
540 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

A Safe Exit Approach for Continuous Monitoring

of Reverse K-Nearest Neighbors in Road Networks

Muhammad Attique, Yared Hailu, Sololia GudetaAyele, Hyung-Ju Cho and Tae-Sun Chung

Department of Computer Engineering, Ajou University, South Korea

Abstract: Reverse K-Nearest Neighbor (RKNN) queries in road networks have been studied extensively in recent years.
However, at present, there is still a lack of algorithms for moving queries in a road network. In this paper, we study how to
efficiently process moving queries. Existing algorithms do not efficiently handle query movement. For instance, whenever a
query changes its location, the result of the query has to be recomputed. To avoid this recomputation, we introduce a new
technique that can efficiently compute the safe exit points for continuous RKNNs. Within these safe exit points, the query result
remains unchanged and a request for recomputation of the query does not have to be made to the server. This significantly
reduces server processing costs and the communication costs between the server and moving clients. The results of extensive
experiments conducted using real road network data indicate that our proposed algorithm significantly reduces
communication and computation costs.

Keywords: Continuous monitoring, reverse nearest neighbor query, safe exit algorithm, road network.

Received April 29, 2013; accepted July 11, 2013; published online December 3, 2014

1. Introduction

In recent years, Reverse Nearest Neighbor (RNN)

query processing has garnered a considerable amount

of attention based on applications such as location

based services, decision support and resource

allocation. Much research has been conducted and

several efficient algorithms provided in both Euclidean

and spatial networks. However, there is still a lack of

research on the processing of moving queries in road

networks. In addition, while a plethora of work have

been devoted to moving query processing [1, 4, 8, 9,

10, 14, 21, 23, 25, 26] they all focus on the Euclidean

space, not on road networks.
Given a query point q, a Reverse K-Nearest

Neighbor (RKNN) query retrieves all the data points
that have q as one of their K-Nearest Neighbors (KNN)
(K closest points). Consider an example of location-
based games, as shown in Figure 1, in which the goal
of each player is to shoot the player nearest to him.
Each player needs to continuously monitor his own
RNN to avoid being shot by other players. The closest
fighter to q is p1. However, p1 is not the RNN of q
because the closest point to p1 is p2, not q. The RNN of
q is p3 because q is the nearest neighbor to this fighter.
Thus, p3 is the fighter that fighter q should monitor.

Figure 1. Example of RKNN query.

RNN queries are generally categorized into two

types: Monochromatic RKNN (MRKNN) queries and

Bichromatic RKNN (BRKNN) queries. The above

example belongs to the monochromatic category as

both query objects and data objects share the same

type of objects, i.e., players.
Other efficient implementations of RNN query that

are of particular interest in information systems are
those that support user’s queries, such as online search
engines, multimedia search engines and GIS. For
instance, a business owner when deciding to open a
new restaurant may ask an RNN query such as “Where
is the best location for the Italian food restaurant?”,
this question can be rephrased as “how many users
consider this possible location to be the nearest Italian
food restaurant?”. Each candidate location for the
Italian food restaurant should start an RNN query and
the results then compared in order to choose the best
location. The above example deals with bichromatic
queries (which are defined as queries in which the
query objects and the data objects belong to two
different types of objects) because the data object and
query object are different types of objects. Another
interesting example of BRKNN queries is emergency
services such as enhanced 911 services. Whenever a
911 services center receives any emergency call, the
desire is to send this job to the team that is closest to
the emergency call location in order to get a good
response time.

The existing technique results in expensive
communication and computation costs if a query
changes its location. Therefore, the main challenge for
continuous monitoring algorithms is the maintenance
of the freshness of the query answer when the query
point moves freely and arbitrarily. A simple approach
is to have the client q periodically send requests to re-
evaluate the query results. However, this approach still

P1

P2

P3

q

A Safe Exit Approach for Continuous Monitoring of Reverse K-Nearest … 541

does not guarantee that results are fresh because the
query answer may still become stale in between each
call to the server. In addition, this approach is very
expensive in terms of computation and communication
costs.

Safe region-based algorithms have been introduced

as a means of overcoming the excessive computation

and communication costs associated with periodic

monitoring [3, 6, 29, 30]. The safe region of a query is

the region where a query answer remains unchanged,

provided that the query point is within the safe region.

