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1. Introduction 

In recent years, Reverse Nearest Neighbor (RNN) 

query processing has garnered a considerable amount 

of attention based on applications such as location 

based services, decision support and resource 

allocation. Much research has been conducted and 

several efficient algorithms provided in both Euclidean 

and spatial networks. However, there is still a lack of 

research on the processing of moving queries in road 

networks. In addition, while a plethora of work have 

been devoted to moving query processing [1, 4, 8, 9, 

10, 14, 21, 23, 25, 26] they all focus on the Euclidean 

space, not on road networks. 
Given a query point q, a Reverse K-Nearest 

Neighbor (RKNN) query retrieves all the data points 
that have q as one of their K-Nearest Neighbors (KNN) 
(K closest points). Consider an example of location-
based games, as shown in Figure 1, in which the goal 
of each player is to shoot the player nearest to him. 
Each player needs to continuously monitor his own 
RNN to avoid being shot by other players. The closest 
fighter to q is p1. However, p1 is not the RNN of q 
because the closest point to p1 is p2, not q. The RNN of 
q is p3 because q is the nearest neighbor to this fighter. 
Thus, p3 is the fighter that fighter q should monitor.  

 

Figure 1. Example of RKNN query. 

 
RNN queries are generally categorized into two 

types: Monochromatic RKNN (MRKNN) queries and 

Bichromatic RKNN (BRKNN) queries. The above 

example belongs to the monochromatic category as 

both query objects and data objects share the same 

type of objects, i.e., players. 
Other efficient implementations of RNN query that 

are of particular interest in information systems are 
those that support user’s queries, such as online search 
engines, multimedia search engines and GIS. For 
instance, a business owner when deciding to open a 
new restaurant may ask an RNN query such as “Where 
is the best location for the Italian food restaurant?”, 
this question can be rephrased as “how many users 
consider this possible location to be the nearest Italian 
food restaurant?”. Each candidate location for the 
Italian food restaurant should start an RNN query and 
the results then compared in order to choose the best 
location. The above example deals with bichromatic 
queries (which are defined as queries in which the 
query objects and the data objects belong to two 
different types of objects) because the data object and 
query object are different types of objects. Another 
interesting example of BRKNN queries is emergency 
services such as enhanced 911 services. Whenever a 
911 services center receives any emergency call, the 
desire is to send this job to the team that is closest to 
the emergency call location in order to get a good 
response time. 

The existing technique results in expensive 
communication and computation costs if a query 
changes its location. Therefore, the main challenge for 
continuous monitoring algorithms is the maintenance 
of the freshness of the query answer when the query 
point moves freely and arbitrarily. A simple approach 
is to have the client q periodically send requests to re-
evaluate the query results. However, this approach still 
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does not guarantee that results are fresh because the 
query answer may still become stale in between each 
call to the server. In addition, this approach is very 
expensive in terms of computation and communication 
costs. 

Safe region-based algorithms have been introduced 

as a means of overcoming the excessive computation 

and communication costs associated with periodic 

monitoring [3, 6, 29, 30]. The safe region of a query is 

the region where a query answer remains unchanged, 

provided that the query point is within the safe region. 

The safe region technique avoids the back and forth 

communication between client and server, although it 

also allows a client to get fresh query results without 

excessive overhead on the server side. However, to 

provide the safe region (which may consist of complex 

road segments) more network bandwidth is consumed 

compared to simply providing a set of safe exit points 

[3, 10] representing the boundary of the safe region. 
In this paper, to overcome the problem outlined 

above, we propose a new safe exit technique that 
efficiently computes the safe exit points for moving 
RNN queries in road networks. At each safe exit point, 
the safe region of a query and its non-safe region meet 
so that a set of safe exit points represents the border of 
the safe region. In road networks, the safe exit 
approach is more efficient than the safe region 
approach because the communication cost between 
query (client) and server is comparatively low. Until a 
client q reaches a safe exit point, s/he is guaranteed to 
remain in the safe region and thus the query answer is 
valid. The query results and safe exit points are 
recalculated only when q travels beyond the safe exit 
points.  

The following assumptions are made in our 

proposed technique: 

• We consider only BRKNN queries. 

