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Abstract: Now a days Empirical Mode Decomposition (EMD) is an important tool for image analyzing. Optimizing threshold 

value of Bidimensional Intrinsic Mode Function (BIMF) is one of the important tasks in speckle noise reduction in the 

Bidimensional Empirical Mode Decomposition (BEMD) domain. Without proper selection of threshold value image 

information may be lost, which is unwanted. In this paper we proposed optimum threshold parameter using Fisher 

Discriminant Analysis (FDA) for determining the optimum threshold value of the Intrinsic Mode Functions (IMF) for the best 

speckle noise reduction. In the mean time, we used the optimal threshold value for separating the higher frequency signal from 

BIMF to calculate the mean of these separated signals for alleviating speckle noise. It also preserves edges without loss of 

important image information. The method is compared with the several other classical thresholding methods on variety of 

images and the experimental results confirm significant improvement over existing methods. 
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1.  Introduction 

For image preprocessing denoising is one of the most 

vital and important tasks. The aim of the image 

denoising algorithm is to reduce the noise level as well 

as preserving the important image features or 

information. Speckle is a particular kind of 

multiplicative noise which occurs in images obtained 

by coherent imaging systems like ultrasound. It tends 

to degrade the resolution and contrast of ultrasound 

images, thus may lead to eliminate some useful and 

important diagnostic information. In the recent years 

there has been a fair amount of research on wavelet 

thresholding for signal denoising because wavelet 

provides appropriate basis for separating noise signal 

from image signal. The main challenge of this method 

is to find an optimum threshold value because a small 

threshold value will pass all the noisy coefficients and 

hence, the resultant denoised signal may still be noisy. 

On the other hand, a large threshold value makes more 

number of coefficients as zero which leads to smooth 

signal and destroys details and image may produce blur 

and artifacts. Many wavelet based thresholding 

techniques like hard thresholding, soft thresholding, 

VisuShrink, SureShrink, BayesShrink and Bayes 

thresholding [1, 5, 6, 7, 8, 9, 10, 11, 13, 15, 19, 22] 

have  proved   better  efficiency  in  image   processing.  

Bayes thresholding is selected by maximum likelihood 

estimation. 

Empirical Mode Decomposition (EMD) is a 

relatively new signal processing method that was 

originally designed to analyze nonlinear and non-

stationary One-Dimensional (1D) signals [12]. 

Bidimensional Empirical Mode Decomposition 

(BEMD) is a Two-Dimensional (2D) extension of the 

concept of EMD, which is a multi-resolution 

decomposition technique aimed mainly for image 

processing [4, 14, 16]. BEMD and its variants 

decompose an image into several Bidimensional 

Intrinsic Mode Functions (BIMFs) and a 

Bidimensional Residue (BR). BEMD is a very efficient 

method for extracting the higher frequency part BIMF 

of the images in order to alleviate noise using several 

types of filters and the state-of-art algorithms. 

Fisher Discriminant Analysis (FDA) [2] has been 

widely applied in pattern recognition and 

classification. Fthat it is sometime necessary for 

finding threshold value. In papers [2, 21] FDA is used 

for selecting optimum threshold value for pattern 

recognition and classification. In [24] wavelet based 

denoising preprocessing with FDA scheme is proposed 

for fault diagnosis. In this paper we proposed FDA 

based thresholding method for denoising speckle noise 

of different images. Figure 1 shows a simple flow 
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diagram of our system. This paper is the improve 

version of our previous research work [18] and this 

paper shows better performance than [18]. 

 
Figure 1. Block diagram of the proposed FDA technique for 

accurate speckle noise reduction and the best edge preservation 

approach for ultrasound image. 

The paper is organized as follows: In section 2, we 

define the ultrasound speckle suppression problem by 

outlining the speckle noise model and the fisher 

discriminant analysis. Section 3 describes some 

existing thresholding methodology.  Section 4 depicts 

EMD and Intrinsic Mode Functions (IMF) extraction. 

Section 5 the numerical implementation scheme of the 

proposed FDA optimal threshold method is presented. 

Section 6 presents the evaluation criteria for checking 

the filter performance. Section 7 compares the 

performance of the proposed method with other 

existing speckle noise reduction methods. 

