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Abstract: Semantic similarity measures play vital roles in Information Retrieval (IR) and Natural Language Processing 

(NLP). Despite the usefulness of semantic similarity measures in various applications, strongly measuring semantic similarity 

between two words remains a challenging task. Here, three semantic similarity measures have been proposed, that uses the 

information available on the web to measure similarity between words and sentences. The proposed method exploits page 

counts and text snippets returned by a web search engine. We develop indirect associations of words, in addition to direct for 

estimating their similarity. Evaluation results on different data sets shows that our methods outperform several competing 

methods. 
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1. Introduction 

Similarity is a complex concept which has been widely 
discussed in the linguistic, philosophical and theory 
communities [3]. An effective method to compute the 
similarity between short texts or sentences has many 
applications in Natural Language Processing (NLP) 
and related areas such as Information Retrieval (IR) 
and text filtering. For example, in web page retrieval, 
text similarity has proven to be one of the best 
techniques for improving retrieval effectiveness and in 
image retrieval from the web [3] the use of short text 
surrounding the images can achieve a higher retrieval 
precision than the use of the whole document in which 
the image is embedded. The use of text similarity is 
valuable for relevance feedback and text 
categorization, text summarization, word sense 
disambiguation, methods for automatic evaluation of 
machine translation, evaluation of text coherence and 
schema matching in databases. 

One of the major drawbacks of most of the existing 
methods is the domain dependency: Once, the 
similarity method has designed for a specific 
application domain, it cannot be adapted easily to other 
domains. 

To overcome this drawback, we propose web-based 
semantic similarity measure that is fully automatic and 
independent of the domain in applications requiring 
small text or sentence similarity measure. The 
computing of text similarity can be viewed as generic 
component for the research community dealing with 
text-related knowledge representation and discovery. 
web-based similarity measures can be broadly divided 
into three categories such as first one, measures that 
rely only on the number of the returned hits, second the 
measures that  download  a  number  of  the  top ranked  

documents and then apply text processing techniques 
and finally measures that combine both approaches. 

We have used three approaches: First, higher order 
association mining has been proposed to acquire 
similarity between words and sentences. Second, 
measure that uses classification approach to robustly 
calculate semantic similarity between two given words 
or sentences. Third, measuring semantic similarity 
between words and sentences using Clustering 
Approach. 

2. Related Works 

Semantic similarity measures have been used in 
semantic web related applications such as automatic 
annotation of web pages, community mining and 
keyword extraction for inter-entity relation 
representation. There is an extensive literature on 
measuring the similarity between long texts or 
documents [1, 4, 10] but there is less work related to 
the measurement of similarity between sentences or 
short texts. Related work can roughly be classified into 
four major categories: Word co-occurrence/vector-
based document model methods, corpus based 
methods, hybrid methods and descriptive feature 
information based methods.  

The vector based document model methods are 
commonly used in IR systems, where the document 
most relevant to an input query is determined by 
representing a document as a word vector and then 
queries are matched to similar documents in the 
document database via a similarity metric [14]. The 
Latent Semantic Analysis (LSA) [4, 7] and the 
Hyperspace Analogues to Language (HAL) model [2] 
are two well-known methods in corpus-based 
similarity. LSA analyses a large corpus of natural 
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language text and generates a representation that 
captures the similarity of words and text passages [5]. 
The dimension of the word by context matrix is limited 
to several hundreds because of the computational limit 
of Singular Value Decomposition (SVD). As a result 
the vector is fixed and the representation of a short text 
is very sparse. The HAL method uses lexical co-
occurrence to produce a high-dimensional semantic 
space. The author’s experimental results showed that 
HAL was not as promising as LSA in the computation 
of similarity for short texts.  

