
The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015 589

An Integrated Approach for Measuring Semantic

Similarity between Words and Sentences using

Web Search Engine

 Kavitha Adhikesavan

Manonmaniam Sundaranor University, India

Abstract: Semantic similarity measures play vital roles in Information Retrieval (IR) and Natural Language Processing

(NLP). Despite the usefulness of semantic similarity measures in various applications, strongly measuring semantic similarity

between two words remains a challenging task. Here, three semantic similarity measures have been proposed, that uses the

information available on the web to measure similarity between words and sentences. The proposed method exploits page

counts and text snippets returned by a web search engine. We develop indirect associations of words, in addition to direct for

estimating their similarity. Evaluation results on different data sets shows that our methods outperform several competing

methods.

 Keywords: Semantic similarity, web search engine, higher order association mining, support vector machine.

Received October 29, 2012; accepted February 27, 2013; published online September 4, 2014

1. Introduction

Similarity is a complex concept which has been widely
discussed in the linguistic, philosophical and theory
communities [3]. An effective method to compute the
similarity between short texts or sentences has many
applications in Natural Language Processing (NLP)
and related areas such as Information Retrieval (IR)
and text filtering. For example, in web page retrieval,
text similarity has proven to be one of the best
techniques for improving retrieval effectiveness and in
image retrieval from the web [3] the use of short text
surrounding the images can achieve a higher retrieval
precision than the use of the whole document in which
the image is embedded. The use of text similarity is
valuable for relevance feedback and text
categorization, text summarization, word sense
disambiguation, methods for automatic evaluation of
machine translation, evaluation of text coherence and
schema matching in databases.

One of the major drawbacks of most of the existing
methods is the domain dependency: Once, the
similarity method has designed for a specific
application domain, it cannot be adapted easily to other
domains.

To overcome this drawback, we propose web-based
semantic similarity measure that is fully automatic and
independent of the domain in applications requiring
small text or sentence similarity measure. The
computing of text similarity can be viewed as generic
component for the research community dealing with
text-related knowledge representation and discovery.
web-based similarity measures can be broadly divided
into three categories such as first one, measures that
rely only on the number of the returned hits, second the
measures that download a number of the top ranked

documents and then apply text processing techniques
and finally measures that combine both approaches.

We have used three approaches: First, higher order
association mining has been proposed to acquire
similarity between words and sentences. Second,
measure that uses classification approach to robustly
calculate semantic similarity between two given words
or sentences. Third, measuring semantic similarity
between words and sentences using Clustering
Approach.

2. Related Works

Semantic similarity measures have been used in
semantic web related applications such as automatic
annotation of web pages, community mining and
keyword extraction for inter-entity relation
representation. There is an extensive literature on
measuring the similarity between long texts or
documents [1, 4, 10] but there is less work related to
the measurement of similarity between sentences or
short texts. Related work can roughly be classified into
four major categories: Word co-occurrence/vector-
based document model methods, corpus based
methods, hybrid methods and descriptive feature
information based methods.

The vector based document model methods are
commonly used in IR systems, where the document
most relevant to an input query is determined by
representing a document as a word vector and then
queries are matched to similar documents in the
document database via a similarity metric [14]. The
Latent Semantic Analysis (LSA) [4, 7] and the
Hyperspace Analogues to Language (HAL) model [2]
are two well-known methods in corpus-based
similarity. LSA analyses a large corpus of natural

590 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

language text and generates a representation that
captures the similarity of words and text passages [5].
The dimension of the word by context matrix is limited
to several hundreds because of the computational limit
of Singular Value Decomposition (SVD). As a result
the vector is fixed and the representation of a short text
is very sparse. The HAL method uses lexical co-
occurrence to produce a high-dimensional semantic
space. The author’s experimental results showed that
HAL was not as promising as LSA in the computation
of similarity for short texts.

Hybrid methods have been used for both corpus-
based measures [16] and knowledge-based measures
[18] of word semantic similarity to determine the text
similarity. Mihalcea et al. [11] suggest a combined
method for measuring the semantic similarity of texts
by exploiting the information that can be drawn from
the similarity of the component words. Specifically,
they use two corpus-based measures, Point wise
Mutual Information and IR (PMI-IR) and LSA [5] and
six knowledge-based measures [3, 6, 7, 9, 13, 17] of
word semantic similarity and combine the results to
show how these measures can be used to derive a text-
to-text similarity metric. They evaluate their method on
a paraphrase recognition task. The main drawback of
this method is that it computes the similarity of words
from eight different methods, which is not
computationally efficient.

