
The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015 379

Balanced Workload Clusters for Distributed Object

Oriented Software

Heba Ragab1, Amany Sarhan1, Al Sayed Sallam1, and Reda Ammar2
1Computer and Control Engineering Department, Tanta University, Egypt

2Computer Science and Engineering Department, University of Connecticut, USA

Abstract: When clustering objects to be allocated on a number of nodes, most researches focus only on either the

communication cost between clusters or the balancing of the workload on the nodes. Load balancing is a technique to

distribute workload evenly across two or more computers, network links, CPUs, hard drives or other resources, in order to,

get optimal resource utilization, maximize throughput, minimize response time and avoid overload. In this paper, we introduce

three clustering algorithms that obtain balanced clusters for homogeneous clustered with minimized communication cost.

Keywords: Load balance, distributed system, software restructuring, cluster algorithms.

Received June 28, 2012; accepted July 28, 2013; published online August 17, 2014

1. Introduction

Understanding the functionality of large software
systems is a difficult job because of their inherent
complexity. So, the system can be broken down into
smaller pieces that are easier to comprehend and to
manipulate. Software clustering is a very important
facility since, it helps identify the subsystems that have
related functionality and are somehow independent
from the other parts of the system. Therefore, the
starting point in the process of distributing the objects
(or tasks) is to identify the clusters that constitute the
software system [31]. The interdisciplinary nature of
clustering is evident through its vast literature which
includes many clustering problem formulations and
even more algorithms. Basically, the two main
approaches to clustering are hierarchical clustering and
partitioning clustering [24, 25]. A hierarchical
clustering is necessary here to model the distinct
abstraction levels of the object oriented software [1].
The hierarchical clustering allows the designer to
overcome the complexity of modeling a large
application with multiple levels of abstraction and
large numbers of interacting objects. This modeling
framework helps the system designer to derive the
information required to construct a software
application that meets a set of performance
requirements. In a Distributed Object Oriented (DOO)
application, method invocation is the only
communication pattern between objects within an
application. An important step in designing DOO
systems is to decide upon object locations. There are
two main issues concerning clustered architectures. The
first one is the communication between clusters. The
second issue is the workload balance. Both of them
depend greatly on the technique used to distribute the
program instructions. This distribution should
minimize the communication needs between remote

locations [7]. However, it may be necessary to use
tools to allow analysis of the communication patterns
among objects in order to, take the right decision.
However, it is scarcely to link together a collection of
distributed and cost-effective in the form of a cluster
[6]. The Class Dependency Graph (CDG), as shown in
Figure 1 is usually used to create a suggested grouping
of subsystems that are convenient for guiding the
allocation of the subsystems to the targeted distributed
environment [24, 33, 37].

Figure 1. The clustering step of the restructuring approach.

Besides that, it is also important to obtain even
clusters with equal, or nearly equal, computation
requirements. Workload is referred to as the amount of
processing that the computer has been given to perform
at a given time. The workload consists of some amount
of programming running in the computer and usually
some number of users connected to and interacting
with the computer’s applications [34].

Load balancing is a technique to distribute workload
evenly across two or more computers, network links,
CPUs, hard drives, or other resources, in order to, get
optimal resource utilization, maximize throughput,
minimize response time and avoid overload. The
problem of load balancing continues to raise
interesting challenges to researchers. The operating
systems and distributed application design must
include solutions for solving it. Cluster analysis has
been the most popular statistical technique for dividing
the workload into workload classes. Workload
management enables workload distribution to provide

Clustering

Class Dependency Graph Cluster Graph

 380 The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015

optimal performance for users and applications.
Workload transfer is done once the node fails as the
load balancer connects to the nodes works like a pulse
that monitors the performance of each node. With a
predetermined interval, the load balancer will check
each node and alert the network administrator in case
one node fails.

Balancers in load balancing cluster have the ability
to transfer the workload to other nodes to avoid further
delay of operation [6]. Clustering pushes the functions
of an application to be faster or ensures data
availability’s faster transfer. An ideal clustering form
to ensure stability is load balancing. Clustering by load
balancing is basically a form of connection between
computers (referred to as nodes in clustering) where in
the workload is evenly distributed. Although, a single
computer could provide the same operations, the
hardware capability of a single computer or a node will
never be enough to handle massive data requests and
processing. However, multiple computers are
connected together to harness each processing power.
By sharing the workload, the processing time is
increased and massive data requests and processes
could be possible [21, 28].

Load balancing clusters provide a more practical
system for business needs. As the name implies, that
system entails sharing the processing load as evenly as
possible across a cluster of computers. The
differentiating factor in this case is the lack of a single
parallel program that runs across these nodes. Each
node server in that type of cluster, in most cases, is an
independent system running separate software.
However, there is a common relationship between the
nodes either in the form of direct communications
between the nodes or through a central load balancing
server that controls each node’s load. Usually, a
specific algorithm is used to distribute that load. This
load could be in the form on application load or
network load that needs to be balanced [35].