• Query objects move and data objects are static. 

In this paper, we present techniques that can compute 

safe exits efficiently. The contributions made are as 

follows: 

• We present a framework for continuous monitoring 

of RKNN queries in road networks in our safe exit 

technique proposal. 

• We present novel pruning rules that optimize the 

computation of safe exit points by minimizing the 

size of the unpruned network and the number of 

objects. 

• A thorough experimental study confirms that our 

approach outperforms a traditional approach that 

does not use the safe exit approach, in terms of both 

communication and computation costs. 

The remainder of this paper is structured as follows: 
Section 2 reviews existing work on continuous 
monitoring of RKNN queries in Euclidean space and 
road networks. Section 3 presents terminology 
definitions and describes the problem. Section 4 

elaborates on our proposed Safe Exit Algorithm (SEA) 
for computing the safe exit points of moving nearest 
neighbor queries in road networks. Section 5 presents a 
performance analysis conducted of the proposed 
technique. Section 6 concludes this paper. 

2. Related Work 

An RNN query for moving objects searches for those 

objects that take object q as their nearest neighbor. In 

recent years, reverse neighbor query processing has 

received significant attention by the spatial database 

systems research community. Many algorithms have 

been proposed for the monitoring of RNNs, especially 

in Euclidean space. However, there is still a lack of 

efficient algorithms for road networks. Our related 

work is divided into two sections: Section 2.1 covers 

continuous RNN query processing in Euclidian space 

while section 2.2 reviews continuous RNN query 

processing in road networks.  

2.1. Algorithms for Continuous RKNN Query 

Processing in Euclidian Space 

Korn and Muthukrishnan [14] were the first to 

introduce the concept of RNN. They used the pre-

computing technique to search for RNNs. The main 

drawback of this approach is that they were limited to 

supporting RKNN queries for a fixed number of K and 

they were also inefficient in processing object 

movements. This preprocessing issue was first 

addressed by Song and Roussopoulos [20] who 

proposed the 60 degree pruning method which 

partitions the entire space centered at a query q into 

equal regions. It can be verified that the possible RNN 

of q can only be the nearest point to q found in each 

region. This also depicts that in 2D space, there are at 

most six possible RNNs of q, which is the main 

advantage of this algorithm. Another efficient 

algorithm is TPL pruning, introduced by Tao et al. 

[23], which uses the properties of half space to locate 

candidates. The algorithms proposed in [21, 23] are 

categorized as snapshot RNN algorithms. 

A number of algorithms have also been proposed 

for efficient monitoring of nearest neighbor queries, 

continuous range queries and RNNs [6, 7, 11, 13, 14, 

16, 18, 20, 21, 22, 24, 27]. The existing continuous 

query processing algorithms place emphasis on 

defining the monitoring region of a query and updating 

the query result based on moving object’s location 

updates. Benetis et al. [1] were the first to study 

continuous RNN monitoring, but their proposed 

scheme assumes that the velocity of objects are known. 

Xia and Zhang [26] introduced an incremental, 

scalable approach to the monitoring of continuous 

RNNs. Their method is based on the 60 degree pruning 

technique. In their approach, the monitoring region of 

a continuous RNN query is defined as six pie regions 

(determined by the query point and the six candidates) 
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and six arc-regions (determined by the six candidates 

and their nearest neighbor). Theirs is an efficient 

algorithm because it identifies and processes the 

updates that fall into the monitoring region, unlike 

other conventional methods. However, this scheme has 

two major limitations; firstly, it only processes 

monochromatic RNN queries and, secondly, it 

assumes that at every time interval there are six RNNs, 

which is the worst-case scenario. Kang et al. [12] 

proposed a novel algorithm for monitoring continuous 

RNNs called IGERN. It is based on the TPL-pruning 

method and caters to both monochromatic and 

BRKNN queries. It is more efficient than the 60 

degree pruning based solutions because it monitors 

fewer candidates as opposed to the entire space. The 

trade off of this scheme is that it cannot be easily 

extended to handle continuous RKNN queries where 

K>1. Therefore, the monitoring region defined in it 

only applies to continuous RNNs where K=1. 
Wu et al. [25] proposed a technique to monitor 