Hybrid methods have been used for both corpus-
based measures [16] and knowledge-based measures 
[18] of word semantic similarity to determine the text 
similarity. Mihalcea et al. [11] suggest a combined 
method for measuring the semantic similarity of texts 
by exploiting the information that can be drawn from 
the similarity of the component words. Specifically, 
they use two corpus-based measures, Point wise 
Mutual Information and IR (PMI-IR) and LSA [5] and 
six knowledge-based measures [3, 6, 7, 9, 13, 17] of 
word semantic similarity and combine the results to 
show how these measures can be used to derive a text-
to-text similarity metric. They evaluate their method on 
a paraphrase recognition task. The main drawback of 
this method is that it computes the similarity of words 
from eight different methods, which is not 
computationally efficient.  

Li et al. [8] proposed another hybrid method that 
derives text similarity from semantic and syntactic 
information contained in the compared texts. Their 
proposed method dynamically forms a joint word set 
only using all the distinct words in the pairs of 
sentences. For each sentence, a raw semantic vector is 
derived with the assistance of the word net lexical 
database [12]. A word order vector is formed for each 
sentence, again using information from the lexical 
database. Since, each word in a sentence contributes 
differently to the meaning of the whole sentence, the 
significance of a word is weighted by using 
information content derived from a corpus. By 
combining the raw semantic vector with information 
content from the corpus, a semantic vector is obtained 
for each of the two sentences. Semantic similarity is 
computed based on the two semantic vectors. An order 
similarity is calculated using the two order vectors. 
Finally, combining semantic similarity and order 
similarity derives the sentence similarity.  

Feature-based methods try to represent a sentence 
using a set of predefined features. Similarity between 
two texts is obtained through a trained classifier. But, 
finding effective features and obtaining values for 
these features from sentences make this category of 
methods more impractical. Sahami et al. measured 
semantic similarity between two queries using snippets 
returned for those queries by a search engine. For each 
query, they collect snippets from a search engine and 
represent each snippet as a TF-IDF-weighted term 
vector. Each vector is L2 normalized and the centroid 
of the set of vectors is computed. Semantic similarity 
between two queries is then defined as the inner 

product between the corresponding centroid vectors. 
They are not compared their similarity measure with 
taxonomy-based similarity measures. 

Leacock proposed a model combining local context 
and Word Net similarity for word sense identification 
[6]. Another approach of double-checking model using 
text snippets returned by a web search engine to 
compute semantic similarity between words. For two 
words P and Q, they collect snippets for each word 
from a web search engine. Then, they count the 
occurrences of word P in the snippets for word Q and 
the occurrences of word Q in the snippets for word P. 
These values are combined nonlinearly to compute the 
similarity between P and Q. This method depends 
heavily on the search engine’s ranking algorithm. 
Although, two words P and Q might be very similar, 
there is no reason to believe that one can find Q in the 
snippets for P, or vice versa. This observation is 
confirmed by the experimental results in their paper 
which reports zero similarity scores for many pairs of 
words in the Miller et al. [12] dataset. Siddiqui et al. 
[15] developed a method to retrieve the term which are 
similar using corpus. A corpus is created by collecting 
information from internet. 

3. Proposed Method 

The study of semantic similarity between words has 
long been an integral part of IR and NLP. Semantic 
similarity between entities changes over time and 
across domains. An automatic method has been 
proposed to measure semantic similarity between 
words or sentences using web search engines. Because 
of the vastly numerous documents and the high growth 
rate of the web, it is difficult to analyse each document 
separately and directly. Web search engines provide an 
efficient interface to this vast information. 

3.1. Outline 

Three semantic similarity measures have been 

proposed here. First method uses association rule 

mining to calculate semantic similarity between words 

and sentences. Second method uses Support Vector 

Machine (SVM) and integrates both page counts and 

snippets to measure semantic similarity between a 

given pair of words and sentences. Third method uses 

sequential clustering algorithm to measure semantic 

similarity between words and sentences. An automatic 

lexico-syntactic pattern extraction algorithm has been 

explained. The patterns extracted have been ranked by 

our algorithm according to their ability to express 

semantic similarity. 

