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Abstract: Many improvements have been made since the RSA origin in terms of encryption/decryption speed and memory 

saving. This paper concentrates on the performance improvement. Rebalanced RSA is designed to improve the decryption 

speed at the cost of encryption speed. Further work was done to improve its encryption speed in terms of rebalanced Chinese 

Remainder Theorem (CRT) variants. Rebalanced CRT variants improved the encryption speed at the cost of decryption speed.  

This paper also improves the performance of the encryption side in rebalanced RSA, while still maintaining the same 

decryption speed as in rebalanced RSA by adding the multiprime RSA feature to the rebalanced CRT variant. Proposed 

scheme gains the same advantage in encryption side as in rebalanced CRT variants, besides it is 2 times faster at decryption 

side than rebalanced CRT variants. Due to the use of multiprime feature, the key generation time is also decreased in this case. 

It is decreased approximately by a factor of 2.39 from rebalanced RSA CRT variant. Comparison of the RSA variants with the 

new scheme is shown in tabular and graphical way for better analysis. 
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1. Introduction 

Thirty five years after the origin, RSA cryptosystem 

[15] is still a de-facto standard in all branches of public 

key cryptography. Using the standard double and 

square method for modular exponentiation, which is 

commonly used, the cost of encryption and decryption 

is roughly proportional to the number of bits in e 

(public key) and d (private key), respectively.  

Boneh and Shacham [2] gave a very nice 

comparison of the variants of RSA (batch RSA [5], 

Mprime RSA [18], Mpower RSA [3] and rebalanced 

RSA [20]). All these variants are improving the 

decryption/signature verification performance. Their 

work was further extended by Paixao and Gazzoni 

[11]. He combined the two variants of RSA, 

multiprime RSA and rebalanced RSA and gave the 

performance by improving the decryption/signature 

generation speed by 27 times to RSA and by 4.8 times 

to RSA with Chinese Remainder Theorem (CRT) for 

2048bit modulo. Rebalanced RSA, speeds up RSA 

decryption by shifting decryption costs to encryption 

costs. Hence, encryption speed decreases. In [16] 

improvement was done in encryption speed, two 

variants of rebalanced RSA were introduced in which 

the public exponent e is much smaller than the 

modulus, thus reducing the encryption costs, while still 

maintaining low decryption costs. This paper was 

modified in [17]. Our work concentrates on the 

encryption and decryption speed. In our work, 

multiprime feature is added into the schemes of 

rebalanced RSA and the decryption speed enhances for 

the same gain of encryption speed in [17].  
The paper is organized as follows: In section 2 RSA 

and its variants are reviewed. Section 3 describes the    
proposed algorithm. Algorithm comparison with other  

variants is shown theoretically in tabular and graphical 
manner in section 4. In section 5, the implementation 
aspects of the new algorithm are given and the 
comparison with the other variants is shown. The 
conclusion is given in the last  section. 

Throughout the complete paper, following 

parameters are used: 

• n= No of bits in modulus. 
• ne= No of bits in public exponent (e). 
• nd= No of bits in private exponent (d). 
 

2. RSA and its Variants 
 

2.1. Basic RSA 

Rivest et al. [15] described the RSA algorithm as 

shown in Figure 1. The keys are derived from the 

multiple of two large prime numbers. The private key 

can only be deduced from the public key by factoring 

the large multiple.  

 

Figure 1. Basic RSA. 

• Key Generation Method: 

1. Generate two large random primes of n/2 bits 
each, p and q of approximately equal size such 
that their product N= p*q is of the required bit 
length, e.g., 1024 bits.  

2. Compute N= p*q and φ(N)= (p-1)(q-1).  

N, e (ne=small) N, d (nd ≈n) 

Basic RSA 
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3. Choose an integer e, 1<e<φ(N), such that gcd(e, 

φ(N))=1.  
4. Compute the secret exponent d, 1<d<φ(N), such 

that: ed≡1(mod φ(N)), public key= (N, e), private 
key= (N, d). 

• Encryption Method: 

1. Obtains the recipient B’s public key (N, e). 
2. Represents the plaintext message as a positive 

integer M. 
3. Computes the cipher text C= M

e
 mod N. 

4. Sends the cipher text C to B. 

Very elegant description of the complexity is given in 

[19].   

             
2

(3 2)( )eEncryption Complex n - nty= +ni  

• Decryption Method: 

1. Uses his private key (N, d) to compute
 
M= C

d
 mod 

N. 

2. Extracts the plaintext from the message 

representative M. 