RKNNs that involves continuous filtering and 
continuous refining. They determined that the refining 
step is critical especially when K>1, as at that point the 
refining cost becomes the system overhead. They 
proposed a new refining framework called CRange-k, 
which verifies candidate objects by issuing KNN 
queries in each region rather than single nearest 
neighbor queries. The users that are closer than the K

th
 

nearest neighbor in each region are the candidate 
objects and they are verified if q is one of their K 
closest facilities. To monitor the results, for each 
candidate object, they continuously monitor the circle 
around it that contains K nearest facilities. Cheema et 
al. [3, 4, 5] proposed several schemes for the 
monitoring of continuous RNNs. In [4], they used the 
concept of influence zone and focused on continuous 
BRKNN queries in which the query object is static and 
the data objects are moving. In [6], they proposed a 
new framework based on safe regions for both 
Euclidean and road networks in which query and data 
objects are both moving. This scheme significantly 
improves the computation cost as it assigns each object 
and query a safe region such that expensive 
recomputation is not required as long as the query and 
objects remain in their respective safe regions. 

2.2. Algorithms for Continuous RKNN Query  

Processing in Road Networks 

The processing of RNN queries in road networks is 
one of the recent emerging areas of research. Yiu et al. 
[28] first addressed the issue of RNN in road networks 
(they represented road networks as graphs) and 
proposed an algorithm for both monochromatic and 
BRKNN queries. Safar et al. [19] studied snapshot 
RNN queries in spatial networks. They presented a 
framework based on Network Voronoi Diagrams 
(NVDs) to efficiently process RNN queries in road 
networks. However, their scheme is not suitable for 
continuous RNN queries due to the fact that an NVD 

changes whenever a dataset changes its location, 
resulting in high computation costs. 

Sun et al. [22] presented a method for continuous 
monitoring of BRKNN queries. They associated a 
multiway tree with each query to define the monitoring 
region, and only the updates in the monitoring region 
affect the results. However, this method is limited to 
bichromatic queries and also does not cater for K>1. 
Moreover, their proposed scheme assumes that the 
query objects are static. 

Li et al. [15] proposed a novel algorithm for 
continuous monitoring of RKNNs based on a Dual 
Layer Multiway (DLM) tree in which they introduced 
several lemmas to reduce the monitoring region and 
filter the candidate objects. Their continuous 
monitoring of RKNN method comprises two phases: 
The initial result generating phase and the incremental 
maintenance phase. Cheema et al. [6] proposed a safe 
region approach for the monitoring of continuous 
MRKNN and BRKNN queries in Euclidean and road 
networks, as mentioned in section 2.1 and devised 
pruning rules that reduce the monitoring region. 

In the traditional techniques, every object reports its 

location to the server at every timestamp regardless of 

whether query results will be affected or not. 

Consequently, such a computation model increases the 

communication cost as it requires transmission of a 

large number of location updates. In our framework, 

each moving object reports its location update only 

when it leaves the safe exits. This significantly saves 

on communication costs. Existing approaches [6, 15] 

have also addressed the abovementioned issue, but 

their approach is safe region-based. In contrast, our 

approach is safe exit-based and, as discussed earlier, 

the safe exit approach is more efficient than the safe 

region approach because the communication cost 

between query (client) and server is comparatively 

low. 

3. Terminology and Problem Descriptions 

A road network G is a weighted undirected graph 

consisting of nodes and edges. An edge between two 

nodes is denoted by e(n1, n2). W(e) is a function that 

returns the weight of an edge e and represents the 

length of its corresponding road segment. 

Segment s(p1, p2) is the part of an edge between two 

points, p1 and p2, on the edge. An edge consists of one 

or more segments. An edge is also considered to be a 

segment in which the nodes are the end points of the 

edge. 

Figure 2 shows an example of an undirected road 

network with five nodes, a to e. Several edges and 

segments are shown with their respective weights. For 

example, the edge e(a, e) consists of segments s(a, o1), 

s(o1, q) and s(q, e) having weights 3, 7 and 4, 

respectively. There are eight objects in this example 

(o1 to o7 and q). Query q and the data objects are shown 

as star and rectangles, respectively.  
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To simplify the presentation, Table 1 summarizes 

the notations used in this paper.
 