3.2. Preprocessing the Documents from Google 

The snippets downloaded from Google directly are not 

possible for there are a lot of semantic-unrelated words 

and word in different form will bring in negative 

impact in our calculation. Therefore, the following 

steps are to agreement with the snippets: 
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1. Delete stop words. Words like ‘a’, ‘the’, ‘of’ and so 
on called stop words are meaningless for semantic 
analysis. 

2. Use statistical work on the snippets from Google, 
words in different form will bring in disadvantage 
influence. Some sort of an algorithm has to be used 
to void it. Stemmer Algorithm 3 gives us critical 
help to deal the text.  

3.3. About Term Frequency-Inverse Document 

Frequency (TF-IDF) 

The TF-IDF is a weight often used in IR and text 
mining. This weight is a statistical measure used to 
evaluate how important a word is to a document in a 
collection or corpus. The importance increases 
proportionally to the number of times a word appears 
in the document but is offset by the frequency of the 
word in the corpus.  

4. Using Association Rule Mining 

4.1. Higher Order Association Mining 

A novel approach called higher order association 
mining is proposed to mine word similarity. Exploit 
indirect associations of words, in addition to direct 
ones for estimating their similarity. If word A co-
occurs with word B, we say A and B share a first order 
association between them. If A co-occurs with B in 
some documents and B with C in some others, then A 
and C are said to share a second order co-occurrence 
via B. Higher orders of co-occurrence may similarly be 
defined as in Figure 1. An algorithm has been 
presented for mining higher order co-occurrences. A 
weighted linear model is used to combine the 
contribution of these higher orders into a word 
similarity model. This algorithm is used for mining 
higher order associations between words. The strengths 
of these associations are combined to yield an estimate 
of word similarity. 

 
 

   

a) Words A, B in 

  document 1. 

b) Words A, B, C share 

   documents 1 and 2. 

c) Words A, B, C, D share 

   documents 1 , 2 and 3. 

  

d) Co-occurrence order. 

 

e) Words Co-occurrence weighted 

          graph. 

Figure 1. Graphical representation of higher order co-occurrences. 

The applicability of matrix operations is explored to 
directly compute the strengths of higher order 
associations. First approach, start by computing a first 

order co-occurrence matrix. For |W| words in the 
feature set, this is a |W|×|W| matrix which has a value 1 
in the i, jth element if word i co-occurs with word j in at 
least one document. For all pairs of words that do not 
co-occur in any document, the corresponding element 
in the matrix is 0. The diagonal values are set to zero 
since we are not interested in trivial co-occurrence of a 
word with itself. The first-order co occurrence matrix 
is calculated using the following steps: 

• Step 1: The term document matrix A is multiplied 

with its transpose AT to obtain the |W|×|W| matrix T0. 

• Step 2: All non-zero values of T0 are set to 1 and the 

diagonal values are set to zero to yield a binary first 

order co-occurrence matrix T. 

• Step 3: The second order co-occurrence matrix T2 

can be calculated by squaring T. The third order 

matrix T2 is given as T3.  

Other higher order co-occurrence matrices can be 
calculated similarly. Before a matrix is reduced to 
binary, the value of i, jth element is the number of co-
occurrence paths between words i and j. The strength 
of a first order co-occurrence path is the number of 
documents in which two words co-occur. The strength 
of a second order co-occurrence path between words a 
and b is the number of distinct words c such that a co-
occurs with c and b co-occurs with c. Implementing the 
above algorithm revealed a critical shortcoming d and 
b. But in addition we also need to ensure that d is not 
the same as a and c is not the same as b and this is not 
taken care of. Thus, the strengths of third order 
associations were over-estimated by the algorithm. To 
address this limitation a correction is needed on this 
algorithm. The brute force approach of explicitly 
counting terms that satisfy the above-mentioned 
constraint instead of blindly cubing the binary matrix 
T, turned out to be computationally expensive. A 
technique has been presented below that rewrites this 
procedure as an equivalent matrix manipulation, which 
can be implemented efficiently in matrix processing 
environments. Let T be the matrix of first order 
connections with diagonal elements set to zero. For 
third-order co-occurrences, paths of type i-j-k-l for all i 
and l has been searched to enumerate. Now, Equation 
1: 