In this paper, we introduce three algorithms for
clustering the objects into number of clusters to match
the existing hardware named: Hierarchical and K-
Partitioning, Hierarchical and K-Medoids and Double
K-Medoids. These algorithms aim to cluster the
distributed objects into present numbers of clusters
considering two main issues: Minimizing the
communication between clusters and achieving the
workload balance of the clusters. These algorithms,
through simulation results, proved to obtain better
performance than the existing clustering algorithms.

This paper is organized as follows. This section
provides the introduction. Section 2 describes the
previous clustering techniques. Section 3 includes the
three proposed algorithms for clustering distributed
objects. Section 4 discusses the system cost model;
communication and workload costs. Simulation results
and their analysis are covered in section 5. The
conclusion of the paper summarizes the work
presented. Finally, a list of references used in the
research is given.

2. Previous Work in Clustering

2.1. K-Partition Algorithm

K-Partition (or K-means) algorithm is based on an idea
to obtain k clusters, split the set of all points into two
clusters, select one of these clusters to split the set of
points into two clusters, select one of these clusters to
split and so on, until k clusters have been produced.
Therefore, all points in a given subset are closest to the
same center. The calculated cluster center Vi (i∈{1, 2,
..., K}) is the mean of the objects points in cluster i. K-
Means cluster analysis uses Euclidean distance to
compute the distances. The K-Partition algorithm has
the following important properties:

• It is efficient in processing large objects sets.
• It often terminates at a local optimum.
• The clusters have spherical shapes.
• It is sensitive to noise.

The main problem of K-Means algorithm is the
random initialization of centers [2, 3, 4, 10, 11, 22, 24,
27]. Following is the summary of the K-Partition
algorithm.

Algorithm 1: K-Means algorithm

Given the objects set X and the number of clusters C, 1< C< N.

Initialize with random cluster centers chosen from the objects

set.

Repeat for iteration l=1, 2,…

Step 1: Compute the square distances N is the number of object

 points.

() ()
T

k k i k iD = x - v x - v

Step 2: Select the points for a cluster with minimal distances

 belong to the cluster.

Step 3: Calculate cluster centers.

 until ()

N
i

x
i

j = 11
i

i

V =
N

∑

 () ()n 1 i -1

k =1
m ax V - V ¹0∏

 end

2.2. K-Medoids Algorithm

K-Medoids and K-Partition algorithms both attempt to
minimize squared error, the distance between points
labeled to be in a cluster and a point designated as the
center of that cluster. In contrast to K-Partition, K-
Medoids choose object points as centers. The main
difference between K-Partition and K-Medoids stands
in calculating the cluster centers: The new cluster
center is the nearest object point to the mean of the
cluster points.

Algorithm 2: K- Medoids algorithm

Given the objects set X and choose the number of clusters C, 1<

C< N.

Initialize with random cluster centers chosen from the objects

set X.

Repeat for iteration l=1, 2, …

Step 1: Compute the square distances.

Balanced Workload Clusters for Distributed Object Oriented Software 381

2 T

k k i k iD = (x - v) (x - v) Where,1 k c,1 k N≤ ≤ ≤ ≤

Step 2: Select the points for a cluster with minimal distances

 belong to the cluster.

Step 3: Calculate cluster centers.

()

iN

i
j = 11

i

x

V =i
N

∑

Step 4: Choose the nearest objects point to be the cluster

 center.

 () ()
2* T

ik k i k i

*
D = x - v x - v * and

()
()

* 2* 1 *

i ik i ix = argm in D ; v = x

 Until () ()n 1 i -1

k =1
m ax b V - V ¹0∏

 End.

2.3. Double K-Clustering (D-K Partition)
Algorithm

D-K Clustering algorithm uses the K-Partitioning
algorithm twice. In the first time, the original CDG
will be clustered according to the number suggested by
the recursive clustering algorithm. In the second time,
the K-Partitioning algorithm will be used again to
group the resultant clusters and form the MCG. These
steps are illustrated in Figure 2 [17, 18].

Figure 2. The steps of the D-K Partition Algorithm.

2.4. Hierarchical Algorithm

Hierarchical clustering techniques belong to a second
category of clustering methods, however used as a
method for grouping different signals. Hierarchical
clustering builds a cluster hierarchy or in other words,
a tree of clusters, also known as a dendrogram.
Investigation based on Euclidian distance measures.

Strategies for hierarchical clustering generally fall
into two types:

• Agglomerative: This is a “bottom-up” approach
where each observation starts in its own cluster and
pairs of clusters are merged as one move up the
hierarchy.

• Divisive: This is a “top-down” approach where all
observations start in one cluster and splits are

performed recursively as one move down the
hierarchy.

Both methods suffer from their inability to perform
adjustments once the splitting or merging decision is
made. Advantages of hierarchical clustering include:

• Embedded flexibility regarding the level of
granularity.

• Ease of handling of any forms of similarity or
distance.