The safe region technique avoids the back and forth

communication between client and server, although it

also allows a client to get fresh query results without

excessive overhead on the server side. However, to

provide the safe region (which may consist of complex

road segments) more network bandwidth is consumed

compared to simply providing a set of safe exit points

[3, 10] representing the boundary of the safe region.
In this paper, to overcome the problem outlined

above, we propose a new safe exit technique that
efficiently computes the safe exit points for moving
RNN queries in road networks. At each safe exit point,
the safe region of a query and its non-safe region meet
so that a set of safe exit points represents the border of
the safe region. In road networks, the safe exit
approach is more efficient than the safe region
approach because the communication cost between
query (client) and server is comparatively low. Until a
client q reaches a safe exit point, s/he is guaranteed to
remain in the safe region and thus the query answer is
valid. The query results and safe exit points are
recalculated only when q travels beyond the safe exit
points.

The following assumptions are made in our

proposed technique:

• We consider only BRKNN queries.

• Query objects move and data objects are static.

In this paper, we present techniques that can compute

safe exits efficiently. The contributions made are as

follows:

• We present a framework for continuous monitoring

of RKNN queries in road networks in our safe exit

technique proposal.

• We present novel pruning rules that optimize the

computation of safe exit points by minimizing the

size of the unpruned network and the number of

objects.

• A thorough experimental study confirms that our

approach outperforms a traditional approach that

does not use the safe exit approach, in terms of both

communication and computation costs.

The remainder of this paper is structured as follows:
Section 2 reviews existing work on continuous
monitoring of RKNN queries in Euclidean space and
road networks. Section 3 presents terminology
definitions and describes the problem. Section 4

elaborates on our proposed Safe Exit Algorithm (SEA)
for computing the safe exit points of moving nearest
neighbor queries in road networks. Section 5 presents a
performance analysis conducted of the proposed
technique. Section 6 concludes this paper.

2. Related Work

An RNN query for moving objects searches for those

objects that take object q as their nearest neighbor. In

recent years, reverse neighbor query processing has

received significant attention by the spatial database

systems research community. Many algorithms have

been proposed for the monitoring of RNNs, especially

in Euclidean space. However, there is still a lack of

efficient algorithms for road networks. Our related

work is divided into two sections: Section 2.1 covers

continuous RNN query processing in Euclidian space

while section 2.2 reviews continuous RNN query

processing in road networks.

2.1. Algorithms for Continuous RKNN Query

Processing in Euclidian Space

Korn and Muthukrishnan [14] were the first to

introduce the concept of RNN. They used the pre-

computing technique to search for RNNs. The main

drawback of this approach is that they were limited to

supporting RKNN queries for a fixed number of K and

they were also inefficient in processing object

movements. This preprocessing issue was first

addressed by Song and Roussopoulos [20] who

proposed the 60 degree pruning method which

partitions the entire space centered at a query q into

equal regions. It can be verified that the possible RNN

of q can only be the nearest point to q found in each

region. This also depicts that in 2D space, there are at

most six possible RNNs of q, which is the main

advantage of this algorithm. Another efficient

algorithm is TPL pruning, introduced by Tao et al.

[23], which uses the properties of half space to locate

candidates. The algorithms proposed in [21, 23] are

categorized as snapshot RNN algorithms.

A number of algorithms have also been proposed

for efficient monitoring of nearest neighbor queries,

continuous range queries and RNNs [6, 7, 11, 13, 14,

16, 18, 20, 21, 22, 24, 27]. The existing continuous

query processing algorithms place emphasis on

defining the monitoring region of a query and updating

the query result based on moving object’s location

updates. Benetis et al. [1] were the first to study

continuous RNN monitoring, but their proposed

scheme assumes that the velocity of objects are known.