2. Theoretical Background 

2.1. Speckle Noise Model 

Denote by a noisy observation I(x, y) (i.e., the recorded 

ultrasound image) of the 2D function f(x, y) (i.e., the 

noise-free image that has to be recovered) and by ηm(x, y) 

and ηa(x, y) the corrupting multiplicative and additive 

speckle noise components, respectively. One can write: 

                ( , ) ( , ) ( , ) ( , )m aI x y f x y x y x yη η= ⋅ +  

Generally, the effect of the additive component of the 

speckle in ultrasound images is less significant than the 

effect of the multiplicative component. Thus, ignoring 

the term ),( yxaη , one can rewrite Equation 1 as: 

                       ( , ) ( , ) ( , )mI x y f x y x yη= ⋅  

To transform the multiplicative noise model into an 

additive one, we apply the logarithmic function on 

both sides of Equation 2. 

2.2. Fisher Discriminant Analysis 

FDA locates directions efficient for discrimination by 

yielding the maximum ratio of between-class scatter to 

within-class scatter. For each image fisher linear 

discriminant finds a projection orientation of intensity 

by which two classes (object and background) are well 

separated. For any image, there is a set X including N 

intensity. 

                              X= {C1, C2}={x1, x2, …, xn} 

                                           n1+n2= N 

Where n1 and n2 are cardinality of subset C1 and subset 
C2 respectively. If we form a linear combination of the 
components of xi. We obtain: 

                                             yi= WT xi 

Of all the possible lines we would like to select the one 
that maximizes the separability of the scalars.  In order 
to, find a good projection vector, we need to define a 
measure of separation. The mean vector of each class 
in x space and y space is:  

                              1

i i
i

xx
N

µ ω∑= ∈  

And  

                  1 1

i i

T T

i i

i i

y W x Wy x
N N

µ µω ω∑ ∑= = =∈ ∈ɶ  

We can then choose the distance between the projected 
means as our objective function: 

                       
1 2 1 2( ) ( )

T
J W Wµ µ µ µ= − = −ɶ ɶ  

However, the distance between projected means is not 
a good measure since it does not account for the 
standard deviation within classes. Fisher suggested 
maximizing the difference between the means, 
normalized by a measure of the within-class scatter. 
For each class we define the scatter, an equivalent of 
the variance, as: 

         
2 2

( )i ii
s yy µω∑= −∈ɶ ɶ  

Where the quantity 
2 2

1 2( )S S+ɶ ɶ  is called the within-class 
scatter of the projected examples. The fisher linear 
discriminant is defined as the linear function W

T
x that 

maximizes the criterion function. 

                            
2

1 2

2 2

1 2

( )J W
S S

µ µ−
=

+

ɶ ɶ

ɶ ɶ

 

Therefore, we are looking for a projection examples 
from the same class are projected very close to each 
other and at the same time, the projected means are as 
farther apart as possible. To find the optimum W, first 
we define a measure of the scatter in feature space x.   

                       ( )( )T
i i ii

s x xx µ µω= − −∑ ∈  

                                             S1+S2=SW 

Where SW is called the wit in class scatter matrix. The 
scatter of the projection y can then be expressed as a 
function of the scatter matrix in feature space x. 

    2 2 2
( ) ( )

T T

i i ii i
s y W x Wy xµ µω ω∑ ∑= − = −∈ ∈ɶ ɶ  

       ( )( )
T T T

i i ii
W x x W W S Wx µ µω∑= − − =∈  

                                   2 2
1 2S S+ɶ ɶ = WTSWW 

Similarly, the difference between the projected means 
can be expressed in terms of the means in the original 
feature space. 

  
2 2

1 2 1 2 1 2 1 2
( ) ( ) ( )( )

T T T T T

B
W W W W W S Wµ µ µ µ µ µ µ µ− = − = − − =ɶ ɶ                 

The matrix SB is called the between class scatter. Note 
that, since SB is the outer product of two vectors, its 
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rank is at most one. We can finally express the fisher 
criterion in terms of SW and SB as: 

                                   
( )

T

B

T

W

W S W
JW

W S W
=  

To find the maximum of J(W) we derive and equate to zero. 
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Dividing by WT
 SWW: 
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Solving the generalized eigen value problem yields 
-1

W BS S W JW= . 
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This is knows as Fisher’s Linear Discriminant (FLD). 

3. Thresholding Methodology 

3.1. Wavelet Shrinkage 

Let W(0) and W
-1

(0) denote the forward and inverse 
wavelet transform operators. Let D(0, λ) denote the 
thresholding operator with thresholdλ . The practice of 
thresholding denoising consists of the following three 
steps: 

• Step 1: Y=W(x). 