 

 

Figure 2. Example of a road network. 

Table 1. Notations used in this paper. 

Notation Definition 

G = (N, E, W) Graph Model of a Road Network 

dist(a, b)
 

Length of the Shortest Path between Objects a and b 

ni A Node in the Road Network 

ei= (nj, nk) An Edge in the Edge set E 

W(ei)= d(nj, nk) Weight of the Edge ei=(nj, nk) 

q

 

A Query Point in the Road Network 

k
 

The Number of Requested RNNs 

O

 
The Set of Objects O={o1, o2, …, on} 

pse A Safe Exit Point at which the Safe Region of q and its Non-Safe Region Meet 

O+

 

Set of Answer Objects 
+ + + +

1 2
{ , , … }= ,

n
O o o o  

O-

 

Set of Non-Answer Object
- - -

1 2

-
{ , , …, }=

n
oO o o  

IO+

 

Influence Region of Answer Objects 

IO-

 

Influence Region of non-Answer Objects 

3.1. Problem Description 

In this paper, we primarily address the problem of 
continuous monitoring of RKNN queries on moving 
queries in road networks. To provide a clear 
explanation, we use the example road network shown 
in Figure 2, in which there are seven objects, o1 to o7 
and a query q in a road network. Let us assume that a 
moving query requests three RNNs at point P1. In 
order to get the three RNNs, we expand the road 
network from point q until we find them. As 
mentioned earlier, query q is moving in a road network 
and it moves from P1 to P2. As for getting the three 
nearest neighbors at point P2, the simple approach is to 
repeat the procedure executed at P1. However, this 
recomputation whenever query q changes its location 
significantly degrades the performance of the 
algorithm. To address this issue, we introduce the safe 
exit approach. 

Figure 3 shows the safe region of q and its safe exit 
points for the example in Figure 2. As shown in Figure 
3, before q reaches either f or g, the RNNs of q are

 
{o1, 

o4}. When q passes through either f or g, the query is 
re-evaluated based on the updated location of q in 
order to refresh the query answer and the safe exit 
points. 

 
Figure 3. Safe exit points for q. 

4. SEA for Moving RKNN Queries 

In this section, we present a new SEA for moving 
RKNN queries in a road network. Algorithm 1 depicts 
the skeleton of our proposed SEA for computing safe 
regions. It consists of three phases: Finding of Useful 
Objects (UOs) that could contribute to the safe region, 
computation of the influence region of the UOs and 
computation of safe exit points.  

Algorithm 1: Computation of safe regions (o, q). 

Input o: Data objects, q: Query object 

Output: Safe Region (SR) 

/*Phase 1: Retrieve UOs */ 

 Point set p’: road network (o, q) 

 Point set A: {o
+
∈p’|dist (o, q)<dist(o, ok+1)} /* find answer 

objects */ 

 Point set NA: {o
-
∈p’|dist (o, q)>dist (o, ok)}/* find non-

answer objects */ 

/*Phase 2: Computation of Influence Region */ 

 while A is non-empty do 

  Point p ← pick object (A); 

  Calculate influence region;                    /*details in Algorithm 2*/ 

  Store in influence region set IR
+
; 

 end 

 while NA is non-empty do 

  Point p ← pick object (NA); 

  if object= UO then 

   Calculate influence region;/* details in Algorithm 2 

*/ 

   Store in influence region set IR
-
 

  else 

   prune the object 

 end 

/*Phase 3: Computation of Safe Region */ 

 Computesafe region from sets IR
+
 and IR

-
 

/*details in phase 3 section */ 

 Storesafe region SR; 

 return SR; 

4.1. Phase 1: Finding UOs 

This phase aims at finding potential points that could 
contribute to the computation of safe regions. We first 
define some pruning rules to retrieve a small number 
of data objects to avoid the computation cost. We then 
divide the UOs into two types; namely, answer objects 
(denoted by O