• Consequently, applicability to any attributes types.

Hierarchical clustering initializes a cluster system as a
set of singleton clusters (Agglomerative case) or a
single cluster of all objects (Divisive case) and
proceeds iteratively with merging or splitting of the
most appropriate clusters until the stopping criterion is
achieved. The appropriateness of clusters for merging/
splitting depends on the similarity/ dissimilarity of
clusters elements.

To merge or split subsets of points rather than
individual points, the distance between individual
points has to be generalized to the distance between
subsets. Such derived proximity measure is called a
linkage metric. The type of the linkage metric used
significantly affects hierarchical algorithms, since, it
reflects the particular concept of closeness and
connectivity [3, 4, 5, 8, 9, 15, 19, 22, 24, 25, 26].

2.4.1. Agglomerative Hierarchical Method

Agglomerative hierarchical techniques are starting
with individual objects as clusters; merge the two
closest clusters until only one cluster remains. There
are three definitions of the closeness between two
clusters: Single-link, complete-link and average-link.
 The single-link similarity between two clusters is
the similarity between the two most similar instances,
one of which appears in each cluster. The complete-
link similarity is the similarity between the two most
dissimilar instances, one from each cluster. The
average-link similarity is a compromise between the
two [5, 9, 24].

Algorithm 3: Agglomerative hierarchical method

Step 1: Compute the linkage metrics.

Step 2: Merge the closest two clusters.

Step 3: Update the linkage metrics.

Step 4: Repeat.

Step 5: Until only one cluster remains.

Agglomerative methods start with individual objects
and group them together to form larger and larger
classes. The algorithm terminates when all objects are
combined to one class. At every stage one wants the
two similar classes to be amalgamated. The most
established amalgamated techniques viewed as special
cases of the general agglomerative algorithm. The
dissimilarity between newly amalgamated class
measures:

Start

Input: CDG, NN

Output: CCDG

Output: CCDG

Output: MCG

Recursive Clustering Algorithm

K-Partition Algorithm (CDG), CN)

K-Partition Algorithm (CCDG), NN)

End

CN>NN

Output: No. of Cluster

 382 The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015

() () () () () ()

() - ()

i j k i k j k i k

i k j k

 d C *C , C = a i d C , C + a k d C , C + bd C , C +

 c | d C , C d C , C |

Here a, b and c are coefficients corresponding to a
particular linkage. This formula expresses a linkage
metric between the union of the two clusters and the
third cluster in terms of underlying components. The
Lance-Williams formula has an utmost importance
since, it makes manipulation with dis(similarity)
computationally feasible.

Linkage metrics-based hierarchical clustering
suffers from time complexity. Under reasonable
assumptions, such as reducibility condition (graph
methods satisfy this condition), linkage metrics
methods have O(N2) complexity. Despite the
unfavorable time complexity, these algorithms are
widely used [3, 4, 7, 15].

3. The Proposed Algorithms

3.1. Hierarchical and K-Partitioning (H-K
Partition) Algorithm

The most popular algorithms are Hierarchical
algorithm and K-Partitioning algorithm. We present a
hybrid approach to combine the merits of the two
classic approaches and discard disadvantages.
Hierarchical clustering builds a cluster hierarchy or, in
other words, a tree of clusters, also known as a
dendrogram. Investigation is based on Euclidian
distance measures.

The dendrogram will be the input to the K-Partition
algorithm which will cause splits moving down the
dendrogram. The K-Partition algorithm will perform
Splits Cluster Graph (SCG) at first. However, in some
cases we need to Merge the Cluster Graph (MCG) to
determine the number of available nodes. As shown in
Figure 3, we defined this number of nodes as NN and
cluster nodes as CN. The output of this step will be
groups whose numbers equal to the number of
available clusters in the distributed system.

Figure 3. The steps of the H-K Partitioning algorithm.

3.2. Hierarchical and K-Mediods (H-K

Medoids) Algorithm

The second hybrid approach is based on the K-
Mediods algorithm rather than the K-Partitioning.
Hierarchical algorithm is used as first step to prepare
the dendrogram. Investigation is based on Euclidian
distance measures. The dendrogram will be the input to
the K-Mediods algorithm which will cause splits
moving down the dendrogram. The next step is K-
Medoids algorithms.

As shown in Figure 4, we defined this number of
nodes as NN and cluster nodes as CN. The output of
this step will be groups whose numbers equal to the
number of available clusters in the distributed system.

Figure 4. The steps of the H-K Medoids algorithm.

3.3. Double K-Medoids

Double K-Medoids algorithm is using the K-Medoids
algorithm twice. In the first time, the original CDG
will be clustered according to the number suggested by
the recursive clustering algorithm. In the second step,
the K-Medoids algorithm will be used again to group
the resultant clusters and to form the MCG. These
steps are illustrated in Figure 5.

Figure 5. The steps of the double K-Medoids algorithm.