• Step 2: Z=D(Y, λ). 

• Step 3: x̂ = W
-1

(Z). 

Hard thresholding and soft thresholding are only 
different in step 2.  

3.1.1. Hard Thresholding 

In the case of hard thresholding: 

                       
( , )

0

Y if Y
D Y

otherwise

λ
λ

 >
≡ 


 

3.1.2. Soft Thresholding 

In the case of soft thresholding or Wavelet shrinkage: 

                ( )( )
( , )

0

sign Y Y if Y
D Y

otherwise

λ λ
λ

 − >
≡ 


             

 

3.2. BayesShrink 

The observation model is Y=X+V, with X and V 
independent of each other, hence: 

                                2 2 2
Y Xσ σ σ= +  

Where the noise variance σ
2
 is estimated from the 

subband HH1 by the robust median estimator [20]: 

                 
1

( )
,

0.6745

ij

ij

Median Y
Y subband HHσ= ∈  

And 2
Yσ  is the variance of Y. Since, Y is modeled as 

zero-mean, 2
Yσ  can be found empirically by: 

                              2 2

, 1

1
ˆ
Y ij

i j

n

Y
n

σ
=

= ∑  

Where n× n is the size of the subband under 
consideration. Thus: 

                 
2ˆˆ ˆ( )

ˆB X

X

T
σ

σ
σ

=  

Where 
2 2

( , 0)
X Y

ˆ ˆ ˆmaxσ σ σ= − . 

4. Empirical Mode Decomposition  

The EMD is a relatively new method for analyzing and 
processing non-stationary, non-linear signals [3]. The 
EMD reduces a time signal into a set of basis signals 
just like of the fourier or wavelet transforms; unlike the 
fourier or wavelet transforms, however, the basis 
functions are derived from the data itself. Each basis 
function of the EMD is known as an IMF, captures the 
repeating behavior of the signal at some particular time 
scale. 

4.1. EMD Principle  

The decomposition has an assumption that any data 
consists of different simple intrinsic models of 
oscillations. Each intrinsic mode, no matter linear or 
not, represents an oscillation, which will have the same 
number of extrema and zero-crossings and then the 
oscillation will be symmetric with respect to the local 
mean. Usually, the data may have many different 
oscillations which can be represented by the IMF with 
following definition: 

a. In the whole dataset, the number of extrema and    
the number of zero-crossings must either equal or 
differ at most by one.  

b. At any point, the mean value of the envelope 
defined by the local maxima and the envelope 
defined by the local minima is zero. An IMF is 
much more general than an oscillation mode 
because it has a variable amplitude and frequency as 
a function of time. According to the definition for 
the IMF, we can decompose any function as follows 
[23] and Figure 2 as an example. 
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Figure 2. The mean value of the envelope is estimated by the local 

maxima and the local minima. 
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4.2. IMF Extraction Procedure  

IMF is the main part of EMD for making separation 

higher frequency from signals. IMF extraction 

procedure follows: 

1. First, find all the local maxima extrema of x(t). 

2. Interpolate (cubic spline fitting) between all the 

maxima extrema ending up with some upper 

envelope emax(t). 

3. Find all the local minima extrema.  

4. Interpolate (cubic spline fitting) between all the 

minima extrema ending up with some lower 

envelope emin (t). 

5. Compute the mean envelope between upper 

envelope and lower envelope. 

                    
( ) ( )

( )
2

min maxe t e t
m t

+
=                      

6. Extract the higher frequency as an IMF function 

from the signal:   

                          ( ) ( ) ( )d t x t m t= −                         

7. IMF extraction flow: 

            

1 1

1 2 2

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
K

i K
i

x t d t r t

d t d t r t

d t r t
=

= +

= + +

∑= +

⋮
 

Where d1(t) high frequency part IMF and rK(t) stands 

for residual trend (a low order polynomial component) 

and iterate on the slow oscillations component 

considered as a new signal. So: 

                
1 2 2
( ) ( ) ( )r t d t r t= +  

5. Proposed Method 

5.1. Objective Function 

Firstly, BEMD is applied on an image for creating the 

BIMF. An image is f(x, y) and the size of image is M×N 

then, BIMF d(x, y) will be generated by this procedure: 

             

1 1

1 2 2

1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )
K

K
i

f x y d x y r x y

d x y d x y r x y

d x y r x yi=

= +

= + +

∑= +

⋮
    

Where K=10 that means we extract 10 levels BIMF 

coefficients. Individually each coefficient is denoted 

by ni. Total number of coefficient N=n0+n1+n2+ …+nM. 