Li et al. [8] proposed another hybrid method that
derives text similarity from semantic and syntactic
information contained in the compared texts. Their
proposed method dynamically forms a joint word set
only using all the distinct words in the pairs of
sentences. For each sentence, a raw semantic vector is
derived with the assistance of the word net lexical
database [12]. A word order vector is formed for each
sentence, again using information from the lexical
database. Since, each word in a sentence contributes
differently to the meaning of the whole sentence, the
significance of a word is weighted by using
information content derived from a corpus. By
combining the raw semantic vector with information
content from the corpus, a semantic vector is obtained
for each of the two sentences. Semantic similarity is
computed based on the two semantic vectors. An order
similarity is calculated using the two order vectors.
Finally, combining semantic similarity and order
similarity derives the sentence similarity.

Feature-based methods try to represent a sentence
using a set of predefined features. Similarity between
two texts is obtained through a trained classifier. But,
finding effective features and obtaining values for
these features from sentences make this category of
methods more impractical. Sahami et al. measured
semantic similarity between two queries using snippets
returned for those queries by a search engine. For each
query, they collect snippets from a search engine and
represent each snippet as a TF-IDF-weighted term
vector. Each vector is L2 normalized and the centroid
of the set of vectors is computed. Semantic similarity
between two queries is then defined as the inner

product between the corresponding centroid vectors.
They are not compared their similarity measure with
taxonomy-based similarity measures.

Leacock proposed a model combining local context
and Word Net similarity for word sense identification
[6]. Another approach of double-checking model using
text snippets returned by a web search engine to
compute semantic similarity between words. For two
words P and Q, they collect snippets for each word
from a web search engine. Then, they count the
occurrences of word P in the snippets for word Q and
the occurrences of word Q in the snippets for word P.
These values are combined nonlinearly to compute the
similarity between P and Q. This method depends
heavily on the search engine’s ranking algorithm.
Although, two words P and Q might be very similar,
there is no reason to believe that one can find Q in the
snippets for P, or vice versa. This observation is
confirmed by the experimental results in their paper
which reports zero similarity scores for many pairs of
words in the Miller et al. [12] dataset. Siddiqui et al.
[15] developed a method to retrieve the term which are
similar using corpus. A corpus is created by collecting
information from internet.

3. Proposed Method

The study of semantic similarity between words has
long been an integral part of IR and NLP. Semantic
similarity between entities changes over time and
across domains. An automatic method has been
proposed to measure semantic similarity between
words or sentences using web search engines. Because
of the vastly numerous documents and the high growth
rate of the web, it is difficult to analyse each document
separately and directly. Web search engines provide an
efficient interface to this vast information.

3.1. Outline

Three semantic similarity measures have been

proposed here. First method uses association rule

mining to calculate semantic similarity between words

and sentences. Second method uses Support Vector

Machine (SVM) and integrates both page counts and

snippets to measure semantic similarity between a

given pair of words and sentences. Third method uses

sequential clustering algorithm to measure semantic

similarity between words and sentences. An automatic

lexico-syntactic pattern extraction algorithm has been

explained. The patterns extracted have been ranked by

our algorithm according to their ability to express

semantic similarity.

3.2. Preprocessing the Documents from Google

The snippets downloaded from Google directly are not

possible for there are a lot of semantic-unrelated words

and word in different form will bring in negative

impact in our calculation. Therefore, the following

steps are to agreement with the snippets:

An Integrated Approach for Measuring Semantic Similarity between Words and Sentences ... 591

1. Delete stop words. Words like ‘a’, ‘the’, ‘of’ and so
on called stop words are meaningless for semantic
analysis.

2. Use statistical work on the snippets from Google,
words in different form will bring in disadvantage
influence. Some sort of an algorithm has to be used
to void it. Stemmer Algorithm 3 gives us critical
help to deal the text.

3.3. About Term Frequency-Inverse Document

Frequency (TF-IDF)

The TF-IDF is a weight often used in IR and text
mining. This weight is a statistical measure used to
evaluate how important a word is to a document in a
collection or corpus. The importance increases
proportionally to the number of times a word appears
in the document but is offset by the frequency of the
word in the corpus.