+) and non-answer objects (denoted by 
O

-). 
Before we present the pruning rules, let us first 

define answer objects. An object o is called an answer 
object if dist(o, q)< dist(o, o′) where o′ is any other 
object in the road network. Similarly, we can 
generalize it for RkNN: an object o is called an answer 
object if dist(o, q)< dist(o, ok+1) where ok+1 is the (k+1)

th 
object. In Figure 3, object o1 is the RNN of q because 
the distance from o1 to q is less than that from o1 to any 
other object in the road network. Likewise, if we want 
to find the 3RNNs, objects o1 and o4 both are the 
3RNNs of q because the distance from o4 to q is less 
than that of the fourth nearest object. 

Let us now look at the pruning rules that identify 

the UOs: 
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• Pruning Rule 1: All answer objects are UOs. 

Explanation: We can generalize the above definition 

of answer objects to state that answer objects are 

RNNs. Therefore, all RNNs should be considered 

UOs.  
• Pruning Rule 2: An object O cannot be a UO if its 

kNN does not contain any O
+ (answer object). 

Explanation: From the definition of safe exit points 
(which we explain in detail in phase 3), the safe 
region includes the intersection of all answer 
objects and excludes the union of all non-answer 
objects. In other words, if the influence region of a 
non-answer object does not contain any portion of 
the answer objects, then it cannot be a UO. In phase 
2, we will explain how to calculate the influence 
region of answer and non-answer objects. 

Before we present the next pruning rule, let us 
define the term blocking object. An object o is 
called a blocking object if the shortest path between 
q and o only contains answer objects. In other 
words, a blocking object is considered the first non-
answer object in any particular path towards q. In 
Figure 3, objects o2 and o5 are blocking objects. 
Object o3 is not a blocking object because the 
shortest path from o3 to q is {o3, b, o2, a, o1, q}, which 
contains another blocking object, o2. 

• Pruning Rule 3: An object o cannot be a UO if the 
shortest path between q and o contains any blocking 
object. 

On applying these pruning rules to the road 
network example, segments s(o2, a), s(a, o1), s(o1, q), 
s(q, e), s(e, d), s(d, o4) and s(d, o5) are used to 
construct an unpruned network and the rest of the 
network is considered to be a pruned network. 

4.2. Phase 2: Computation of Influence Region 

for UOs 

After we retrieve the set of UOs, the next step is to 
compute the influence region of every UO. 

• Influence Region of Answer Objects: Is defined as 
follows: 

( ) { ( , ) ( , )
+ +

I o = p|dist o p ≤ 1 }
+

k+
dist o o  

Where ok+1 denotes the (k+1)
th nearest object to o. 

The influence region of an answer object can be 

computed from the distance of the answer object to 

the (k+1)
th answer object. Consider object o1 in 

Figure 2: 3NNs of o1=(q, o2, o7) with weights (7, 7, 

19). 

Going by the definition of the influence region of 

answer objects, we need to compute the distance to 

the (k+1)
th object (in this example, it refers to 4NN), 

which is object o3 and dist(o1, o3)=20. This means 

that an area of up to 20 units, starting from o1 

towards q is the influence region of o1. The 

influence region comprises segments (o1, q), (q, e), 

(e, d), (d, m) and (o1, q), (q, e), (e, d), (d, n) with 

weights (7, 4, 7, 2), respectively. The sum of these 

weights is 20, which is dist(o1, o3). Similarly, the 

influence region of o4can be computed as follows: 

3NNs of o4=(o3, o5, q) with weights (8, 10, 17). 

Object o6 is the 4NN of q and dist(o4, o6)=18. 

Therefore, the influence region of o4 is 18 units 

from o4 in the direction of q. 

The bold lines in Figures 4 and 5 show the 

influence region of o1 and o4, respectively. 

 

Figure 4. Influence region of o1. 

 

Figure 5. Influence region of o4. 

• Influence Region of Non-Answer Objects: Is 

defined as follows: 

               ( ) { | ( , ) ( , )}
-

kI o = p dist p q < dist p o  

The influence region of a non-answer object can be 

computed from the distance of an answer object to the 

k
th object. Consider object o2 in Figure 2: 3NNs of 

o2=(o1, o7, o3) with weights (7, 12, 13). 