Here, the iteration is done nd times (nd= No of bits in d) 

and nd ≈ n So: 

  
3 3 2 2

(3 2)( ) ( )Decryption Comp n - n + n = 3n + n +olexi y nt =  

2.2. RSA with CRT  

This method [14], Figure 2, is used to improve the 

computational cost at the decryption side of the RSA, 

by dividing d into two parts (dp, dq). 

 

Figure 2. RSA CRT. 

• Key Generation Method: 

Same as the basic RSA.  
 

• Encryption Method: 
Same as the basic RSA. 

    Complexity is same as for the basic RSA.  
 

• Decryption Method: 

1. Calculate dp= d mod p-1 and dq= d mod q-1. 
 

 

2. Calculate Mp= C
dp

 mod p
 
and Mq= C

dq
 mod q. 

3. Calculate M from Mp and Mq using CRT.  

      
2 2 2

3 4 7 2 ( )Complexity  of Decryption Al n / + n / +ogorithm n=  

2.3. MultiPrime RSA  

In this variant [18] Figure 3, the RSA modulus was 
modified so that it can further decrease the decryption 
time. It consists of k primes p1, p2, …, pk instead of 
using only two. 

 

Figure 3. Multiprime RSA. 

• Key Generation Method: k= No. of primes to be 
used. 
  

1. Compute k distinct primes p1, …, pk each one [log 

N/k] bits in length and N=ᴨi-1 
k
 pi. 

2. Compute e and d such that d=e
-1

 mod φ(N), where 

gcd(e, φ(N))=1, φ(N)=ᴨi-1 
k
 (pi-1). 

3. For 1≤ i≤ k, compute di= d mod (pi-1). 
     Public key= (N, e). 
     Private key= (d1, d2, ..., dk).  

• Decryption Method: Here, k=3. 
 

1. Calculate dp= d mod p-1, dq= d mod q-1 and dr=d 

mod r-1. 
2. Calculate Mp= c

dp
mod p, Mq= c

dq
mod q, Mr= c

dr
mod 

r. 
3. Calculate M from Mp, Mq and Mr using CRT 

  

3 2

2 2 3 2 2
(3 ( 3)( 3 2)) (3 (3 ( 3) ( 3) )

16 3 ( ) 3 19 3 ( )

* n-n/ n/ + + * * n/ + n/

                                        + n / +o n

Decryption Complexit

= n / + n / +

y

o n

=
 

2.4. Rebalanced RSA  

This variant [20] Figure 4, also decreases the 
decryption time, but at the cost of increase in 
encryption time. 

 

Figure 4. Rebalanced RSA. 

• Key Generation Method: Take s≤ n/2 bits. 

1. Generate two distinct random (n/2)bit prime 
numbers p and q with gcd(p-1, q-1)=2

 
and 

calculate N= p*q. 
2. Generate two s-bits random numbers dp and dq, 

such that gcd(dp, p-1)=1, gcd(dq, q-1)=1 and dp= dq 

mod p-1. 
3. Calculate one d such that d= dp mod p-1 and d= dq 

mod q-1. 
4. Calculate e=d

-1
 mod φ(N). 

 .
 

     Public key= (N, e).  
     Private key= (p, q, dp, dq).  

• Encryption Method:  
Same as the basic RSA. 
 

      

2 3 2 2
(3 2)( )= = 3 ( )en n nEncryptionComplexit n ny o n− + + +

 

Where
 
ne ≈ n 

• Decryption Method: Same as RSA CRT. 

N, e (ne≈n) 
N, dp, dq      

  (ndp, ndq<n/2) ) 

Rebalanced  

RSA  

N,e (ne=small) 
N,dp,dq,dr (ndp= 

ndq=ndr= n/2)) 

Multi 

Prime RSA 

N, e (ne=small) 
N,  dp, dq(ndp= 

ndq=n/2)) 

RSA CRT 

(1) 

(2) 

(3) 

(4) 

(5) 
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2 2 2

2 2
2 ((3 2)( 4 2)) 5 2 ( )

48 ( )= 3 2

= * *s n /Decryption complexit n/ n / o n

n / o n

y − + + +

+
 

    Here, s= 160 bits. 

2.5. Rprime RSA 

This variant [11] Figure 5, further improves the 
computational cost at the decryption side by combining 
rebalanced RSA and Mprime RSA. 

 
Figure 5. Rprime RSA. 

• Key Generation Method: Take s, an integer, s≤n/k 
and executes the following steps: 

1. Generate k distinct random primes of n/k bits p1, 

p2, …, pk with gcd(p1-1, p2-1, …, pk-1)= 1 and 
calculate N= p1, p2, …, pk.  