4. Using Association Rule Mining

4.1. Higher Order Association Mining

A novel approach called higher order association
mining is proposed to mine word similarity. Exploit
indirect associations of words, in addition to direct
ones for estimating their similarity. If word A co-
occurs with word B, we say A and B share a first order
association between them. If A co-occurs with B in
some documents and B with C in some others, then A
and C are said to share a second order co-occurrence
via B. Higher orders of co-occurrence may similarly be
defined as in Figure 1. An algorithm has been
presented for mining higher order co-occurrences. A
weighted linear model is used to combine the
contribution of these higher orders into a word
similarity model. This algorithm is used for mining
higher order associations between words. The strengths
of these associations are combined to yield an estimate
of word similarity.

a) Words A, B in

 document 1.

b) Words A, B, C share

 documents 1 and 2.

c) Words A, B, C, D share

 documents 1 , 2 and 3.

d) Co-occurrence order.

e) Words Co-occurrence weighted

 graph.

Figure 1. Graphical representation of higher order co-occurrences.

The applicability of matrix operations is explored to
directly compute the strengths of higher order
associations. First approach, start by computing a first

order co-occurrence matrix. For |W| words in the
feature set, this is a |W|×|W| matrix which has a value 1
in the i, jth element if word i co-occurs with word j in at
least one document. For all pairs of words that do not
co-occur in any document, the corresponding element
in the matrix is 0. The diagonal values are set to zero
since we are not interested in trivial co-occurrence of a
word with itself. The first-order co occurrence matrix
is calculated using the following steps:

• Step 1: The term document matrix A is multiplied

with its transpose AT to obtain the |W|×|W| matrix T0.

• Step 2: All non-zero values of T0 are set to 1 and the

diagonal values are set to zero to yield a binary first

order co-occurrence matrix T.

• Step 3: The second order co-occurrence matrix T2

can be calculated by squaring T. The third order

matrix T2 is given as T3.

Other higher order co-occurrence matrices can be
calculated similarly. Before a matrix is reduced to
binary, the value of i, jth element is the number of co-
occurrence paths between words i and j. The strength
of a first order co-occurrence path is the number of
documents in which two words co-occur. The strength
of a second order co-occurrence path between words a
and b is the number of distinct words c such that a co-
occurs with c and b co-occurs with c. Implementing the
above algorithm revealed a critical shortcoming d and
b. But in addition we also need to ensure that d is not
the same as a and c is not the same as b and this is not
taken care of. Thus, the strengths of third order
associations were over-estimated by the algorithm. To
address this limitation a correction is needed on this
algorithm. The brute force approach of explicitly
counting terms that satisfy the above-mentioned
constraint instead of blindly cubing the binary matrix
T, turned out to be computationally expensive. A
technique has been presented below that rewrites this
procedure as an equivalent matrix manipulation, which
can be implemented efficiently in matrix processing
environments. Let T be the matrix of first order
connections with diagonal elements set to zero. For
third-order co-occurrences, paths of type i-j-k-l for all i
and l has been searched to enumerate. Now, Equation
1:

 (T3) jl = ∑j,k Tij Tjk Tkl

Is the total number of such paths, including paths of

type i-j-i-l and i-l-k-l, which wish to exclude. Let ni be

the number of paths of type i-j-i. This is equal to the

total number of paths originating from i. Evaluate ni by

summing the rows (or columns) of T as in Equation 2.

 ni=∑jTij

Now, the number of paths of type i-j-i-l is niTil and for
type i-l-k-l the count is niTil. If Til ≠0, the path i-j-i-j have
been encountered twice, so the total number of invalid
paths is (ni+nl-1)Tij. Equivalently, if construct a
discount matrix D whose elements Dil=(ni+n1-1), then
the number of invalid paths between words i and j is

f (A, C) f(C, B)

C

A B

D C

f(C, D)

f(A, C) f(B, D)

f(A ,B) 1st order path

 3rd order Path

 2nd order path

C

A B

D C

Doc 1

A
,

C

Doc 2

C
,

B

Doc 1

A
,

B

Doc 1

A
,

C

Doc 2

C
,

D

Doc 3

D
,

B

(1)

(2)

592 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

given by the i, j
th

 element of the point wise product
D*T. The following procedure has been used:

1. Calculate T.

2. Enumerate and discount the invalid paths as above.

T3- D*T is the revised third order matrix.

4.2. Modelling Word Similarities

Once higher order co-occurrences are mined, we need

to translate them into a measure of similarity between

words. Intuition suggests that very high order co-

occurrences do not really indicate similarity. In a study

of higher order associations in the context of Latent

Semantic Indexing (LSI), the authors report

experimental evidence to confirm that associations

beyond an order of 3 have a very weak influence on

similarity modelled by LSI. In our word similarity

model, which ignore the effects of orders higher than

3.

