montevideo, Uruguay, pp. 285-

300, 2005.

[2] Balabanov V. and Jiang J., “Unified QBF

Certification and its Applications,” Formal

Methods in System Design, vol. 41, no. 1, pp. 45-

65, 2012.

[3] Benedetti M., “sKizzo: A Suite to Evaluate and

Certify QBFs,” in Proceedings of the 20
th

International Conference on Automated

Deduction, Tallinn, Estonia, pp. 369-376, 2005.

[4] Biere A., “Resolve and Expand,” in Proceedings

of the 7
th
 International Conference on Theory and

Applications of Satisfiability Testing, BC, Canada,

pp. 59-70, 2005.

[5] Bodlaender H., “Treewidth: Characterizations,

Applications and Computations,” in Proceedings

of the 32
nd

 International Workshop of Graph-

Theoretic Concepts in Computer Science, Bergen,

Norway, pp. 1-14, 2006.

[6] Cadoli M., Schaerf M., Giovanardi A., and

Giovanardi M., “An Algorithm to Evaluate

Quantified Boolean Formulae and its

Experimental Evaluation,” the Journal of

Automated Reasoning, vol. 28, no. 2, pp. 101-142,

2002.

[7] Dershowitz N., Hanna Z., and Katz J., “Bounded

Model Checking With QBF,” in Proceedings of

the 8
th
 International Conference on Theory and

Applications of Satisfiability Testing, St Andrews,

UK, pp. 408-414, 2005.

[8] Feldmann R., Monien B., and Schamberger S., “A

Distributed Algorithm to Evaluate Quantified

Boolean Formulae,” in Proceedings of AAAI-00,

Texas, USA, pp. 1-6, 2000.

[9] Gent I., Hoos H., Rowley A., and Smyth K.,

“Using Stochastic Local Search To Solve

Quantified Boolean Formulae,” in Proceedings

of the 9
th

International Conference on Principles

and Practice of Constraint Programming,

Kinsale, Ireland, pp. 348-362, 2003.

[10] Giunchiglia E., Narizzano M., and Tacchella A.,

“Clause/Term Resolution and Learning in the

Evaluation of Quantified Boolean Formulas,” the

Journal of Artificial Intelligence Research, vol.

26, no. 2, pp. 371-416, 2006.

[11] Giunchiglia E., Narizzano M., and Tacchella A.,

“QuBE++: An Efficient QBF Solver,” in

Proceedings of the 5
th

International Conference

on Formal Methods in Computer-Aided Design,

Texas, USA, pp. 201-213, 2004.

[12] Janota M., Klieber W., Marques-Silva J., and

Clarke E., “Solving QBF with Counterexample

Guided Refinement,” in Proceedings of the 15
th

International Conference on Theory and

Applications of Satisfiability Testing, Trento,

Italy, pp. 114-128, 2012.

[13] Jussila T. and Biere A., “Compressing BMC

Encodings with QBF,” Electronic Notes in

Theoretical Computer Science, vol. 174, no. 3,

pp. 45-56, 2007.

[14] Kullmann O., “Theory and Applications of

Satisfiability Testing,” in Proceedings of the 12
th

International Conference on Theory and

Applications of Satisfiability Testing, Swansea,

UK, pp. 430-435, 2009.

[15] Lewis M., Schubert T., Becker B., Marin P.,

Narizzano M., and Giunchiglia E., “Parallel QBF

Solving with Advanced Knowledge Sharing,”

Fundamenta Informaticae, vol. 107, no. 2, pp.

139-166, 2011.

[16] Lewis M., Schubert T., and Becker B.,

QMiraXT-A Multithreaded QBF Solver,

Univerlagtuberlin Press, Berlin, 2009.

[17] Marin P., Miller C., and Becker B., “Incremental

QBF Preprocessing For Partial Design

Verification,” in Proceedings of the 15
th

International Conference on Theory and

Applications of Satisfiability Testing, Trento,

Italy, pp. 473-474, 2012.

[18] Peschiera C., Pulina L., Tacchella A., Bubeck U.,

Kullmann O., and Lynce I., “The 7th QBF

Solvers Evaluation (QBFEVAL’10),” in

Proceedings of the 13
th
 International Conference

on Theory and Applications of Satisfiability

Testing, Edinburgh, UK, pp. 237-250, 2010.

[19] Pigorsch F. and Scholl C., “Exploiting Structure

in an AIG Based QBF Solver,” in Proceedings

of Conference on Design, Automation and Test

in Europe, Nice, France, pp. 1596-1601, 2009.

[20] Pulina L. and Tacchella A., “A Self-adaptive

Multi-engine Solver for Quantified Boolean

378 The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015

Formulas,” Constraints, vol. 14, no. 1, pp. 80-116,

2009.

[21] Pulina L. and Tacchella A., “A Structural

Approach to Reasoning with Quantified Boolean

Formulas,” in Proceedings of the 21
st

International Joint Conference on Artificial

Intelligence, Italy, pp.596-602, 2009.

[22] Pulina L. and Tacchella A., “An Empirical Study

of QBF Encodings: From Treewidth Estimation to

Useful Preprocessing,” Fundamenta Informaticae,

vol. 102, no. 3, pp.391-427, 2010.

[23] Pulina L. and Tacchella A., “Hard QBF

Encodings Made Easy: Dream or Reality?,” in

Proceedings of the 11
th
 International Conference

of the Italian Association for Artificial

Intelligence, Reggio Emilia, Italy, pp. 31-34, 2009.

[24] Sadeghi M., Maghooli K., and Moein M., “Using

Artificial Immunity Network for Face

Verification,” the International Arab Journal of

Information Technology, vol. 11, no. 4, pp.100-

106, 2014.

[25] Samulowitz H. and Memisevic R., “Learning to

solve QBF,” in Proceedings of the 22
nd

Conference on Artificial Intelligence, Canada, pp.

255-260, 2007.

[26] Walsh T., “Search in a Small World,” in

Proceedings of the 16
th
 International Joint

Conference on Artificial Intelligence, CA, USA,

pp. 1172-1177, 1999.

[27] Watts D. and Strogatz S., “Collective Dynamics

of ‘Small-World’ Networks,” Nature, vol. 393, no.

6684, pp. 440-442, 1998.

[28] Yan X., Zhao J., and Shi H., “Network-Structure

Group Search Optimization Algorithm Based on

an Improved Small World Topology and it

Application,” Computers and Applied Chemistry,

vol. 28, no. 7, pp. 923-927, 2011.

[29] Yin M., Zhou J., Sun J., and Gu W., “Heuristic

Survey Propagation Algorithm for Solving QBF

Problem,” Ruanjian Xuebao/Journal of Software,

vol. 22, no. 7, pp. 1538-1550, 2011.

Tao Li is a scientific researcher and

project manager in Modern

Education and Technology Center,

South China Agricultural University

and holds an IEEE membership. He

completed his PhD degree in School

of Computer Science and

Engineering, South China University of Technology.

His research interests include intelligent computing and

data mining.

Nanfeng Xiao is currently a

Professor and PhD tutor of

computer science in School of

Computer Science and Engineering,

South China University of

Technology. His research interests

are in the areas of intelligent

computing, intelligent robots and data mining.