2. Generate k random numbers of sbits dp1, dp2, …, 

dpk, such that: gcd(dp1, p1-1)=1, gcd(dp2, p2-1)=1, ..., 

gcd(dpk, pk-1)=1 and dp1= dp2= …, dpk mod 2. 

3. Find d such that d= dp1 mod (p1-1), d= dp2 mod (p2-

1), ..., d= dpk mod (pk-1). 
4. Calculate e=d

-1
 mod φ(N).  

     Public key= (N, e). 
     Private key= (p1, p2, ...pk, dp1, dp2, ...dpk).

   
• Encryption Method:  

Same as the MultiPrime RSA. 

 
2 3 2 2

(3 2)( ) 3 ( )nEncryptio n nn  Complexity n n o ne − + = + +=  

• Decryption Method:  
Same as the Multiprime RSA. 

2 2 2

2 2
3 ((3 2)( 9 3)) 16 3 ( )

                                      494 3 ( )

* *s n / n/ n / oDecryption Co n

n / o n

mplexity= − + + +

= +

  

Here, s=160bits.   

2.6.  Rebalanced RSA Variants 

This variant [17] Scheme B, Figure 6, is also 
improving the computational cost of RSA algorithm. It 
is a further improvement of rebalanced RSA, so that 
the increased encryption cost be lowered to balance 
both encryption and decryption cost.   

 

Figure 6. Rebalanced RSA CRT variant. 

This algorithm do not only shorten the public 

exponent in Rebalanced RSA-CRT from 1024bits 

down to 512bits, but also make the public exponent to 

be of the special form of 2m+1 where m=511. Scheme-

A produces a 512bit public exponent, e.g., e= 2
511

+1, 

two 198bit CRT exponents dp, dq and an RSA modulus 

N=pq, where p and q are about of 512bits. The 

encryption time is therefore reduced to about one-third 

of the time required by rebalanced RSA-CRT. This 

RSA variant can be widely applied to several systems 

and software. 

The key generation algorithm is based on the 

following fundamental theorem from number theory 

[8]:  

• Theorem A: Let a and b be relatively prime integers 

unequal to 1 (i.e., gcd(a, b)=1 and a, b ≠1). For every 

integer h there exists a unique nd, efficiently 

computable pair of integers
 

satisfying auh-bvh=1, 

where (h-1)b<uh<hb and (h-1)a<vh<ha. 
 

• Key Generation Method: Here, e<n/2. 
 

1. e= Random (ne)bit odd integer. 

2. dp1= Random (n/2-ne)bit odd integer, Ep= edp1. 

3. Kp= Random (ne+nd-n/2)bit integer satisfying 

gcd(kp, Ep)=1. 

4. With h=2, compute (dp2, p1) satisfying Epdp2= 

kpp1+1, where kp<dp2< 2kp, Ep< p1< 2Ep and let dp= 

dp1dp2. 

5. p= p1+1, If p is not prime, then go to step 3. 

6. dq1= Random(n/2-ne)bit odd integer, Eq= edq1.  

7. Kq=Random(ne+nd-n/2)bit integer satisfying gcd(kq, 

Eq)=1.  

8. With h=2, compute (dq2, q1) satisfying Eqdq2= 

kqq1+1, where kq< dq2< 2kq
 
and Eq< q1< 2Eq, dq= 

dq1dq2. 

9. q= q1+1, if q is not prime, then go to Step 7. 

     Public key = (e, N). 

     Private key = (dp, dq, p, q). 

• Encryption Method: Same as rebalanced RSA. 

• Decryption Method: Same as rebalanced RSA. For 

this scheme, ne= 170bits and nd= 358bits. 

    
2 2 2

(3 2)( ) 508 ( )en - n + nEncryption Complexit = n + o ny=  

 

2 2 2

2 2

2 ((3 2)( 4 2)) 5 2 ( )

                                      1077 2 ( )

d
Decryption Com * * n - n / +n/ + n / +o n

=

plexity=

n / +o n

  

3. Proposed Scheme 
 

3.1. Algorithm 

In our scheme, Figure 7 multiple prime feature is 

added to rebalanced RSA to increase the decryption 

side of the rebalanced RSA CRT variant and due to the 

use of smaller primes it also reduces the key generation 

time. 

N, e (ne<n/2) 

e.g., 170 bits 

N, dp, dq       

 (ndp, ndq<n/2) 

e.g., 358 bits 

Rebalanced  

RSA CRT 

Variant  

N, e (ne≈n) 
N, dp, dq, dr (ndp, ndq, 

ndr <n/3)  

Rprime  

RSA  

(6) 

(8) 

(7) 

(9) 

(10) 
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Figure 7. Proposed Scheme. 