Start

Input: CDG, NN

Output: CCDG

Output: CCDG

Output: MCG

Hierarchical Algorithm

K-Medoids Algorithm (CDG),
CN)

K-Medoids Algorithm (CCDG),
NN)

End

CN>NN

Output: No. of
Cluster

Start

Input: CDG, NN

Output: CCDG

Output: CCDG

Output: MCG

Recursive Clustering Algorithm

K-Medoids Algorithm (CDG), CN)

K-Medoids Algorithm (CCDG), NN)

End

CN>NN

Output: No. of Cluster

Start

Input: CDG, NN

Output: CCDG

Output: CCDG

Output: MCG

Hierarchical Algorithm

K-Partition Algorithm (CDG), CN)

K-Partition Algorithm (CCDG), NN)

End

CN>NN

Output: No. of Cluster

(1)

Balanced Workload Clusters for Distributed Object Oriented Software 383

4. System Cost Model

Each cluster has both communication cost with other
clusters and workload cost that specifies the total
workload assigned to it. So, we have to model both
costs as follows in the next subsections.

4.1. Communication Cost Between Clusters

The DOOP model provides an accurate representation
for the communication activities among nodes in a
DOO system. It also provides a way to evaluate the
execution cost of the software modules and their
related communication activities. The performance
model consists of two main parts: The execution server
and the communication server. The execution server
and its related analysis represents and evaluates the
execution cost of the software modules that reside on
each node [6, 18].

The communication server provides the analysis
representing the communication activities (including
objects updating) of this node with other nodes and the
evaluation process for communication cost. The total
cost will be the summation of both execution and
communication costs [38]. In the following, we are
going to describe in details the model evaluation for
the communication process. Assume that the overall
arrival rate to the communication queue λck which is
given by [18]:

ck cs cb cuλ = λ + λ + λ

Where: λcs, λcn and λcu represent the communication
arrival due to External User Request (EUR), Remote
Request (RR) and updating objects data on other
nodes, respectively:

 ck s s

cn n n

N

cu Ui cui i1 s i2 n
i =1

 λ = β λ

 λ = β λ

λ = λ λ = P λ + P λ∑

Where, βs and βn are the message multipliers for EUR
and RR. Let λcui be the arrival rate corresponding to
objecti data updating. Since, the updating process to an
objecti occurs due to processing EUR or RR, Pi1 is
defined to be the probability that objecti is updated due
to EUR and Pi2 is the probability that objecti is
modified due to RR. Therefore, the expected
communication service time for each class will be:

 s n sui
cs cn ui

m m m
t = , t = , t =

R R R

Where, c, tcs, tcn and tui are the expected
communication service time for EUR, RR and for
update requests from objecti. While ms, mn and mui are
the expected message sizes of EUR, RR and of sending
objecti updating data and R is the communication
channel capacity.

Furthermore, the average communication service
time for node (k) will be:

N

ck cs cs cn cn ui ui
i =1

t = P t + P t + P t∑

Where cs cn ui
cs cn ui

ck cs ck

λ λ λ
P = , P = , P =

λ λ λ
.

Pcs, and Pcn are the probabilities of activating
communication service by the external user requests
and by remote request, respectively. Pui is the
probability of sending objecti data update to other
nodes. If we assume that each individual class will be
allocated to a separate node in the DOOP performance
model, we can use Equation 3 to compute the average
cost for communication between a specific class and
all other classes in the system.

However, if we further conducted this evaluation on
the classes in a pair-wise fashion, we can get the
communication cost between each and every two
classes within the object oriented distributed system.

As shown in Figure 6, in CDG each class is
represented as a vertex and the communication
between classes is represented by undirected weighted
edges. For example, an edge between class A and B
represents a communication activity that exists
between these two classes due to either data transfer or
classe’s dependency [1]. The weight of the edge WAB
represents the cost of that communication activity. If
no data communication or relationship dependency has
been recognized in the object oriented application
between two classes, no edges will connect them in the
CDG [16, 33].

Figure 6. A Graph representation for interclass communication.

At this point, we propose to use the DOOP model to
evaluate the time cost for communications that occurs
between different classes in the object oriented system.
The computed values are then used as the weights
assigned to the corresponding edges in the CDG. The
communication cost between two clusters can be
computed according to the following equation:

 T = W V ,K iji, j = 1
∑

Where, i, j the two objects connected located at
different clusters, v, k, Wij communication cost between
objects i, j.

4.2. Cluster Workload Cost

With commercial supercomputers and homogeneous
clusters of PCs, static load balancing is accomplished
by assigning nearly equal tasks to each processor. With
heterogeneous clusters, the system designers have the

WAB

WAC

B A

C

Class B
….…….

Class C
………….

Class A
………….

DOOP Model

(6)

(2)

(3)

(4)

(5)

 384 The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015

option of quickly adding newer hardware that is more
powerful than the existing hardware. This paper
assumes using homogenous processors [14, 38]. The
average workload cost of each cluster can be computed
by summing the average workload of each object in the
cluster and dividing it by the total number of objects in
the cluster. Assuming that the execution time required
for each object Ti is known, then we can compute the
average workload cost of the cluster Cj as follows [21]:

M

i
i = 1

C i

T

 T =
M

∑

Where, Ti is the execution time of objecti, M is the
number of objects in clusterj.