Now, we have to calculate each coefficient probability 

using below this Equation: 

                               0
i

i i

n
P ; P

N
= ≥  

Where
0

1
M

i
i

P
=

=∑ . 

Suppose that, the coefficients are divided into two 
classes C1 and C2 by a fixed value t; C1 is the set of 
coefficients with levels [0, 1, ..., L] and the rest of 
coefficients belong to C2 C1 and C2 normally 
correspond to the object class and the back ground one, 
or vice versa. Then, the probabilities of the two classes 
are given by within: 

                                
1

0

( )
L

i

i

W L P
=

= ∑  

                               
1 1( ) 1 ( )W L W L= −  

The mean coefficients of the two classes can be 

defined as: 

                                
1
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L
i

i

iP

W
µ

=
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1
2

M
i

i L

iP

W
µ
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Corresponding class variances are given by: 

                           2
2 1
1

10

( )L
i

i

i P

W

µ
σ

=

−
=∑  

                         
2

2 2
2

21

( )M
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i L
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W

µ
σ

= +

−
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The within-class variance can be defined [17]: 

                              2 2 2

1 1 2 2W W Wσ σ σ= +  

As we have seen in section 2.2, the FLD seeks 
directions efficient for discrimination by yielding the 
maximum ratio of between class scatter to within class 
scatter. Thus, based on the function defined by 
Equation 9 the following criterion as objective function 
to evaluate the separability of the threshold at level L. 

                         
2

1 2

2

( ( ) ( ))
( )

W

L L
L

µ µ
ρ

σ

−
=  

Where 2 2 2

1 1 2 2W W Wσ σ σ= + . 

From Equation 38 we shall get FDA thresholding value 
T between two classes as follows. T can be used for 
separating two classes but, if we want to apply 
threshold value T for noise reduction then this type of 
thresholding can not be efficient for noise reduction. 
These situations we can overcome by applying the 
standard deviation and mean value ratio of the 
coefficient of any IMF of EMD. Here, we proposed the 
proper threshold value estimation method for speckle 
noise reduction in the EMD domain. So, this method is 
given below: 

If the BIMF is ξ(x, y) and the size is F×H then the mean 
value of BIMF is: 

                            ( , )c

1
x y

F H
µ ξ∑=

×
 

And the standard deviation of the BIMF coefficient is: 

                     

1 1
2

0 0

[ ( , ) ]
F H

c
x y
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ξ µ
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For the large FDA threshold value T huge amount of 
diagnostic information is lost. To remove this 
limitation we use mathematical operations between 
mean and standard deviation of BIMF coefficients with 
respect to FDA threshold value to obtain an optimal 
threshold value. The proposed optimal threshold value 
is: 
                                

optimal

c

c

T
T

σ

µ

=
                             

Where  0
c

c

σ

µ
> . 

Now, we get optimal threshold value from Equation 41 
using FDA for speckle noise reduction of ultrasound 
images. We know ξ(x, y) is the BIMF coefficient and 
optimal threshold value is Toptimal. Optimal threshold 
operation on BIMF coefficients is shown below: 

for(x=1 to F) 

{ 

     for(y=1 to H) 

         { 

                if (ξ[x, y] ≥ Toptimal)   

                  { Hc[x, y]=ξ[x, y];} 

          } 

} 

Calculate the mean value of Hc[x, y] is M. Then Hc[x, y]=M 

We use “Lena” image for testing the performance 
between FDA thresholding and FDA optimal 
thresholding. From Table 1 we see that FDA optimal 
thresholding exhibits better performance than FDA 
thresholding. Here, we show the histogram comparison 
and efficiency of those threshold values as shown in 
Figure 3.  

From Figure 3, we see that Figure 3-b lost its 
structural view but Figures 3-c and d have a structural 
view without loss of important information with 
respect to original image and 3-d is better than 3-c. We 
observe that FDA optimal threshold show the better 
performance for edge preservation over existing FDA 
threshold. Very small amount of error occurred in the 
filtered image for FDA optimal thresholding technique 
and enhance the image clearly. From these 
measurements, we can realize that FDA optimal 
threshold performance significantly better than FDA 
threshold. 
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                  a) Original lena image.      b) After FDA thresholding. 
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 c) After FDA optimal thresholding 

           with wavelet. 

 d) After FDA optimal thresholding 

           with BEMD. 