The key generation algorithm, takes (n, ne, nd) as 
input, with ne< n/3

 
and outputs a valid public key <e, 

N> and corresponding private key <dp, dq, dr, p, q, r>, 
where |N|= n|, |e|= ne and |dp|= |dq|= |dr|= nd. The algorithm 
is as follows: 

• Key Generation Method: Here, e< n/ 3. 
 

1. e= Random (ne)bit odd integer. 

2. dp1= Random
 
(n/ 2-ne)bit odd integer, Ep= edp1. 

3. kp= Random (ne+nd-n/3)bit integer satisfying 

gcd(kp, Ep)=1. 

4. With h=2, compute (dp2, p1) satisfying Epdp2= 

kpp1+1, where kp< dp2< 2kp, Ep< p1< 2Ep and let 

dp= dp1dp2. 

5. p= p1+1. If p is not prime, then go to Step 3. 

6. dq1= Random(n/ 3-ne)bit odd integer, Eq= edq1. 

7. kq= Random (ne+nd-n/3)bit integer satisfying gcd(kq, 

Eq)=1. 

8. With h=2, compute (dq2, q1) satisfying Eqdq2= 

kqq1+1, where kq<dq2<2kq
 

and Eq<q1<2Eq, 

dq=dq1dq2. 

9.  q= q1+1. If q is not prime, then go to Step 7. 

10. dr1 = Random (n/ 2-ne)bit odd integer, Er= edr1. 
11. Kr= Random (ne+nd-n/ 3)bit integer satisfying  

  gcd(kr, Er)=1. 
12. With h=2, compute (dr2, r1) satisfying Erdr2=    

   krr1+1, where kr<dr2<2kr
 
and Er<r1<2Er, dr=  

  dr1dr2. 

13. r= r1+1. If r is not prime, then go to Step 10. 

      Public key = (e, N). 

      Private key (dp, dq, dr, p, q, r). 

3.2. Verification of the Key Equation 

The key equation of the basic RSA algorithm is: ed= 

kφ(N)+1. To show that the output (public and private) 
keys are valid, let kp= kp1kp2, kq= kq1kq2, kr= kr1kr2. The 
equation defined for RSA CRT are: 

                             
( 1) 1p ped k p= − +  

                             
( 1) 1q qed k q= − +  

                              ( 1) 1r red k r= − +  

Multiplying these three equations together yields: 

                (edp-1)(edq-1)(edr-1)=kp(p-1)kq(q-1)kr(r-1) 

After rearrangement: 

                 e(e2dpdqdr-edpdr-edqdr-edpdq+dp+dq+dr)=   

kpkqkr(p-1)(q-1)(r-1)+1                                         

Here, 

d0=e2dpdqdr-edpdr-edpdr-edqdr-edpdq+dp+dq+dr 

And                                    

k=kpkqkr 

Hence, e and d0 are the valid keys for the algorithm 

satisfying the equation ed0= k0φ(N)+1. 

Thus, e and d0 are a valid public/ private exponent 

pair for the modulus N= pqr. 

3.3. Security Analysis 

Coppersmith gave a new direction in cryptanalysis of 

RSA and its variants by lattice reduction method. After 

Coppersmith et al. [4, 6, 7] have given their analysis of 

lattice attack. 

The method basically find the roots of polynomial 

modular equation using lattice reduction. Multivariate 

linear polynomials with m variables can be solved by 

generating m algebraically independent equations and 

then finding the roots of these equations, proving of 

independence of polynomial is still an open problem.  

• Theorem 1. Four Variate Linear Modular 

Equations: Jutla [7]. Let f(x, y, z, w) be a linear 

polynomial with integer coefficients. For every ε>0, 

there exists a positive M0 such that for every integer 

M> M0 that is relatively prime to at least one non-

constant coefficient of f we can find four linearly 

independent polynomials such that each root (x0, y0, 

z0, w0) of f(x, y, z, w) (mod M) is also a root of each the 

four  polynomials modulo M, and if |x0|<X, |y0|<Y, 

|z0|<Z, |w0|<W and XYZW<M
1-ε for some bounds X, Y, 

Z and W, then (x0, y0, z0, w0) is also a root of each of 

the four polynomials over the integers. If these four 

polynomials are also algebraically independent then 

we can compute (x0, y0, z0, w0).  
• Corollary 1.1. Trivariate Linear Modular 

Equations: Let f(x, y, z) be a linear polynomial with 
integer coefficients. For every ε>0, there exists a 
positive M0 such that for every integer M> M0 that is 
relatively prime to at least one non-constant 
coefficient of f we can find three linearly 
independent polynomials such that each root (x0, y0, 

z0) of f(x, y, z) (mod M) is also a root of each the three 
polynomials modulo M and if |x0|< X, |y0|<Y, |z0|<Z 
and XYZ<M