The average workload for the clusters in the system
can be computed as the summation of average
workloads of each cluster divided by the number of
clusters as follows:

N

i
j = 1

av e rage

C

 T =
N

∑

4.3. Cost Function Development

One of the main objectives of this work is to improve
the overall system utilization by distributing and
balancing the processor time among the execution and
the communication processes based on the module’s
needs. Therefore, the overall time cost function
equation can be written as:

Overall Cost Workload Cost Communication CostT = γ * T + (1 - γ) * T

Where, TOverallCost is the overall cost of the system, γ is a
parameter expressing the balance between the two
parts, whose value is constant that varies between (0
and 1) and used to distinguish the importance of each
cost term.

• TCommunication Cost: Communication cost between
clusters, which is the part of the cost-function which
is minimize the inter-processor communication cost
minimized.

• TWorkload Cost: Average workload in overall clusters,
which is minimal when balance the workload of
processors.

The performance of clustered architectures relies on
steering schemes that try to find the best trade-off
between workload balances and inter communication
cost in clusters [21]. We have modified the clustering
algorithms for producingbalanced workload clusters
first by obtaining the clusters, which have minimum
communication. Then, we calculate the total workload
in each cluster. If they are not balanced, we re-cluster
them. We use the Mean Square Error (MSE) for
measuring the workload balance.

4.4. Using MSE to Evaluate the Cluster

Performancel

To ensure the balance of the workload assigned to the
clusters, we first cluster the objects minimizing the
communication cost between the clusters; Then we
measure the average workload of each cluster and
compare it to the average workload for all objects. If
the cluster’s workload is equal or almost equal (i.e.,
less or greater than it by a certain threshold) to the
average workload, then we accept this clustering.

But, when cluster’s workload is far beyond the
average workload, the clustering algorithm will be
performed again until the balanced workload clusters is
reached which gives the least overall MSE. The MSE
is computed using the following Equation:

N 2

Cj
j =1

(T - µ)

Overall MSE=
N

∑

Where, TCj cluster average workload (computed by
Equation 7), µ average workload (Taverage) (computed by
Equation 8), N number of clusters (equals to no. of
processors in the system).

5. Simulation Results

We have created a simulation program using
MATLAB7.10.0.499 which, given the task and the
processor graphs, generates mappings and computes
the total workload time in each cluster and the MSE.
We have also created a random graph generator and
random execution time for each object. The
experiments are aimed to determine the performance of
the various clustering algorithms when trying to
achieve the workload balance while achieving the least
possible communication produced by the clustering.

We measure the balance of these clusters by
computing the MSE value. The first group of
experiments investigates the ability of the various
clustering algorithms to achieve the balance of the
workload (in terms of MSE) when clustering different
number of objects to 3 and 4 clusters. The matrix of the
CDG was randomly generated with random
communication values and execution times for all
objects. We present the results of comparisons between
the previous clustering algorithms and the three
proposed algorithms in Figures 7 and 8.

 M
S

E
 %

No. of Objects

Figure 7. MSE% of the clusters workload produced by different
clustering algorithms at 3 clusters.

(7)

(8)

(9)

(10)

Balanced Workload Clusters for Distributed Object Oriented Software 385

 M
SE

 %

No. of Objects

Figure 8. MSE% of the clusters workload produced by different
clustering algorithms at 4 clusters.

We note from these figures that all the algorithms,

except K-Partition algorithm, from 300 to 420 objects,
produce almost the same workload MSE results. The
K-Partition algorithm gives the highest MSE values,
which means that it is the worst performance
algorithm.

On the other hand, the H-K Partition and H-K
Medoids algorithms, at more than 420 objects, give the
least workload MSE which means that they are better
than the other algorithms in achieving the balanced
clusters at high number of objects. While the D-K
Partition, D-K Medoids and K-Medoids algorithms are
the next level in quality.

In the second group of experiments, we investigate
the performance of the various clustering algorithms at
variable number of clusters and fixed number of
objects. The matrix of the CDG was randomly
generated with random communication values and
execution times for all objects. Figures 9, 10 and 11
give these results.

From these results we conclude that the K-Partition
algorithm produces the highest MSE values while the
H-K Partition, the H-K Medoids clustering algorithms
produces the least MSE values (about 13% for the
different number of clusters). In Figure 11, the results
came to be consistent with the results discussed in the
case study presented above.

M

SE
 %

No. of Clusters

Figure 9. MSE% of the clusters workload produced by different
clustering algorithms at variable number of clusters for 400 objects.

M

SE
 %

No. of Clusters

Figure 10. MSE% of the clusters workload produced by different
clustering algorithms at variable number of clusters for 500 objects.