In the last section, the strength of a higher order

association has been used between two terms as the

number of co-occurrence paths between those terms.

Let first-order(a, b), second-order(a, b) and third-order(a,

b) denote the strengths of first, second and third order

associations between terms a and b respectively. The

similarity between terms a and b can be expressed as a

weighted linear combination of the strengths of the

first three orders of co-occurrence as in Equation 3.

 Similarity(a, b)= α first-order(a, b)+β second-order

 (a, b)+γ third-order(a, b)

Note that, higher the order of association, the larger the

number of co-occurrence paths (Since, Tn
ij >T

m
ij , if n>m

and if for all Tij ≠0, Tij ≥ 1, which is true in our case),

and hence, the greater the strength of association.

Thus, to make α, β and γ comparable to each other, we

need to normalize first-order(a, b), second-order(a, b) and

third-order (a, b) to values in [0, 1]. In our

implementation, this can be achieved by dividing each

of these values by the maximum value between any

pair of words corresponding to that order.

4.3. Using Classification Approach

The proposed method integrates both page counts and

snippets to measure semantic similarity between a

given pair of words. Four similarity scores have been

defined using page counts. Then, an automatic lexico-

syntactic pattern extraction algorithm has been

explained. The patterns extracted have been ranked by

our algorithm according to their ability to express

semantic similarity. Two-class SVMs have been used

to find the optimal combination of page counts-based

similarity scores and top-ranking patterns. The SVM is

trained to classify synonymous word-pairs and non-

synonymous word-pairs. Select synonymous word-

pairs from Wordnet synsets. Non-synonymous word-

pairs are automatically created using a random

shuffling technique. Convert the output of SVM into a

posterior probability. The semantic similarity between

two words has been used as the posterior probability

that they belong to the synonymous-words class.

4.4. Page Count-Based Similarity Scores

Page counts for the query A and B, can be considered

as an approximation of co-occurrence of two words (or

multi word phrases) A and B on the web. However,

page counts for the query A and B alone do not

accurately express semantic similarity. One must

consider the page counts not just for the query A and B,

but also for the individual words A and B to assess

semantic similarity between A and B. Four popular co-

occurrence measures; jaccard, overlap (simpson), dice

and Point-wise Mutual Information (PMI) have been

modified, to compute semantic similarity using page

counts. For the remainder of this paper, the notation

H(A) has been used to denote the page counts for the

query A in a search engine. The WebJaccard

coefficient between words (or multi-word phrases) A

and A, WebJaccard (A, B) is defined as in Equation 4.

 1

2 2
1 1 1

| |
(,) = (,) =

| |
j

n
k

n n n
k k k

A B wkqwkj
sim q d J A B

A B wkq wkj wkqwkj

=

= = =

∑∩
≅

∑ ∑ ∑∪ + −

Therein, A∩B denotes the conjunction query A and B.

Given the scale and noise in web data, it is in Equation

5.

 1

2 2
1 1 1

| |
(,) = (,) =

| |

n
k

j
n n n
k k k

A B wkqwkj
sim q d J A B

A B wkq wkj wkqwkj

=

= = =

∑∩
≅

∑ ∑ ∑∪ + −

Possible those two words may appear on some pages

purely accidentally. In order to, reduce the adverse

effects attributable to random co-occurrences, we set

the WebJaccard coefficient to zero if the page count

for the query A∩B is less than a threshold c5.

Similarly, we define Web Overlap, Web Overlap (A, B)

as in Equation 6.

 1

2 2
1 1

| |
(,) = (,)=

(| |, | |) (,)

n
k

j
n n
k k

A B wkqwkj
sim q d O A B

min A B min wkq wkj

=

= =

∑∩
≅

∑ ∑

Web Overlap: Is a natural modification to the overlap

(Simpson) coefficient. We define the web dice

coefficient as a variant of the dice coefficient. Web

Dice (A, B) is defined as in Equation 7.

[]1

2
1

| |
(,) = (,) = (0,1)

| | (1) | | (1)

n
k

j
n
k

A B wkqwkj
sim q d D A B

A B wkq
α

α α α

=

=

∑∩
≅ ∈

∑+ −α + −

We define WebPMI as a variant form of PMI using

page counts in Equation 8.