The influence region of object o2 is 13 units from o2 

towards q since the distance from o2 to 3NN with o3 is 

13. Similarly, if we consider o5, its third nearest 

neighbor is o7 and dist(o5, o7)=14. Thus, the influence 

region of object o5 is 14 units from o5 towards q.  

The bold lines in Figures 6 and 7 show the influence 

region of o2 and o5, respectively. The nearest neighbor 

s for answer objects change when the query object 

moves outside of the influence region, whereas in the 

case of non-answer objects, the result changes when 

the query object moves to the inside of the influence 

region. In other words, the nearest neighbors of an 

answer object remain the same until the query object 

lies inside the influence region, but for non-answer 

objects the nearest neighbors remain the same until the 

query object lies outside of the influence region. 

 

Figure 6. Influence region of o2. 

(1) 

(2) 
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Figure 7. Influence region of o5. 

Algorithm 2: Computation of influence region (A, NA). 

Input A: Answer objects set, NA: non-answer objects set 

Output: IR
+
 Influence Region of answer objects, IR

-
 Influence 

Region of non-answer objects 

/*Influence Region of answer objects */ 

 
while A is non-empty do 

  Point x ← pick object (A); 

  Compute distance from chosen object to ok+1; 

  Expand the region from the chosen object to the ok+1 

unit distance towards q; 

  Store in the influence region set IR
+
; 

 end 

 while NA is non-emptydo 

  Point y ← pick object (NA); 

  Compute distance from the chosen object to ok; 

  Expand the region from the chosen object to the ok 

unit distance towards q; 

 
 

Store in the influence region set IR
–
 

 end 

 return IR
+ and IR

–
 

4.3. Phase 3: Computation of Safe Exit Points 

The safe region S(q, r) of a query “q” is defined as 

follows: 

                            ( , ) { }
+ -

S q r = IIO - UIO  

The safe region of query q is based on the influence 
region of answer objects and non-answer objects. 
Figure 8 shows how the safe region can be computed 
based on data points. In the figure, the dataset contains 
four points, p1, p2, p3 and p4. The answer objects of 
query q are {p2, p4}. The intersection of the influence 
regions of all the answer objects is considered to be the 
safe region. Secondly, in the example, data points {p1, 

p3} are non-answer objects. The safe region of query q 
should exclude the entire influence region of non-
answer objects.  

 
      Figure 8. Conceptual example. 

In the previous section, we computed the influence 
region of all answer and non-answer objects. 
Therefore, by applying the safe region definition, the 
area between points f and g can be considered a safe 
region. Points f and g are the safe exit points and form 
the boundary where the safe region of a query and its 

non-safe region meet. Figure 3 shows the safe exit 
points for the road network example. 

5. Performance Evaluation 

In this section, we evaluate the performance of our 
proposed Continuous Monitoring of RNN (CMRNN) 
algorithm by means of simulation experiments and a 
comparison with a conventional naïve method that 
recomputes the results at each timestamp. Section 5.1 
presents our experimental settings while section 5.2 
discusses our experimental results. 

5.1. Experimental Settings 

In the experiments, we used real-world road network 
data obtained from [17], which comprises roads in San 
Francisco consisting of approximately 175, 812 nodes 
and 223,000 edges. Table 2 lists the default parameters 
used in our experiments. In each experiment, we 
evaluated the performance by varying a single 
parameter with all the other parameters set to default 
values marked in bold. Each query object randomly 
selected a node and started moving towards it. 
Whenever a moving client reached a node, one of its 
adjacent nodes was selected randomly as the 
destination and it continued traveling towards it. Since, 
the query objects move, we simulated their movement 
using a network-based moving objects generator [2]. 

Table 2. Experimental parameter settings. 

Parameter Range 

Number of Objects
 

1, 5, 50, 70, 100 (×1000) 

Number of Queries (Nqry) 1, 3, 5, 7, 10 (×1000) 

Number of Requested RNNs (k) 8, 16, 32, 64, 128 

Query Speed (Vqry) 20, 40, 60, 80, 100 (km/h) 

 

We evaluated and compared the performance of our 
algorithm with that of a naive algorithm in terms of 
total computation cost (total CPU time) and total 
communication cost. Communication cost refers to the 
number of messages sent between server and clients. 