Figure 3. Histogram of Lena image with FDA thresholding 

operation. 

5.2. Proposed Denoising Algorithm 

Following steps describe the proposed algorithm for 

image denoising: 

1. Let maxρ=0, be the maximum value of the objective 

function. 

2. For k=0 to Maximum of coefficient value.  

3. Compute the objective function value corresponding 

to the coefficient value k. 

                                   If maxρ< P(k) 

                                      then 

        maxρ=P(k) 

                                             T=k 

                                   end 

4. The optimal threshold value estimation for denoising 

in EMD field: 

optimal

c

c

T
T

σ

µ

=
 

    Where 0
c

c

σ

µ
>  

5. BIMF coefficient is denoted by Ic and optimal 

threshold value performance is: 

If  Ic ≥ Toptimal 

                                                then Hc=Ic, 

                                            end 

6. Compute the mean value M from the Hc. 

7. Modify optimal threshold located pixels Hc by M. 

8. Finally, sum up all modified BIMF with residual 

signals. 

6. Evaluation Criteria 

We observe the performance by apply Signal to Noise 

Ratio (SNR), Mean Square Error (MSE) and Edge 

Preservation Factor (EPF) parameter [20]. SNR:                

     
2

1 1

2

1 1

( ( ) ( ))
10 10

( ( ))

M N
x y d

M N
x y d

I x , y I x , y
SNR log

I x , y

= =

= =

∑ ∑ −
= −

∑ ∑

 
 
 

    

The edge preservation ability of the filter is compared 

by EPF and is computed using EPF: 

                 
2 2

( )( )

( ) ( )

d d

d d

I I I I
EPF

I I I I

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∑ − −
=

∑ − −

 

Where ∆I and ∆Id are the high pass filtered versions of 

original image I and filtered image Id respectively, 

obtained with a 3×3 pixel standard approximation of 

the Laplacian operator. The larger value of EPF means 

more ability to preserve edges. MSE:   

         
21 1

0 0

1
( ( ) ( ))M N

x dMSE I x , y I x , yy
M N

− −
=∑ ∑= −=

⋅

 
  

 

Where the image size is M×N.x means row, y means 

column, I means original image and Id  means filtered 

image. 

(41) 

(42) 

(43) 

(44) 
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7. Experimental Result 

The proposed algorithm has been applied to 2D 

ultrasound image with have been corrupted by 

multiplicative noise (speckle noise of variance 0.004). 

The computation is carried out on MATLAB 

7.12.0.635 (R2011a) in a Core i5 2.50GHz and 4GB 

RAM Laptop having a Windows 7 operating system. 

We choose four images (e.g., Phantom, Lena, Kidney, 

Liver) for testing the performance of the proposed 

algorithm. Our proposed algorithm is compared with 

existing method which is shown in Tables 1 and 2 

Figures 6, 7 and 8 respectively. 

Table 1. For phantom and lena images. 

Method 
Phantom Lena 

SNR EPF MSE SNR EPF MSE 

Wavelet Hard Threshold 22.0213 0.1643 4.8215 22.3069 0.2273 5.8765 

WaveletSoft Threshold 22.4155 0.3372 4.7151 22.8611 0.2892 5.1722 

Bayesian Threshold 23.2231 0.5032 3.4014 23.8748 0.4370 4.0986 

FDA Denoising with Wavelet 23.9296 0.6227 2.0191 26.5587 0.6949 2.9883 

FDA Denoising with BEMD 25.8742 0.9892 1.0843 27.4771 0.9791 1.9015 

Table 2.  For ultrasound kidney and liver images. 