                                    (T3) jl = ∑j,k Tij Tjk Tkl 

Is the total number of such paths, including paths of 

type i-j-i-l and i-l-k-l, which wish to exclude. Let ni be 

the number of paths of type i-j-i. This is equal to the 

total number of paths originating from i. Evaluate ni by 

summing the rows (or columns) of T as in Equation 2. 

                        ni=∑jTij      

Now, the number of paths of type i-j-i-l is niTil and for 
type i-l-k-l the count is niTil. If Til ≠0, the path i-j-i-j have 
been encountered twice, so the total number of invalid 
paths is (ni+nl-1)Tij. Equivalently, if construct a 
discount matrix D whose elements Dil=(ni+n1-1), then 
the number of invalid paths between words i and j is 
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given by the i, j
th

 element of the point wise product 
D*T. The following procedure has been used: 

1. Calculate T.  

2. Enumerate and discount the invalid paths as above. 

T3- D*T is the revised third order matrix. 

4.2. Modelling Word Similarities 

Once higher order co-occurrences are mined, we need 

to translate them into a measure of similarity between 

words. Intuition suggests that very high order co-

occurrences do not really indicate similarity. In a study 

of higher order associations in the context of Latent 

Semantic Indexing (LSI), the authors report 

experimental evidence to confirm that associations 

beyond an order of 3 have a very weak influence on 

similarity modelled by LSI. In our word similarity 

model, which ignore the effects of orders higher than 

3. 

In the last section, the strength of a higher order 

association has been used between two terms as the 

number of co-occurrence paths between those terms. 

Let first-order(a, b), second-order(a, b) and third-order(a, 

b) denote the strengths of first, second and third order 

associations between terms a and b respectively. The 

similarity between terms a and b can be expressed as a 

weighted linear combination of the strengths of the 

first three orders of co-occurrence as in Equation 3. 

          Similarity(a, b)= α first-order(a, b)+β second-order 

           (a, b)+γ third-order(a, b) 

Note that, higher the order of association, the larger the 

number of co-occurrence paths (Since, Tn
ij >T

m
ij , if n>m 

and if for all Tij ≠0, Tij ≥ 1, which is true in our case), 

and hence, the greater the strength of association. 

Thus, to make α, β and γ comparable to each other, we 

need to normalize first-order(a, b), second-order(a, b) and 

third-order (a, b) to values in [0, 1]. In our 

implementation, this can be achieved by dividing each 

of these values by the maximum value between any 

pair of words corresponding to that order. 

4.3. Using Classification Approach 

The proposed method integrates both page counts and 

snippets to measure semantic similarity between a 

given pair of words. Four similarity scores have been 

defined using page counts. Then, an automatic lexico- 

syntactic pattern extraction algorithm has been 

explained. The patterns extracted have been ranked by 

our algorithm according to their ability to express 

semantic similarity. Two-class SVMs have been used 

to find the optimal combination of page counts-based 

similarity scores and top-ranking patterns. The SVM is 

trained to classify synonymous word-pairs and non-

synonymous word-pairs. Select synonymous word-

pairs from Wordnet synsets. Non-synonymous word-

pairs are automatically created using a random 

shuffling technique. Convert the output of SVM into a 

posterior probability. The semantic similarity between 

two words has been used as the posterior probability 

that they belong to the synonymous-words class.  