However, the H-K Medoids, D-K Medoids and D-K
Partition algorithms gave results close to each other.
Thus we conclude that, the H-K Partition algorithm
produce better clusters quality where these clusters
have both least communication between clusters and
balanced workload.

 M

S
E

 %

No. of Clusters

Figure 11. MSE% of the clusters workload produced by different
clustering algorithms at variable number of clusters for 550 objects.

The third group of experiments has been built for
evaluating the performance of the system using the
overall cost function at different conditions and
different values of γ using the proposed and the old
clustering algorithms.

 O
ve

ra
ll

C
os

t

γ

a) 150 objects (10 clusters).

 O
ve

ra
ll

 C
os

t

γ

b) 300 objects (10 clusters).

 O
ve

ra
ll

C
os

t

γ

c) 500 objects (10 clusters).

 O
ve

ra
ll

 C
os

t

γ

d) 800 objects (10 clusters).

Figure 12. The Overall Cost by different clustering algorithms at
different values of γ.

 386 The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015

The fourth group of experiments has been built for
evaluating the performance of the system using the
overall cost function at γ=0.5 value using the proposed
and old clusters algorithms at 3 and 4 clusters as shown
in Figures 13 and 14.

O

ve
ra

ll
 C

os
t

γ

Figure 13. Overall cost function by different clustering algorithms
at y=0.5 when partitioned to 3 clusters.

 O
ve

ra
ll

 C
os

t

γ

Figure 14. Overall cost function by different clustering algorithms
at y=0.5 when partitioned to 4 clusters.

From the results, comparing the proposed clustering

algorithms with old clustering algorithms in the
different cases, the simulation results show that a better
performance can be achieved by the proposed
algorithms. However, we find that the proposed
algorithms (H-K Partition algorithm and H-K Medoids
algorithm) give better results than the other algorithms
about 5.4% at γ(0 to 0.5).

However, D-K Partition algorithm and D-K
Medoids algorithm give the second best out come
around 3.7% and close to each other from γ=0.6 to 1.
Behind that, the K-Partition algorithm and K-Medoids
algorithm give worst results and the K-Partition give
the worst values. We also, found out that the balance
causes minimum total cost at γ=0.5.

6. Conclusions

Load balancing is a computer networking methodology
to distribute workload across multiple computers or a
computer cluster, network links, central processing
units, disk drives, or other resources, to achieve
optimal resource utilization, maximize throughput,
minimize response time and avoid overload. In this
paper, we presented three different clustering
algorithms that cluster the distributed objects into a
given number of clusters. These algorithms aim first to
minimize the communication cost between the clusters
and to ensure that these clusters are balanced in terms
of the workload assigned to each node.

The results showed that the hierarchical and K-
Partition algorithm provides the minimum MSE in
deferent cases. Attention concentrate for most

important consequence is the dispersion coefficients
degrade with increasing the number of clusters. For
their more, the H-K Partition and H-K Medoids
authenticate the normal distribution.

We proposed a cost function for enhancing the
overall system utilization by distributing and balancing
the processor time between the execution and the
communication processes in the basis of the module’s
needs. Next, the experimental results showed that the
performance of the proposed algorithms: H-K Partition
and H-K Medoids have the best clustering quality.
While in the next place comes the D-K Partition and
D-K Medoids algorithms.

References

[1] Abdel-Raouf A., Fergany T., Ammar R., and
Hamad S., “Performance-Based Modeling for
Distributed Object-Oriented Software,” the

Journal of Computational Methods in Sciences

and Engineering Archive, vol. 6, no. 5, pp. 769-
773 , 2006.

[2] Abella J. and Gonzlez A., “Inherently Workload-
Balanced Clustered Microarchitecture,” in
Proceedings of the 19

th
 International Parallel

and Distributed Processing Symposium, Denver,
Colorado, pp. 20, 2005.

[3] Abu Abass O., “Comparisions between Data
Clustering Algorithms,” the International Arab

Journal of Information Technology, vol. 5, no. 3,
pp. 320-325, 2008.

[4] Appavoo J., “Clustered Objects,” A PhD Thesis,
Department of Computer Science, University of
Toronto, 2005.

[5] Babnik T., Aggarwal R., and Moorep,. “Principal
Component and Hierarchical Cluster Analyses as
Applied to Transformer Partial Discharge Data
With Particular Reference to Transformer
Condition Monitoring,” IEEE Transactions on

Power Delivery, vol. 23, no. 4, pp. 2008-2016,
2008.

[6] Banerjee A. and Ghosh J., “Scalable Clustering
Algorithms with Balancing Constraints,” Data

Mining and Knowledge Discovery Journal, vol.
13, no. 3, pp 365-395, 2006.

[7] Banerjee A., Chandola V., and Kumar V.,
“Anomaly Detection: A Survey,” ACM

Computing Surveys Journal, vol. 41, no. 3, pp. 1-
72, 2009.