0 ()

()
()

2
() ()

 if H A B c

H A B
W ebPMI A , B =

N
log otherwise

H A H B

N

∩ ≤

∩ 
 
 
 
 







Here, N is the number of documents indexed by the

search engine. Probabilities in Equation 5 are estimated

(3)

(4)

(5)

(6)

(7)

(8)

An Integrated Approach for Measuring Semantic Similarity between Words and Sentences ... 593

according to the maximum likelihood principle. To

calculate PMI accurately using Equation 5, N must be

known, the number of documents indexed by the

search engine. Although, estimating the number of

documents indexed by a search engine is an interesting

task itself, it is beyond the scope of this work.

4.5. Extracting Patterns from Snippets

Text snippets are returned by search engines alongside

with the search results. They provide valuable

information regarding the local context of a word.

lexico-syntactic patterns has been extracted to indicate

various aspects of semantic similarity. Our pattern

extraction algorithm is illustrated below.

Algorithm 1: Extracting patterns from snippets.

Comment: Given a set S of word-pairs, extract patterns.

for each word-pair(A, B) Є S

 do D ←GetSnippets(“A B”)

 N ←null

 for each snippet dЄ D

 do N ← N GetNgrams(d, A, B)

 Pats ← CountFreq(N)

return (Pats)

Given a set S of synonymous word-pairs, GetSnippets

function returns a list of text snippets for the query “A”

and “B” for each word-pair A, B in S. For each snippet

found, the two words in the query are replaced by two

wildcards. Let us assume these wildcards to be X and Y.

For each snippet d in the set of snippets D returned by

GetSnippets, function GetNgrams extract word n-grams

for n= 2, 3, 4 and 5. N-grams is selected which contain

exactly one X and one Y. Finally, function Count Freq

counts the frequency of each pattern has been

extracted. The procedure described above yields a set

of patterns with their frequencies in text snippets

obtained from a search engine. It considers the words

that fall between X and Y as well as words that precede

X and succeeds Y.

Algorithm 2: GetFeatureVector (A, B).

Comment: Given a word-pair A, B get its feature vector F.

D ← GetSnippets (“A B”)

N ← null

for each snippet d Є D

 do N ← N + GetNgrams(d, A, B)

 SelPats ← SelectPatterns (N, GoodPats)

 PF ←Normalize (SelPats)

 F←[PF, WebJaccard, WebOverlap, WebDice, WebPMI]

return (F)

For each pair of words (A, B), a feature vector F has

been created as shown in Figure 4. First, query Google

for “A” and “B” and collect snippets. Then replace the

query words A and B with two wildcards X and Y,

respectively in each snippet. Function GetNgrams

extracts n-grams for n= 2, 3, 4 and 5 from the snippets.

Select n-grams having exactly one X and one Y are

used in the pattern extraction algorithm in Figure 3.

Assume the set of patterns selected based on their X
2

values in section 3.2 to be GoodPats. Then, the function

Select Patterns selects the n-grams from N which

appear in GoodPats. In normalize(SelPats), normalize the

count of each pat-tern by diving it from the total

number of counts of the observed patterns. This

function returns a vector of patterns where each

element is the normalized frequency of the

corresponding pattern in the snippets for the query “A”

“B”. Append similarity scores calculated using page

counts in section 3.2 to create the final feature vector F

for the word-pair (A, B). This procedure yields a 204

dimensional feature vector F. Feature vectors are

formed for all synonymous word-pairs as well as for

non-synonymous word-pairs. A two-class SVM is

trained with the labelled feature vectors. Once SVM

using synonymous and non- synonymous word pairs

have been trained, it can be used to compute the

semantic similarity between two given words. The

same method has been used to generate feature vectors

for training, feature vector F has been created for the

given pair of words (A’, B’), between which need to

measure the semantic similarity. The semantic

similarity SemSim (A’, B’) between A’ and B’ has been

defined as the posterior probability Prob(F’|

synonymous) that feature vector F’ belongs to the

synonymous-words (positive) class.

SemSim(A’, B’)= Prob(F’| synonymous)

Being a large-margin classifier, the output of an SVM

is the distance from the decision hyper-plane.

However, this is not a calibrated posterior probability.

Sigmoid function has been used to convert this

uncalibrated distance into a calibrated posterior

probability. Being a large-margin classifier, the output

of an SVM is the distance from the decision hyper-

plane. However, this is not a calibrated posterior

probability. Sigmoid functions have been used to

convert this uncalibrated distance into a calibrated

posterior probability.