1-ε for some bounds X, Y and Z, then (x0, 

y0, z0) is also a root of each of the three polynomials 
over the integers. If these three polynomials are also 
algebraically independent then we can compute (x0, 

y0, z0).  
• Corollary 1.2. Bivariate Linear Modular Equations: 

Let f(x, y) be a linear polynomial with integer 
coefficients. For every ε>0, there exists a positive M0 
such that for every integer M> M0 that is relatively 
prime to at least one non-constant coefficient of f we 
can find two linearly independent polynomials such 
that each root(x0, y0) of f(x, y) (mod M) is also a root 
of each the two polynomials modulo M and if |x0|< 

X, |y0|<Y and XY<M
1-ε for some bounds X and Y, then 

(x0, y0) is also a root of each of the two polynomials 

N, e (ne< n/3) 

e.g., 170 bits 

N, dp, dq, dr   

     (ndp, ndq, ndr < n/3) 

e.g., 280 bits 

Proposed 

Scheme 

(15) 

(13) 

(14) 

(11) 

(12) 
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over the integers. If these two polynomials are also 
algebraically independent then we can compute (x0, 

y0).  
• Howgrave Graham Theorem: Let h(x1, ..., xn) ϵ Z[x1, 

..., xn] 
be the sum of at most w monomials and let m 

be a positive integer. Suppose that there exists y1, ..., 

yn ϵ Z such that: 

1( ) 0( )
m

nh y , ..., y mod M≡
 

   And                      
 

2 0.5

1 1|| ( )||
m

n nh x X , ..., x X w M<  

Where | y1|< x1, ..., | yn|< xn for some positive bounds 

x1,  ..., xn. Then, h(y1, ..., yn)=0 over the integers.  

• Proof of Theorem 1. Let M be a positive integer 

with unknown factorization and consider the linear 

integer polynomial: 

     ( , , , ) [ , , , ]f x y z w Ax By Cz Dw E Z x y z w= + + + + ∈  

such that, at least one non-constant coefficient is 

relatively prime to M. We will assume, without 

loss of generality, that gcd(D, M)=1. Multiplying 

f(x, y, z, w) by D
-1 modulo M we obtain the new 

polynomial:
  

  ( , , , ) ( , , , )Mf x y z w f x y z w ax by cz w e= = + + + +  

which has the same roots as f(x, y, z, w) modulo M. We 

will look for all small roots of fM(x, y, z, w)  modulo M. 

That is, given bounds X, Y, Z and W, we wish to find all 

(x0, y0, z0, w0)∈ Z
4
 such that: |x0|< X, |y0|<Y, |z0|<Z, |w0|<W 

and fM(x0, y0, z0, w0)≡(mod M). In the following, let (x0, y0, 

z0, w0) be any such root. We will try to find the 

maximal bounds that lattice basis reduction techniques 

(based on Coppersmith’s techniques) can allow.  
For some positive integer m, to be determined later, 

we consider the set of polynomials gi.j.k= x
i
y

j
z

k
M 

m-1
f 

k
 

M(x, y, z, w), for non-negative integer values of i, j, k, l. 
Notice that, for any values of i, j≥ 0 and 0≤ k≤ m, we 
have gi, j, k, l(x0, y0, z0, w0)≡0(mod M 

m
). We construct a 

lattice basis for a lattice L using the coefficients of gi, j, 

k,l (xX, yY, zZ, wW) for certain values of i, j, k and l. In 
particular, for each 0≤ d≤ m we use all values 0≤ l≤ d 
along with each combination of i, j and k. Table 1 
shows the corresponding matrix. This lattice gives 
w=m(m+1) (m+2) (m+3)/24 linearly independent vectors 
which form the lattice basis for L. The structure of the 
basis matrix is shown in Table 1 (lower right-hand side 
of the table). Each row in the basis matrix is the 
coefficient vector of one of the gi, j, k, l(xX, yY, zZ, wW). 
The ordering of the columns ensures that the basis 
matrix is triangular and that the lattice is full 
dimensional (with dimension w). Since, the matrix is 
triangular, we can easily compute the determinant/ 
volume of the lattice (given by the absolute of the 
determinant of the basis matrix) yielding 
det(L)=(XYZWM

4
)

m(m+1) (m+2) (m+3) (m+4)/120=(XYZWM
4
)

w(m+4)/5, 
which simplifies to det(L)<M

m(w-2)/(2(w-1(w-2)/4
w

(w-2)/2
). 