[8] Bereson A. and Lobbia R., “Efficient Track-to-
Track Assignment using Cluster Analysis,” in
Proceedings of the 9

th
 IEEE International

Conference on Information Fusion, Florence,
Italy, pp. 1-8, 2006.

[9] Dash M., Liu H., Scheuermann P., and Tan K.,
“Fast Hierarchical Clustering and its Validation,”
Data and Knowledge Engineering Journal,
Elsevier, vol. 44, no. 1, pp. 109-138, 2003.

Balanced Workload Clusters for Distributed Object Oriented Software 387

[10] Ding J., Ding T., and Meulen P., “Throughput
Analysis of Linear Cluster Tools,” IEEE

Transancations on Automatic Science

Engineering, vol. 1, no. 1, pp. 104-109, 2005.
[11] Elsősser R., LŰcking T., and Monien B., “New

Spectral Bounds on k-Partitioning of Graphs,” in
Proceedings of the 13

th
 Annual ACM Symposium

on Parallel Algorithms and Architectures, New
York, USA, pp. 255-262, 2001.

[12] Garama A., Gupta A., Karypis G., and Kumar V.,
Introduction to Parallel Computing, Addison-
Wesley, 2003.

[13] Gibson T., “How Things Work: Standard
Deviation as a Tool for Measuring Precision and
Accuracy,” available at: http://archives.
profsurv.com/magazine/article.aspx?i=1826, last
visited 2007.

[14] Grosu D. and Chronopoulos A., “Algorithmic
Mechanism Design for Load Balancing in
Distrributed Systems,” IEEE Transactions on

Systems, Man and Cybernetics-Part B:

Cybernetics, vol. 34, no. 1, pp. 77-84, 2004.
[15] Guadalupe J., Basnet B., Andrew H., Sung S.,

and Bernardete M., “Fuzzy Clustering and Data
Analysis Toolbox for using with Matlab,”
available at: ftp://ftp.unicauca.edu.co/cuentas
/fiet/docs/DEIC/Materias/computacion%20intelig
ente/parte%20II/semana12/clustering/mfiles/Clus
teringToolbox/FuzzyClusteringToolbox.pdf, last
visited 2008.

[16] Hamad S., Fergany T., Ammar R., and Solit S.,
“Mapping Distributed Object-Oriented Software
to Architecture with Limited Number of
Processors,” in Proceedings of IEEE

International Symposium on Signal Processing

and Information Technology, Giza, Egypt, pp.
531-536, 2007.

[17] Hamad S., Fergany T., Ammar R., and Abd El-
Raouf A., “A Double K-Clustering Approach for
Restructuring Object-Oriented Software,” in
Proceedings of IEEE Symposium on Computers

and Communications, Marrakech, pp. 169-174,
2008.

[18] Hamad S., Khalifa M., Ammar R., and Soleit E.,
“Performance-Based Restructuring of Distributed
Object-Oriented Computations for a Cluster of
Multiprocessors,” A PhD Thesis, Ain Shams
University, 2008.

[19] Hongjin J., Zeng D., Yanxiang S., Yangang W.,
and Xisheng W., “Semi-Hierarchical
Correspondence Cluster Analysis and Regional
Geochemical Pattern Recognition,” the Journal

of Geochemical Exploration, vol. 93, no. 2, pp.
109-119, 2007.

[20] Hősel V. and Walcher S., “Clustering
Techniques: A Brief Survey,” Technical Report,
Insttitut fiir Biomathematik Und Biometrie GSF,
Research Center, Germany, 2000.

[21] Huang C., Zhou G., Abdelzaher T., Son S., and
Stankovic A., “Load Balancing in Bounded-
Latency Content Distribution,” in Proceedings of

the 26
th

IEEE International Symposium on Real-

Time Systems, Miami, USA, pp. 61-73, 2005
[22] Jiang D., Tang C., and Zhang A., “Cluster

Analysis for Gene Expression Data: A Survey,”
IEEE Transactions on Knowledge and

Engineering, vol. 16, no. 11, pp. 1370-1386,
2004.

[23] Kim T. and Shin Y., “Role-based Decomposition
for Improving Concurrency in Distributed
Object-Oriented Software Development
Environments,” in Proceedings of the 23

rd
 IEEE

Conference on Computer Software and

Applications, Arizona, USA, pp. 410-415, 1999.
[24] Kotsiantis S. and Pintelas P., “Recent Advances

in Clustering: A Brief Survey,” WSEAS.

Transactions on Information Science and

Applications, vol. 1, no. 1, pp. 73-81, 2004.
[25] Lee Y. and Antonsson E., “Dynamic Partitional

Clustering using Evolution Strategies,” in

Proceedings of the 26
th
 IEEE Annual Conference

on Industrial Electronics Society, Nagoya, Japan,
pp. 2716-2721, 2000.

[26] Lee Y. and Song Y., “Selecting the Key Research
Areas in Nano-Technology Field using
Technology Cluster Analysis: A Case Study
Based on National,” Technovation, vol. 27, no. 1,
pp. 57-64, 2007.