4.6. Using Clustering Approach

4.6.1. Semantic Similarity between Words

In this approach, given two words, the semantic

similarity between two words is calculated using

sequential clustering algorithm. To represent the

numerous semantic relations that exist between two

words lexical patterns are extracted from snippets

retrieved from a web search engine. Then, the

extracted patterns are clustered to identify the

semantically related patterns. Using the pattern clusters

a feature vector is defined to represent two words and

the semantic similarity is computed by taking into

account the inter-cluster correlation.

4.6.2. Extracting Lexical Patterns

The relational model is used to compute semantic

similarity between two words, the numerous lexical

594 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

patterns are extracted from contexts in which those two

words appear. For this purpose, a pattern extraction

algorithm is proposed using snippets retrieved from a

web search engine. The proposed method requires no

language-dependent preprocessing such as part-of-

speech tagging or dependency parsing, which can be

both time consuming at web scale, and likely to

produce incorrect results because of the fragmented

and ill-formed snippets. Given two words a and b,

query a web search engine to download the snippets.

For a snippet S, retrieved for a word pair (a, b), the two

words a and b are replaced with two variables X and Y

respectively. All numeric values are replaced by D, a

marker for digits. All subsequences of words are

generated from S that satisfies all of the following

conditions:

1. A subsequence must contain exactly one occurrence

of each X and Y.

2. The maximum length of a subsequence is L words.

3. A subsequence is allowed to have gaps.

4. All negation contractions must be expanded in a

context.

4.6.3. Clustering Lexical Patterns

A semantic relation can be expressed using more than

one pattern. By grouping the semantically related

patterns, the model complexity in relational model can

be reduced. The distributional hypothesis is used to

find semantically related lexical patterns. The

distributional hypothesis states that words that occur in

the same context have similar meanings. If two lexical

patterns are similarly distributed over a set of word

pairs, then from the distributional hypothesis it follows

that the two patterns must be similar. A pattern p is

represented by a vector p in which the ith
element is the

frequency f(ai, bi, p) of p in a word pair (ai, bi). Given a

set P of patterns and a similarity threshold µ, the

sequential clustering algorithm returns clusters of

similar patterns. The patterns are sorted in the

descending order of their total occurrences in all word

pairs. The total occurrences of a pattern p is defined as

µ(p) in Equation 9.

(,)

() (, ,)
a b w

µ p f a b p
∈
∑=

Here, W is the set of word pairs. Then, a pattern pi is

taken from the ordered set P and finds the cluster, c* Є

C that is most similar to pi. Similarity between pi and

the cluster centroid cj is computed using cosine

similarity. The centroid vector cj of cluster cj is defined

as the vector sum of all pattern vectors for patterns in

that cluster as in Equation 10.

j
j

p c
c p

∈
∑=

If the maximum similarity exceeds the threshold µ, pi is
appended to C *Otherwise, a new cluster is formed and
{pi} is appended to it. After all patterns are clustered,

the (i, j) element of the inter-cluster correlation matrix ᴧ
is computed as the inner product between the centroid
vectors ci and cj of the corresponding clusters i and j.
The parameter µ determines the purity of the formed
clusters moreover, sorting the patterns by their total
word pair frequency prior to clustering ensures that the
final set of cluster contains the most common relations
in the dataset. The sequential clustering algorithm is
used to cluster the extracted patterns. The parameter µ
is set as follows. The value of theta is varied from 0 to
1 and used to cluster the extracted set of patterns. The
resultant set of clusters is used to represent a word pair
by a feature vector.

4.6.4. Computation of Semantic Similarity

The semantic similarity is computer using the Equation

11.

 Sim (a, b)= XT
ab σΛ

Where XT
ab is a feature vector representing the words a

and b. The vector σ represents synonymous word pairs

and Λ is the inter-cluster correlation matrix.

4.6.5. Semantic Similarity between Sentences

The steps for computing semantic similarity between

two sentences:

• Each sentence is partitioned into a list of tokens.

• Part-of-speech disambiguation (or tagging).

• Stemming words.

• Determine the most appropriate sense for every

word in a sentence.

• Compute the similarity of the sentences based on

the similarity of the pairs of words.

These steps are the same as described earlier in

classification approach. Finally the similarity of the

sentences if calculated based on the similarity of the

pair of words and the similarity of these word pair is

calculated using sequential clustering algorithm as

described in the earlier section.

5. Experimental Evaluation

The proposed semantic similarity measure has been

computed by comparing the similarity scores produced

by the proposed measure against Miller-Charles

benchmark dataset in Tables 1 and 2.

Table 1. Shows comparison of existing methods with the proposed
method.