4.4. Page Count-Based Similarity Scores 

Page counts for the query A and B, can be considered 

as an approximation of co-occurrence of two words (or 

multi word phrases) A and B on the web. However, 

page counts for the query A and B alone do not 

accurately express semantic similarity. One must 

consider the page counts not just for the query A and B, 

but also for the individual words A and B to assess 

semantic similarity between A and B. Four popular co-

occurrence measures; jaccard, overlap (simpson), dice 

and Point-wise Mutual Information (PMI) have been 

modified, to compute semantic similarity using page 

counts. For the remainder of this paper, the notation 

H(A) has been used to denote the page counts for the 

query A in a search engine. The WebJaccard 

coefficient between words (or multi-word phrases) A 

and A, WebJaccard (A, B) is defined as in Equation 4. 
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Therein, A∩B denotes the conjunction query A and B. 

Given the scale and noise in web data, it is in Equation 

5. 
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Possible those two words may appear on some pages 

purely accidentally. In order to, reduce the adverse 

effects attributable to random co-occurrences, we set 

the WebJaccard coefficient to zero if the page count 

for the query A∩B is less than a threshold c5. 

Similarly, we define Web Overlap, Web Overlap (A, B) 

as in Equation 6. 
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Web Overlap: Is a natural modification to the overlap 

(Simpson) coefficient. We define the web dice 

coefficient as a variant of the dice coefficient. Web 

Dice (A, B) is defined as in Equation 7. 
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We define WebPMI as a variant form of PMI using 

page counts in Equation 8. 
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Here, N is the number of documents indexed by the 

search engine. Probabilities in Equation 5 are estimated 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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according to the maximum likelihood principle. To 

calculate PMI accurately using Equation 5, N must be 

known, the number of documents indexed by the 

search engine. Although, estimating the number of 

documents indexed by a search engine is an interesting 

task itself, it is beyond the scope of this work. 

4.5. Extracting Patterns from Snippets 

Text snippets are returned by search engines alongside 

with the search results. They provide valuable 

information regarding the local context of a word. 

lexico-syntactic patterns has been extracted to indicate 

various aspects of semantic similarity. Our pattern 

extraction algorithm is illustrated below. 

Algorithm 1: Extracting patterns from snippets. 

Comment: Given a set S of word-pairs, extract patterns. 

for each word-pair(A, B) Є S 

     do D ←GetSnippets(“A B”) 

     N ←null 

    for each snippet dЄ D 

          do N ← N GetNgrams(d, A, B) 

          Pats ← CountFreq(N) 

return (Pats) 

Given a set S of synonymous word-pairs, GetSnippets 

function returns a list of text snippets for the query “A” 

and “B” for each word-pair A, B in S. For each snippet 

found, the two words in the query are replaced by two 

wildcards. Let us assume these wildcards to be X and Y. 

For each snippet d in the set of snippets D returned by 

GetSnippets, function GetNgrams extract word n-grams 

for n= 2, 3, 4 and 5.  N-grams is selected which contain 

exactly one X and one Y. Finally, function Count Freq 

counts the frequency of each pattern has been 

extracted. The procedure described above yields a set 

of patterns with their frequencies in text snippets 

obtained from a search engine. It considers the words 

that fall between X and Y as well as words that precede 

X and succeeds Y. 

Algorithm 2: GetFeatureVector (A, B). 

Comment: Given a word-pair A, B get its feature vector F. 

D ← GetSnippets (“A B”) 

N ← null 

for each snippet d Є D 

      do N ← N + GetNgrams(d, A, B) 

      SelPats ← SelectPatterns (N, GoodPats) 

      PF ←Normalize (SelPats) 

      F←[PF, WebJaccard, WebOverlap, WebDice, WebPMI] 

return (F) 

For each pair of words (A, B), a feature vector F has 

been created as shown in Figure 4. First, query Google 

for “A” and “B” and collect snippets. Then replace the 

query words A and B with two wildcards X and Y, 

respectively in each snippet. Function GetNgrams 

extracts n-grams for n= 2, 3, 4 and 5 from the snippets. 