[27] Macnab J., Miller L., and Polatajko H., “The
Search for Subtypes of DCD: Is Cluster Analysis
The Answer?,” Human Movement Science, vol.
20, no. 1, pp. 49-72, 2001.

[28] Narayanan S., Ozturk O., Kandemir M., and
Karakoy M., “Workload Clustering for
Increasing EnergySavings on Embedded
MPSoCs,” in Proceedings of the IEEE

International Conference SOC, VA, USA, pp.
155-160, 2005.

[29] Roy S. and Chaudhary V., “Strings: A High-
Performance Distributed Shared Memory for
Symmetrical Multiprocessor Clusters,” in

Proceedings of the 7
th

IEEE International

Symposium on High Performance Distributed

Computing, Chicago, USA, pp. 90-97, 1998.
[30] Smith M. and Munro M., “Runtime Visualisation

of Object Oriented Software,” in Proceedings of

the 1
st

IEEE International Workshop on

Visualizing Software for Understanding and

Analysis, Washington, USA, pp. 81-89, 2002.
[31] Sneed H. and Dombovari T., “Comprehending a

Complex, Distributed, Object-Oriented Software
System A Report from the Field,” in Proceedings

of the 7
th
 International Workshop on Program

Comprehension, PA, USA, pp. 218-225, 1999.

 388 The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015

[32] Thain D., “Coordinating Access to Computation
and Data in Distributed Systems,” available at:
http://research.cs.wisc.edu/htcondor/doc/thain-
dissertation.pdf, last visited 2004.

[33] Todd C., Toth T., and Busa-Fekete R.,
“GraphClus, a MATLAB Program for Cluster
Analysis using Graph Theory,” Computers and

Geosciences, vol. 35, no. 6, pp. 1205-1213, 2009.
[34] Tsai S., Chiou J., and Jen H., “Load Balance

Facility in Distributed MINIX System,” in
Proceedings of the 20

th
 System Architecture and

Integration Conference, Liverpool, UK, pp. 162-
169, 2002.

[35] Wang X., Yan Z., and Xue W., “An Adaptive
Clustering Algorithm with High Performance
Computing Application to Power System
Transient Stability Simulation,” in Proceedings

of the 3
rd

 International Conference on Electric

Utility Deregulation and Restructuring and

Power Technologies, Nanjuing, China, pp. 1137-
1140, 2008.

[36] Wu X., Taylor V., and Sharkawi S.,
“Performance Analysis and Optimization of
Parallel Scientific Applications on CMP Cluster
Systems,” in Proceedings of International

Conference on Parallel Processing, Washington,
USA, pp. 188-195, 2008.

[37] Xing Z. and Stroulia E., “Understanding Class
Evolution in Object-Oriented Software,” in

Proceedings of the 12
th

IEEE International

Workshop on Program Comprehension,
Washington, USA, pp. 34-43, 2004.

[38] Zhang Q., Riska A., Sun W., and Smimi E.,
Ciardo G., “Workload-Aware Load Balancing for
Clustered Web Servers,” Parallel and

Distributed Systems, IEEE Transactions on

Computer Society, vol. 16, no. 3, pp. 219-233,
2005.

Heba Ragab received the BSc
degree in 2000 and MSc in 2007,
and PhD degree in 2014, in
computer and automatic control
from the Faculty of Engineering,
Tanta University. She is working
now as a Lecturer at Computers and

Automatic Control Department., Tanta University.,
Egypt. Her interests are in the area of: Distributed
systems and computations, software restructuring and
neural networks.

Amany Sarhan received the BSc
degree in electronics engineering
and MSc degree in computer science
and automatic control from the
Faculty of Engineering, Mansoura
University, in 1990 and 1997,
respectively. She awarded the PhD

degree as a joint research between Tanta Universety,
Egypt and University of Connecticut, USA. She is
working now as an Associate Prof. at Computers and
Automatic Control Department., Tanta University,
Egypt. Her interests are in the area of: Distributed
systems and computations, software restructuring,
schema matching, image and video processing.

Al Sayed Sallam received his MSc
and PhD degrees from Bremen in
Germany on 1983 and 1987
respectively. He is working now as
an Associate Prof. and Head of
Computers and Automatic Control
Department., Tanta University,

Egypt. His interests are in the area of: Control,
software restructuring, robotics and network. He is the
CIO of Tanta University for the last 2 years.

Reda Ammar received his PhD
degree, University of
Cyhhonnecticut, computer science,
1983. He worked as the head of
Department at Computer Science and
Engineering Department, UCONN,
USA. His Research Interests are:

Software performance engineering; parallel and
distributed computing; real-time systems and cluster
and grid computing. He is IEEE (senior member),
ACM, ISCA, Editor-in-Chief of the International
Journal of Computers and Their Applications,
Associate Editor in Computing Letters and Member of
the Board of Directors of the International Society of
Computers and Their Applications.