Similarity Measure Correlation

Jiang and Conrath 0.695

Hirst St.onge 0.689

Leacock Chodorow 0.821

Lin 0.823

Resnik 0.775

Wu and Palmer 0.803

Our Similarity Measure1 0.831

Our Similarity Measure2 0.812

Our Similarity Measure3 0.772

(9)

(10)

(11)

An Integrated Approach for Measuring Semantic Similarity between Words and Sentences ... 595

Table 2. Human and computer rating of the miller-charles dataset.

Word Pair Web Jaccard Web Dice Sahami
Proposed

SemSim

Cord-Smile 0.102 0.108 0.09 0

Rooster-Voyage 0.011 0.012 0.197 0.017

Noon-String 0.126 0.133 0.082 0.018

Glass-Magician 0.117 0.124 0.143 0.18

Monk-Slave 0.181 0.191 0.095 0.375

Coast-Forest 0.862 0.87 0.248 0.405

Monk-Oracle 0.016 0.017 0.045 0.328

Lad-Wizard 0.072 0.077 0.149 0.22

Forest-Graveyard 0.068 0.072 0 0.547

Food-Rooster 0.012 0.013 0.075 0.06

Coast-Hill 0.963 0.965 0.293 0.874

Car-Journey 0.444 0.46 0.189 0.286

Crane-Implement 0.071 0.076 0.152 0.133

Brother-Lad 0.189 0.199 0.236 0.344

Bird-Crane 0.235 0.247 0.223 0.879

Bird-Cock 0.153 0.162 0.058 0.593

Food-Fruit 0.753 0.765 0.181 0.998

Brother-Monk 0.261 0.274 0.267 0.377

Asylum-Madhouse 0.024 0.025 0.212 0.773

Furnace-Stove 0.401 0.417 0.31 0.889

Magician-Wizard 0.295 0.309 0.233 1

Journey-Voyage 0.415 0.431 0.524 0.996

Coast-Shore 0.786 0.796 0.381 0.945

Implement-Tool 1 1 0.419 0.684

Boy-Lad 0.186 0.196 0.471 0.974

Automobile-Car 0.654 0.668 1 0.98

Midday-Noon 0.106 0.112 0.289 0.819

Gem-Jewel 0.295 0.309 0.211 0.686

Correlation 0.259 0.267 0.579 0.812

5.1. The Benchmark Dataset

The proposed method has been evaluated against

Miller-Charles dataset, a dataset of 30 word-pairs rated

by a group of 38 human subjects. The word pairs are

rated on a scale from 0 (no similarity) to 4 (perfect

synonymy). Miller-Charles data set is a subset of

Rubenstein-Goodenough’s original data set of 65 word

pairs. Although, Miller-Charles experiment was carried

out 25 years later than Rubenstein Goodenough’s, two

sets of ratings are highly correlated. Table 1 presents a

comparison of the proposed method to the Wordnet-

based methods. The proposed method out performs

simple Wordnet-based approaches such as Edge

counting and Information Content measures. Unlike

the Wordnet based methods, proposed method requires

no a hierarchical taxonomy of concepts or sense-

tagged definitions of words. Semantic similarity using

association, classification and clustering is shown in

Figures 2, 3 and 4.

C
o
rr

el
at

io
n
 C

o
ef

fi
ci

en
t

 Proposed Web Web Web Sahami Code

 Semsim 1 Dice Jacard Overlap

Figure 2. Semantic similarity using association rule mining.

C
o
rr

el
at

io
n
 C

o
ef

fi
ci

en
t

 Proposed Web Web Web Sahami Code

 Semsim 1 Dice Jacard Overlap

Figure 3. Semantic similarity using classification.

C
o
rr

el
at

io
n
 C

o
ef

fi
ci

en
t

 Proposed Web Web Web Sahami Code

 Semsim 1 Dice Jacard Overlap

Figure 4. Semantic similarity using clustering.

These results are significant because they are based

on a very simple algorithm that relies on assigning

relatedness scores to the senses of a target word and

the senses of its immediately adjacent neighbours.

While the disambiguation results could be improved

via the combination of various techniques, our focus is

on developing the proposed similarity measure of

relatedness as a general tool for NLP and artificial

intelligence.