Select n-grams having exactly one X and one Y are 

used in the pattern extraction algorithm in Figure 3. 

Assume the set of patterns selected based on their X
2 

values in section 3.2 to be GoodPats. Then, the function 

Select Patterns selects the n-grams from N which 

appear in GoodPats. In normalize(SelPats), normalize the 

count of each pat-tern by diving it from the total 

number of counts of the observed patterns. This 

function returns a vector of patterns where each 

element is the normalized frequency of the 

corresponding pattern in the snippets for the query “A” 

“B”. Append similarity scores calculated using page 

counts in section 3.2 to create the final feature vector F 

for the word-pair (A, B). This procedure yields a 204 

dimensional feature vector F. Feature vectors are 

formed for all synonymous word-pairs as well as for 

non-synonymous word-pairs. A two-class SVM is 

trained with the labelled feature vectors. Once SVM 

using synonymous and non- synonymous word pairs 

have been trained, it can be used to compute the 

semantic similarity between two given words. The 

same method has been used to generate feature vectors 

for training,  feature vector F has been created for the 

given pair of words (A’, B’), between which  need to 

measure the semantic similarity. The semantic 

similarity SemSim (A’, B’) between A’ and B’ has been 

defined as the posterior probability Prob(F’| 

synonymous) that feature vector F’ belongs to the 

synonymous-words (positive) class. 

SemSim(A’, B’)= Prob(F’| synonymous) 

Being a large-margin classifier, the output of an SVM 

is the distance from the decision hyper-plane. 

However, this is not a calibrated posterior probability. 

Sigmoid function has been used to convert this 

uncalibrated distance into a calibrated posterior 

probability. Being a large-margin classifier, the output 

of an SVM is the distance from the decision hyper-

plane. However, this is not a calibrated posterior 

probability. Sigmoid functions have been used to 

convert this uncalibrated distance into a calibrated 

posterior probability. 

4.6. Using Clustering Approach 

4.6.1. Semantic Similarity between Words 

In this approach, given two words, the semantic 

similarity between two words is calculated using 

sequential clustering algorithm. To represent the 

numerous semantic relations that exist between two 

words lexical patterns are extracted from snippets 

retrieved from a web search engine. Then, the 

extracted patterns are clustered to identify the 

semantically related patterns. Using the pattern clusters 

a feature vector is defined to represent two words and 

the semantic similarity is computed by taking into 

account the inter-cluster correlation. 

4.6.2. Extracting Lexical Patterns 

The relational model is used to compute semantic 

similarity between two words, the numerous lexical 
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patterns are extracted from contexts in which those two 

words appear. For this purpose, a pattern extraction 

algorithm is proposed using snippets retrieved from a 

web search engine. The proposed method requires no 

language-dependent preprocessing such as part-of-

speech tagging or dependency parsing, which can be 

both time consuming at web scale, and likely to 

produce incorrect results because of the fragmented 

and ill-formed snippets. Given two words a and b, 

query a web search engine to download the snippets. 

For a snippet S, retrieved for a word pair (a, b), the two 

words a and b are replaced with two variables X and Y 

respectively. All numeric values are replaced by D, a 

marker for digits. All subsequences of words are 

generated from S that satisfies all of the following 

conditions: 

1. A subsequence must contain exactly one occurrence 

of each X and Y. 

2. The maximum length of a subsequence is L words. 

3. A subsequence is allowed to have gaps. 

4. All negation contractions must be expanded in a 

context.  