 

 

Kidney Liver 

SNR EPF MSE SNR EPF MSE 

Wavelet Hard Threshold 8.5828 0.2554 4.7968 14.6471 0.3443 4.9520 

Wavelet Soft Threshold 8.5253 0.2532 4.8029 14.6147 0.3636 4.9625 

Bayesian Threshold 8.5949 0.3471 4.5668 14.6950 0.4622 4.8874 

FDA Denoising with Wavelet 11.1302 0.5934 2.7511 17.7252 0.6972 2.2166 

FDA Denoising with BEMD 18.5737 0.9834 2.0615 19.6260 0.9801 1.6934 

 

Experimental numerical results show the improved 

speckle noise reduction capabilities of the proposed 

FDA optimal threshold based filtering compared to the 

classical methods. From Tables 1 and 2, we see that 

our proposed filter effectively and properly remove 

speckle noise from ultrasound images because a small 

amount of error is occurred in the filter image and the 

proposed method is shown the mentionable edge 

preservation. We can make a decision based on the last 

two rows in each tables optimal threshold value is 

more effective and suitable for EMD rather than 

wavelet domains.  

Histograms of original and filtered images are given 

below: 

Original Image  FDA Optimal Thresholding with EMD 

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

 

 

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
FDA Optimal Thresholding with EMD

 

a)  Phantom image. 
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b) Kidney image. 
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c) Liver image. 

Figure 4. Histogram of the original and filtered images after FDA 

optimal threshold applies in images for phantom, lena, kidney, liver 
respectively. 

Figure 4 mainly depicts the intensity variation of the 

images by the histograms. We observe from these 

histograms very small amount of the gray values are 

varied of the filtered images with respect to original 

images. So, we can easily say that a small amount of 

information is lost and very small amount of error is 

occurred in the filtered images. Naturally, filtered 

image is so structural that means the edge preservation 

and smoothness of the filtered image is really good 

with respect to original image. 

From Figure 5 we see that Figure 5-b is an 

integrated higher frequency signals which is sum up 10 

levels filtered BIMF and Figure 5-c is the residual 

image which is very low frequency signals and last one 

Figure 5-d is our desire image which is natural and 

smooth with respect to the original noisy image. 

FDA optimal threshold effect on BEMD is shown 

below: 
 

  

a) Phantom noisy image. b) BIMF image. 

  

c) Residual image. d) FDA Denoising with BEMD. 

Figure 5. Mean and variance curve of diagonal coefficient of 

Cameraman image a and b for the first level and c and d for the 

second level. 

From Figures 6, 7 and 8 proposed filtered image 

visual quality is absolutely good because our proposed 

algorithm shows better performance for speckle noise 

reduction. From the observation of the proposed 

filtered image, we see that it is so smooth and enhance 

over existing despeckle methods images and its has no 

any checker board and blurring effect in the 

homogeneous regions but preserve edges  significantly 

without loss vital information of the image. From the 

visual quality we can assume that Figure 8-h is always 

better than Figure 8-f that means BEMD is more 

efficient than wavelet for extracting higher signal for 

speckle noise suppression.  

Visual quality comparison is given below: 



462                                                   The International Arab Journal of Information Technology, Vol. 12, No. 5, September 2015 

 

  
a) Lena noisy image. b) Hard thresholding. 

  
c) Soft thresholding. d) Bayesshrink. 

  
e) Bayesian thresholding. f) FDA denoising. 

  
g) Filtered BIMF (10 levels). h) FDA denoising with BEMD. 

Figure 6. Visual comparison of Lena image after execution some 

existing state-of-the-art filters and our proposed filter on Lena 
noisy image. 

  

a) Kidney ultrasound noisy image. b) Hard thresholding.  

  

c) Soft thresholding. d) Bayes shrink. 

  

e) Bayesian thresholding. f) FDA denoising with wavelet. 

  

g) Filtered BIMF (10 levels). h) FDA denoising with BEMD. 

Figure 7. Visual comparison of kidney ultrasound image after 

execution some existing state-of-the-art filters and our proposed 

filter on kidney ultrasound noisy image. 

  

a) Liver ultrasound noisy image. b) Hard thresholding. 

  

c) Soft thresholding. d) Bayes shrink. 

  

e) Bayesian thresholding. f) FDA denoising with wavelet. 

  

g) Filtered BIMF (10 levels). h) FDA denoising with BEMD. 

Figure 8. Visual comparison of Liver ultrasound image after 

execution some existing state-of-the-art filters and our proposed 

filter on Liver ultrasound noisy image. 

8. Conclusions 

We have proposed an effective method for speckle 

BEMD using FDA proposed optimal threshold value. 

Our method exhibits better performance in comparison 

to existing methods for speckle noise reduction, edge 

preservation, visual quality and mean squared error. 

Our investigated method is especially effective for 

inhomogeneous image and can be used widely for 

speckle noise suppression of speckle affected images.  
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