Applying the LLL-algorithm to the above lattice we 
can find four linearly independent vectors in L whose 

sizes are bounded by 2
(w-1)/4

(det(L)
1/(w-2)

) where w is the 
lattice dimension defined above. Each of these vectors, 
being elements of L, correspond to a polynomial of the 
form h(xX, yY, zZ, wW) such that determinant into this 
bound, and rearranging, for m and w large enough, 
XYZW<M. Whenever this equation is satisfied we can 
only guarantee that four linearly independent 
polynomials having the integer root (x0, y0, z0, w0) can 
be found. If the polynomials are further algebraically 
independent, we can use resultants to remove 
variables. A similar proof of corollary 3.2 and 3.3 can 
be given directly from Theorem 1. 

Table 1. The matrix spanned by gi, j, k, l where “*” represents the 
non-zero entry. 

 i, j, k, l - X Y Z W X2 XY Y2 XZ YZ XW YW... 

              

D=0 0,0,0,0 Mm            

D=1 1,0,0,0  MmX           

 0,1,0,0   MmY          

 0,0,1,0    MmZ         

 0,0,0,1 * * * * Mm-1 W        

D=2 2,0,0,0      MmX2       

 1,1,0,0       MmXY      

 0,2,0,0        MmY2     

 1,0,1,0         MmXZ    

 0,1,1,0          MmYZ   

 1,0,0,1  *  *  * *    Mm-1XW  

 0,1,0,1   *     * *  * Mm-1YW 

 ..........             

 

For a given linear trivariate polynomial f(x, y, z) with 

desired solution (x0, y0, z0) we can simply consider the 

linear trivariate polynomial g(x, y, z, w)= f(x, y)+z+w and 

for bivariate polynomial f(x, y) with desired solution (x0, 

y0), the equation can be considered as: 

                    
( , , , ) ( , ) ( , )g x y z w f x y f z w= +  

That’s why the proof is omitted here. 

3.3.1. Security Parameters 

From Equation 14:

  
   

2
[ ( 1) ( 1) ( 1)] [ (

1) ( 1) ( 1)] ( 1)

1 0

3

p q r p r q q r p p q r p q r r

q q p r r p r p q q p p q r p q

q r p r p q r

e d d d e d d k d d k d d k e d k k k

k d k k k k d k k k k k k k N k k

k k k k k k k

+ − + − + − + − −

+ + − − + + − − + − −

− − + + + − =

 

This equation can be rewritten as: 

   

3 2

0

[ ( 1) ( 1) ( 1)] [ (

1) ( 1) ( 1)] ( 1)

0

p q r p r q q r p p q r p q r r

q q p r r p r p q q p p q r

m

e d d d e d d k d d k d d k e d k k k

k d k k k k d k k k k k k k N

k k

+ − + − + − + −

− + + − − + + − − + − − +

+ =

 

In this equation dp, dq, dr, kp, kq, kr, k0
 
are variables. Km 

can be found by exhaustive search. Lattice attack can 

(21) 

(22) 

(16) 

(17) 

(18) 

(19) 

(20) 
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be mounted on this equation by several ways. This 
equation can be viewed as a linear equation in four 
variable modulo e

3, as a linear equation in three 
variables mod e

2, as a linear equation in two variables 
mod e, as a linear equation in four variables modulo N. 
Considering the Equation 22 modulo e3, the equation in 
four variables is obtained. The equation is: f(x, y, z, w)= 

e
2
x+ey-(N-1)z+w+Km of which we can find the roots 

according to Theorem 1. Using the bounds: 

( 1) ( 1) ( 1)p q q p p q rX d d k d d k d d kr r= − + − + −  

( 1) ( 1) ( 1)p q r r q q p r r p r p q q pY d k k k k d k k k k d k k k k= − − + + − − + + − − +

 
p q rZ k k k=  

0W k=  

We can obtain the following condition with which the 

roots of this equation can be found: 

                            11 5 (8 / 3)d en n n m+ < +      

Considering the Equation 22 modulo e2, the equation in 
three variables is obtained, i.e., f(x, y, z)= ex+(N-1) 

y+z+Km. Using corollary 3.2 we can find the roots of 
this equation. Using the bounds:  

( 1) ( 1) ( 1)p q q q p p r p q q pX d k k k k d k k k k d k k k kr r r r= − − + + − − + + − − +
 

p q rY k k k=  

0Z k=  

 We can find the following condition: 