6. Conclusions

The proposed method has been evaluated using Miller-
Charles dataset, a dataset of 30 word-pairs rated by a
group of 38 human subjects. A high correlation with
human ratings was found for semantic similarity on
this benchmark dataset. The proposed method has been
evaluated with human judgments and found it to be
reasonably correlated. These results are significant
because they are based on a very simple algorithm that
relies on assigning relatedness scores to the senses of a
target word and the senses of its immediately adjacent
neighbours. While the disambiguation results could be
improved via the combination of various techniques,
our focus is on developing the proposed similarity
measure of relatedness as a general tool for NLP and
artificial intelligence.

References

[1] Aguitman A., Menczer F., Roinestad H., and

Vespignani A., “Algorithmic Detection of

Semantic Similarity,” in Proceedings of the 14
th

International Conference on World Wide Web,

pp. 107-116, Chiba, Japan, 2005

[2] Burgess K. and Lund K., “Explorations in

Context Space: Words, Sentences, Discourse,”

Discourse Processes, vol. 25, no. 2-3, pp. 211-

257, 1998.

596 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

[3] Jiang J. and Conrath D., “Semantic Similarity

based on Corpus Statistics and Lexical

Taxonomy,” in Proceedings of the International

Conference Research on Computational

Linguistics, Taiwan, pp. 19-33, 1997.

[4] Landauer K. and Dumais T., “A Solution to

Plato’s Problem: The Latent Semantic Analysis

Theory of the Acquisition, Induction and

Representation of Knowledge,” Psychological

Review, vol. 104, no. 2, pp. 211-240, 1997.

[5] Landauer K., Foltz W., and Laham D.,

“Introduction to Latent Semantic Analysis,”

Discourse Processes, vol. 25, no. 2, pp. 259-284,

1998.

[6] Leacock C. and Chodorow M., “Combining

Local Context and WordNet Sense Similarity for

Word Sense Identification,” Word Net: An

Electronic Lexical Database, MIT Press,

Cambridge, USA, 1998.

[7] Lesk M., “Automatic Sense Disambiguation

using Machine Readable Dictionaries: How to

Tell a Pine Cone from an Ice Cream Cone,” in

Proceedings of the 5
th
 Annual International

Conference on Systems Documentation, New

York, USA, pp. 24-26, 1986.

[8] Li Y., McLean D., Bandar Z., O’Shea J., and

Crockett K., “Sentence Similarity based on

Semantic Nets and Corpus Statistics,” IEEE

Transactions on Knowledge and Data

Engineering, vol. 18, no. 8, pp. 1138-1149, 2006.

[9] Lin D., “An Information-theoretic Definition of

Similarity,” in Proceedings of the 5
th

International Conference Machine Learning,

Wisconsin, USA, pp. 296-304, 1998.

[10] Meadow T., Boyce R., and Kraft H., Text

Information Retrieval Systems, Academic Press,

California, USA, 2000.

[11] Mihalcea R., Corley C., and Strapparava C.,

“Corpus-based and Knowledge-based Measures

of Text Semantic Similarity,” in Proceedings of

the 21
st
 Conference of American Association for

Artificial Intelligence, Massachusetts, USA, pp.

775-780, 2006.

[12] Miller G., Beckwith R., Fellbaum C., Gross D.,

and Miller K., available at: http://wordnetcode.

princeton.edu/5papers.pdf, last visited 2012.

[13] Resnik P., “Using Information Content to

Evaluate Semantic Similarity in a Taxonomy,” in

Proceedings of the 14
th
 International Conference

on Artificial Intelligence, Montreal, Canada, pp.

448-453, 1995.

[14] Salton G. and Lesk M., “Computer Evaluation of

Indexing and Text Processing,” Prentice Hall,

New Jersey, USA, pp. 143-180, 1971.

[15] Siddiqui M., Fayoumi M., and Yusuf N., “A

Corpus based Approach to Find Similar

Keywords for Search Engine Marketing,” the

International Arab Journal of Information

Technology, vol. 10, no. 5, pp. 460-466, 2013.
[16] Turney P., “Mining the Web for Synonyms:

PMI-IR versus LSA on TOEFL,” in Proceedings

of the 12
th
 European Conference on Machine

Learning, Freiburg, Germany, pp. 491-502, 2001.

[17] Wu Z. and Palmer M., “Verb Semantics and

Lexical Selection,” in Proceedings of the 32
nd

Annual Meeting Association for Computational

Linguistics, New Mexico, USA, pp. 133-138,

1994.

Kavitha Adhikesavan has

completed her MCA degree from

University of Madras. She is

pursuing her PhD degree in MS

University, Tirunelveli. PhD degree

in computer science for her research

in data mining. she is the assistant

professor of the department of computer applications,

RMK engineering college, India.