5.2. Experimental Results 

Figure 9 illustrates the effect of number of objects on 
computation cost. Both algorithms demonstrated poor 
performance when the number of objects was very 
high because then the algorithms needed to handle the 
updates of more objects. In addition, in the case of our 
CMRNN algorithm, the influence regions of more 
objects are calculated, which increases the 
computation time. However, when the number of 
objects was low or medium our algorithm performed 
better because of the safe region. 
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Figure 9. Effect of number of objects on computation time. 
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Figure 10 illustrates the effect of number of objects 

on communication cost. It shows that the messages 

sent by both algorithms tended to increase as the 

number of objects increased. However, our algorithm 

shows better performance because of the fact that 

when the query remains within the safe exit points, 

recomputation of query results is not required, which 

ultimately reduces the number of messages sent 

between query and server. 
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Figure 10. Effect of number of objects on communication cost. 

In Figures 11 and 12, we study the effect of the 

speed of the query objects on the performance of the 

algorithms. The naïve algorithm incurred constant 

computation and communication costs because each 

client in the naïve algorithm asked for updates at every 

timestamp, regardless of the speed of the moving 

query. For our CMRNN algorithm, the experimental 

results indicate that the performance of the algorithm 

decreased gradually as the speed of the query object 

increased because queries left their safe regions more 

frequently. The figures show that the communication 

and computation costs of our algorithm increased 

when the speed was very high. This is because the 

algorithm had to run all three phases (find UOs, 

compute the influence region of UOs and compute safe 

exit points) frequently.  
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Figure 11. Effect of speed on computation cost. 
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Figure 12. Effect of speed on communication cost. 

Figures 13 and 14 compare the performance of 

CMRNN and the naïve algorithm WRT the number of 

queries. Figure 13 shows that for both algorithms, 

computation time increased as the number of queries 

increased, but CMRNN performed much better. The 

communication cost of the naïve algorithm does not 

depend on the number of queries because each object 

reports its location whenever it changes its location 

(refer to Figure 14). However, the computation and 

communication costs of CMRNN increase mainly 

because more UOs are required to be found if the 

number of queries is large. The fact is that when the 

number of UOs is large then the influence region of 

more objects need to be computed, which degrades the 

performance of CMRNN. 
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Figure 13. Effect of number of queries on computation cost. 
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Figure 14. Effect of number of queries on communication cost. 

Figure 15 shows the performance trend when k was 

modified in real time while all the other parameters 

were set to the default values shown in Table 2. The 

simulation reveals an interesting trend and comparison 

between the performance of CMRNN and the naive 

algorithm. The horizontal axis in Figure 15 represents 

real time. At specified instances, the value of k was 

incremented. This resulted in temporary performance 

degradation for our CMRNN algorithm and caused 

spikes. For short durations, the naïve algorithm 

outperformed CMRNN for those values of k. However, 

after CMRNN updated its new objects database and 

computed safe exit points, its query processing time 

began to decrease again and it subsequently 

outperformed the naive algorithm. This gain in 

performance was sustained until there was another 

change in the value of k. These results lead to the 

conclusion that while the naïve algorithm is a good 

choice for systems with rapid variations in k, CMRNN 

based systems yield higher performance gains for 

systems with stable k. 
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Figure 15. Effect of k on computation time. 

6. Conclusions 

In this paper, we studied the processing of continuous 

RKNN queries in road networks and proposed a new 

algorithm called CMRNN that computes the safe exit 

points for moving RNN queries in road networks. The 

results of experiments conducted using real datasets 

indicate that our algorithm significantly reduces 

computation costs as well as the communication costs 

between server and client. Consequently, CMRNN 

could be highly beneficial in real-life scenarios where 

mobile devices have limited network bandwidth and 

where the server demands a high throughput. There are 

several promising directions for future research. We 

plan to extend the algorithm to cater to scenarios in 

which both the queries and the data objects are 

moving. 
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