                            8 5 (7 / 3)d en n n m+ < +     

The Equation f(x, y)=(N-1)x+y+km is obtained 

considering the Equation 22 modulo e. Using corollary 

3.3 and bounds X=kpkqkr, Y=k0 we can find the 

following condition to solve the equation for the roots: 

                           5 4 (5 / 3)d en n n m+ < +      

lastly we consider Equation 22 modulo N and get the 
equation f(x, y, z, w)= e

3
x+e

2
y+ez+w+Km, we can solve the 

equation  by using bounds: 
 
p q rX d d d=  

( 1) ( 1) ( 1)p r q q r p p q rY d d k d d k d d k= − + − + −  

( 1) ( 1) ( 1)p q r q q p r r p r p q q pZ d k k k k d k k k k d k k k kr= − − + + − − + + − − +

 
0p q rW k k k k= +  

We find the following enabling condition: 

                             12 6 3d en n n m+ < +  

Small private exponent attack: Rearranging Equation 

22: 

  

2
( ) 1 ( )p q r p r q r p q p q r p q re e d d d ed d ed d ed d d d d k k k Nϕ− − − + + + = +  

The small private exponent attacks on RSA present a 

more serious danger. We consider Boneh and Durfee’s 

[1] lattice-based attack. Let ᴧ=N-φ(N)=ᴧm+ᴧ0 and M=N-

ᴧm, where ᴧm represents the m MSBs of ᴧ and ᴧ0 

represents the remaining bits. The Equation 27 can be 

rewritten as ed0=1+k0(M-ᴧ0). Assuming that M is known 

(i.e., ᴧm is known) and considering this equation as 

modulo e, the lattice based small private exponent 

attacks involve trying to find all integer pairs (x0, y0) 

such that |x0|<X, |y0|<Y and f(x0, y0)= x0(M- y0)≡ 1 mod e, 

where the bounds X and Y are defined so that, X= |k0|, 

Y= |ᴧ0|. Once we know ᴧ0 we also know φ(N) which then 

allows us to invert e modulo φ(N); which breaks the 

system. Since, log(e)=ne the bounds become 

log(X)=3ne+3nd-n and log(Y)=(n/2-m). Using corollary 

3.3, we find that a sufficient condition for the attack to 

succeed, is given by: 

                               3 2 2d en n n/ m+ < +        

All the above attacks are not effective, because they 

results in number of equations less than the unknown 

parameters. 

Baby-Step Giant-Step Attack [13] has the 

complexity O(min{ 0.5 0.5 0.5
, ,p q rd d d })  Due to this reason 

nd≥160 bits: 

2dn m≥   

3.3.2. Security Summary 

Table 2 shows the summary of the various parameters 

we have discussed. Using these conditions, we have 

taken ne=170 bits and nd=280 bits. 

As the inequalities from Equations 23 to 26 can be 

used to find the solution for X, Y and Z, but these 

values are not sufficient to retrieve any valuable 

information because of the three unknown variables in 

all the situation. So, all the inequalities except baby 

step giant step, in Table 2 causes a real attack on the 

system, one can use lower parameters than we have 

used here. Also, this scheme can be combined with the 

scheme [12] or [10], which will result in better offline 

encryption computations.  

Table 2. Security Parameter. 

Method Inequality 

Mod e
3
 11nd+5ne>(8/3)n+m

 

Mod e
2
 8nd+5ne>(7/3)n+m 

Mod e 5nd+4ne>(5/3)n+m 

Mod N 12nd+6ne>3n+m 

Small d 3nd+2ne>n/2+m 

Baby-step giant-step nd>2m 

 

Encryption Complexity as shown in section 2: 

2 2 2
(3 2)( ) ( ) 508 1024 ( )e forn n n o n itsn b− + + =  

Decryption Complexity as shown in section 2:  

2 2 2 2 2
3 ((3 ) 9 3)) 16 3 ( ) 285 ( )* * s 2 n / n / n / o n n o n− + + + = +

 

4. Comparison 

Table 3 gives the encryption complexity comparison of 

the proposed scheme with the other variants of RSA 

cryptosystem. Here, n=1024bits. 

(23) 

(24) 

(25) 

(26) 

(28) 

(29) 

(27) 
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Table 3. Encryption Complexity. 

Variant Encryption Complexity 

RSA ne=16 bits 46 n2 

RSA CRT ne=16 bits 46 n2 

MultiPrime RSA ne=16 bits 46 n2 

Rebalanced RSA ne≈1024 bits
 

3070n2 

RPrime RSA ne≈1024 bits
 

3070n2 

Rebalanced CRT Variant ne=170 bits 508 n2
 

Proposed Scheme ne=170 bits 508 n2
 

Table 4 gives the decryption complexity comparison 

of the proposed scheme with the other variants of RSA 

cryptosystem. Here, n=1024bits. 