4.6.3. Clustering Lexical Patterns 

A semantic relation can be expressed using more than 

one pattern. By grouping the semantically related 

patterns, the model complexity in relational model can 

be reduced. The distributional hypothesis is used to 

find semantically related lexical patterns. The 

distributional hypothesis states that words that occur in 

the same context have similar meanings. If two lexical 

patterns are similarly distributed over a set of word 

pairs, then from the distributional hypothesis it follows 

that the two patterns must be similar. A pattern p is 

represented by a vector p in which the ith 
element is the 

frequency f(ai, bi, p) of p in a word pair (ai, bi). Given a 

set P of patterns and a similarity threshold µ, the 

sequential clustering algorithm returns clusters of 

similar patterns. The patterns are sorted in the 

descending order of their total occurrences in all word 

pairs. The total occurrences of a pattern p is defined as 

µ(p) in Equation 9. 

                            
( , )

( ) ( , , )
a b w

µ p f a b p
∈
∑=  

Here, W is the set of word pairs. Then, a pattern pi is 

taken from the ordered set P and finds the cluster, c* Є 

C that is most similar to pi. Similarity between pi and 

the cluster centroid cj is computed using cosine 

similarity. The centroid vector cj of cluster cj is defined 

as the vector sum of all pattern vectors for patterns in 

that cluster as in Equation 10. 

                                    

j
j

p c
c p

∈
∑=    

If the maximum similarity exceeds the threshold µ, pi is 
appended to C *Otherwise, a new cluster is formed and 
{pi} is appended to it. After all patterns are clustered, 

the (i, j) element of the inter-cluster correlation matrix ᴧ 
is computed as the inner product between the centroid 
vectors ci and cj of the corresponding clusters i and j. 
The parameter µ determines the purity of the formed 
clusters moreover, sorting the patterns by their total 
word pair frequency prior to clustering ensures that the 
final set of cluster contains the most common relations 
in the dataset. The sequential clustering algorithm is 
used to cluster the extracted patterns. The parameter µ 
is set as follows. The value of theta is varied from 0 to 
1 and used to cluster the extracted set of patterns. The 
resultant set of clusters is used to represent a word pair 
by a feature vector. 

4.6.4. Computation of Semantic Similarity 

The semantic similarity is computer using the Equation 

11. 

                             Sim (a, b)= XT
ab  σΛ                        

Where XT
ab is a feature vector representing the words a 

and b. The vector σ represents synonymous word pairs 

and Λ is the inter-cluster correlation matrix. 

4.6.5. Semantic Similarity between Sentences 

The steps for computing semantic similarity between 

two sentences: 

• Each sentence is partitioned into a list of tokens. 

• Part-of-speech disambiguation (or tagging). 

• Stemming words. 

• Determine the most appropriate sense for every 

word in a sentence. 

• Compute the similarity of the sentences based on 

the similarity of the pairs of words. 

These steps are the same as described earlier in 

classification approach. Finally the similarity of the 

sentences if calculated based on the similarity of the 

pair of words and the similarity of these word pair is 

calculated using sequential clustering algorithm as 

described in the earlier section. 

5. Experimental Evaluation 

The proposed semantic similarity measure has been 

computed by comparing the similarity scores produced 

by the proposed measure against Miller-Charles 

benchmark dataset in Tables 1 and 2. 

Table 1. Shows comparison of existing methods with the proposed 
method. 

Similarity Measure Correlation 

Jiang and Conrath  0.695 

Hirst St.onge 0.689 

Leacock Chodorow 0.821 

Lin 0.823 

Resnik 0.775 

Wu and Palmer 0.803 

Our Similarity Measure1 0.831 

Our Similarity Measure2 0.812 

Our Similarity Measure3 0.772 

(9) 

(10) 

(11) 
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Table 2. Human and computer rating of the miller-charles dataset. 