Table 4. Decryption Complexity. 

RSA Variants Decryption Complexity 

RSA nd ≈ 1024 bits
 

3073 n2 

RSA with CRT nd ≈ 512 bits
 

1543 n2 

MultiPrime RSA nd ≈ 342 bits
 

347 n2 

Rebalanced RSA nd = 160 bits
 

242 n2 

RPrime RSA nd = 160 bits
 

165 n2 

Rebalanced RSA CRT Variant nd = 358 bits
 

536 n2 

Proposed Scheme nd = 280 bits
 

285 n2 

Figure 8 shows its corresponding values graphically. 
Horizontal rule is showing the different RSA variants 
and vertical rule is showing the theoretical 
complexities in n2. Usage of three primes increase the 
computational speed at decryption side as well as it 
increases the security. 

Complexity Comparison    
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Figure 8. Comparison of Encryption and decryption complexities. 

5. Implementation 
 

To demonstrate the feasibility of the proposed scheme 

the key generation algorithm is implemented. A 

personal computer with 2.3GHz CPU and 5GB RAM 

was used. For the implementation NTL [9] with GMP 

using Cygwin tools on Windows operating system was 

used. The algorithm was run 100 times, it took 101ms. 

The average number of iteration for each loop of p, q, r 

was 275. The algorithm was implemented with (ne, nd)= 

(170, 280). 
Other RSA variants (RSA CRT, Multiprime RSA, 

rebalanced RSA, Rprime, rebalanced RSA scheme B) 
were also, implemented with the same platform for 
comparison purpose. The Tabular comparison is shown 
in Table 5 and the graphical comparison as shown in 
Figure 9. 

Table 5. Implementation Time in ms. 

RSA Variant 
Key Generation time 

(ms) 

Encryption time 

(ms) 

Decryption time 

(ms) 

RSA CRT 212.7 0.1 1.25 

MultiPrime RSA 77.3 0.1 0.62 

Rebalanced RSA 334.4 3.7 0.46 

RPrime 215.28 3.9 0.31 

Rebalanced RSA Variant 256.6 0.78 0.84 

Proposed Scheme 101.1 0.78 0.47 

Comparison (Simulation)    
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Figure 9. Run time comparison of the RSA variants. 

It is clearly shown in the graph Figure 9 that the 

Encryption time is negligible in case of first two RSA 

variants but it rapidly increases with rebalanced RSA 

and Rprime RSA, rebalanced RSA variant further 

decreases the encryption value to balance both of these 

factors, i.e., encryption time and decryption time.  

Our scheme further decreases this time maintaining 

the balancing of both the sides of encryption and 

decryption. Decryption time is decreased by a factor of 

1.3, maintaining the balancing of encryption and 

decryption times. Due to the use of Multiprime 

features (p, q, r), the key generation time is also 

decreased in this case. It is decreased approximately by 

a factor of 2.39 from the previous scheme (i.e., 

rebalanced RSA variant). 
In this implementation, n=1022, np=340, nq=341, 

nr=341, ne=170, ndp=280, ndq=280, ndr=280. 

The values used were: 

N=280967853095070254706764960575504099422757225004143

521706374022156941435793786267924692751138052785470

771733871827739548487951029690577602868808124559645

855323676452928983379222425415787973352866692115900

329300970280093728572169185541766347341255337366332

193284337203392985806304536892507804035800547500780

73. 

p=2217769017617141570968873525199082710323699517191641

428798838230355235329459447519373744346762380600277. 

q=3377527228225167705896407324122069317481048609729744

203467634594438966967492904453345569889998023825207. 

r=3750951615642400331956272776459062027394472254915407

605573449628944817392012190806247785104393005100307. 

e=137949903864147849064762863774768120129542029814584. 

6. Conclusions 

As many applications have the requirement to balance 

both the encryption and decryption sides, e.g., both 

sender and receiver are having constrained resources. 

rebalanced RSA CRT variant balances both the 

encryption and decryption sides. Our scheme further 

improves the decryption side roughly by a factor of 2 

still maintaining the same encryption speed.  
Our scheme has the proportion of encryption cost 

and decryption cost is about 1.6. We can get a higher 
and lower proportion by adjusting the security 
parameter

 
(ne, nd). As the Multiprime RSA variant has 

been already an active variant of RSA, so our scheme 
is applicable everywhere in the environments where 
this proportion 1.6 is needed. Our scheme is feasible in 
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any RSA embedded protocol that are used in the 
current environment, such as off-line generator, online 
proxy generators and so-on. 
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