Word Pair Web Jaccard Web Dice Sahami 
Proposed 

SemSim 

Cord-Smile 0.102 0.108 0.09 0 

Rooster-Voyage 0.011 0.012 0.197 0.017 

Noon-String 0.126 0.133 0.082 0.018 

Glass-Magician 0.117 0.124 0.143 0.18 

Monk-Slave 0.181 0.191 0.095 0.375 

Coast-Forest 0.862 0.87 0.248 0.405 

Monk-Oracle 0.016 0.017 0.045 0.328 

Lad-Wizard 0.072 0.077 0.149 0.22 

Forest-Graveyard 0.068 0.072 0 0.547 

Food-Rooster 0.012 0.013 0.075 0.06 

Coast-Hill 0.963 0.965 0.293 0.874 

Car-Journey 0.444 0.46 0.189 0.286 

Crane-Implement 0.071 0.076 0.152 0.133 

Brother-Lad 0.189 0.199 0.236 0.344 

Bird-Crane 0.235 0.247 0.223 0.879 

Bird-Cock 0.153 0.162 0.058 0.593 

Food-Fruit 0.753 0.765 0.181 0.998 

Brother-Monk 0.261 0.274 0.267 0.377 

Asylum-Madhouse 0.024 0.025 0.212 0.773 

Furnace-Stove 0.401 0.417 0.31 0.889 

Magician-Wizard 0.295 0.309 0.233 1 

Journey-Voyage 0.415 0.431 0.524 0.996 

Coast-Shore 0.786 0.796 0.381 0.945 

Implement-Tool 1 1 0.419 0.684 

Boy-Lad 0.186 0.196 0.471 0.974 

Automobile-Car 0.654 0.668 1 0.98 

Midday-Noon 0.106 0.112 0.289 0.819 

Gem-Jewel 0.295 0.309 0.211 0.686 

Correlation 0.259 0.267 0.579 0.812 

5.1. The Benchmark Dataset 

The proposed method has been evaluated against 

Miller-Charles dataset, a dataset of 30 word-pairs rated 

by a group of 38 human subjects. The word pairs are 

rated on a scale from 0 (no similarity) to 4 (perfect 

synonymy). Miller-Charles data set is a subset of 

Rubenstein-Goodenough’s original data set of 65 word 

pairs. Although, Miller-Charles experiment was carried 

out 25 years later than Rubenstein Goodenough’s, two 

sets of ratings are highly correlated. Table 1 presents a 

comparison of the proposed method to the Wordnet-

based methods. The proposed method out performs 

simple Wordnet-based approaches such as Edge 

counting and Information Content measures. Unlike 

the Wordnet based methods, proposed method requires 

no a hierarchical taxonomy of concepts or sense-

tagged definitions of words. Semantic similarity using 

association, classification and clustering is shown in 

Figures 2, 3 and 4. 
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Figure 2. Semantic similarity using association rule mining. 
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Figure 3. Semantic similarity using classification. 

C
o
rr

el
at

io
n
 C

o
ef

fi
ci

en
t 

                     Proposed      Web         Web          Web        Sahami       Code 

                    Semsim 1      Dice       Jacard         Overlap    

Figure 4. Semantic similarity using clustering. 

These results are significant because they are based 

on a very simple algorithm that relies on assigning 

relatedness scores to the senses of a target word and 

the senses of its immediately adjacent neighbours. 

While the disambiguation results could be improved 

via the combination of various techniques, our focus is 

on developing the proposed similarity measure of 

relatedness as a general tool for NLP and artificial 

intelligence. 

6. Conclusions 

The proposed method has been evaluated using Miller-
Charles dataset, a dataset of 30 word-pairs rated by a 
group of 38 human subjects. A high correlation with 
human ratings was found for semantic similarity on 
this benchmark dataset. The proposed method has been 
evaluated with human judgments and found it to be 
reasonably correlated. These results are significant 
because they are based on a very simple algorithm that 
relies on assigning relatedness scores to the senses of a 
target word and the senses of its immediately adjacent 
neighbours. While the disambiguation results could be 
improved via the combination of various techniques, 
our focus is on developing the proposed similarity 
measure of relatedness as a general tool for NLP and 
artificial intelligence. 
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