Xia and Zhang [26] introduced an incremental,

scalable approach to the monitoring of continuous

RNNs. Their method is based on the 60 degree pruning

technique. In their approach, the monitoring region of

a continuous RNN query is defined as six pie regions

(determined by the query point and the six candidates)

542 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

and six arc-regions (determined by the six candidates

and their nearest neighbor). Theirs is an efficient

algorithm because it identifies and processes the

updates that fall into the monitoring region, unlike

other conventional methods. However, this scheme has

two major limitations; firstly, it only processes

monochromatic RNN queries and, secondly, it

assumes that at every time interval there are six RNNs,

which is the worst-case scenario. Kang et al. [12]

proposed a novel algorithm for monitoring continuous

RNNs called IGERN. It is based on the TPL-pruning

method and caters to both monochromatic and

BRKNN queries. It is more efficient than the 60

degree pruning based solutions because it monitors

fewer candidates as opposed to the entire space. The

trade off of this scheme is that it cannot be easily

extended to handle continuous RKNN queries where

K>1. Therefore, the monitoring region defined in it

only applies to continuous RNNs where K=1.
Wu et al. [25] proposed a technique to monitor

RKNNs that involves continuous filtering and
continuous refining. They determined that the refining
step is critical especially when K>1, as at that point the
refining cost becomes the system overhead. They
proposed a new refining framework called CRange-k,
which verifies candidate objects by issuing KNN
queries in each region rather than single nearest
neighbor queries. The users that are closer than the K

th

nearest neighbor in each region are the candidate
objects and they are verified if q is one of their K
closest facilities. To monitor the results, for each
candidate object, they continuously monitor the circle
around it that contains K nearest facilities. Cheema et
al. [3, 4, 5] proposed several schemes for the
monitoring of continuous RNNs. In [4], they used the
concept of influence zone and focused on continuous
BRKNN queries in which the query object is static and
the data objects are moving. In [6], they proposed a
new framework based on safe regions for both
Euclidean and road networks in which query and data
objects are both moving. This scheme significantly
improves the computation cost as it assigns each object
and query a safe region such that expensive
recomputation is not required as long as the query and
objects remain in their respective safe regions.

2.2. Algorithms for Continuous RKNN Query

Processing in Road Networks

The processing of RNN queries in road networks is
one of the recent emerging areas of research. Yiu et al.
[28] first addressed the issue of RNN in road networks
(they represented road networks as graphs) and
proposed an algorithm for both monochromatic and
BRKNN queries. Safar et al. [19] studied snapshot
RNN queries in spatial networks. They presented a
framework based on Network Voronoi Diagrams
(NVDs) to efficiently process RNN queries in road
networks. However, their scheme is not suitable for
continuous RNN queries due to the fact that an NVD

changes whenever a dataset changes its location,
resulting in high computation costs.

Sun et al. [22] presented a method for continuous
monitoring of BRKNN queries. They associated a
multiway tree with each query to define the monitoring
region, and only the updates in the monitoring region
affect the results. However, this method is limited to
bichromatic queries and also does not cater for K>1.
Moreover, their proposed scheme assumes that the
query objects are static.

Li et al. [15] proposed a novel algorithm for
continuous monitoring of RKNNs based on a Dual
Layer Multiway (DLM) tree in which they introduced
several lemmas to reduce the monitoring region and
filter the candidate objects. Their continuous
monitoring of RKNN method comprises two phases:
The initial result generating phase and the incremental
maintenance phase. Cheema et al. [6] proposed a safe
region approach for the monitoring of continuous
MRKNN and BRKNN queries in Euclidean and road
networks, as mentioned in section 2.1 and devised
pruning rules that reduce the monitoring region.

In the traditional techniques, every object reports its

location to the server at every timestamp regardless of

whether query results will be affected or not.

Consequently, such a computation model increases the

communication cost as it requires transmission of a

large number of location updates. In our framework,

each moving object reports its location update only

when it leaves the safe exits. This significantly saves

on communication costs. Existing approaches [6, 15]

have also addressed the abovementioned issue, but

their approach is safe region-based. In contrast, our

approach is safe exit-based and, as discussed earlier,

the safe exit approach is more efficient than the safe

region approach because the communication cost

between query (client) and server is comparatively

low.

3. Terminology and Problem Descriptions

A road network G is a weighted undirected graph

consisting of nodes and edges. An edge between two

nodes is denoted by e(n1, n2). W(e) is a function that

returns the weight of an edge e and represents the

length of its corresponding road segment.

Segment s(p1, p2) is the part of an edge between two

points, p1 and p2, on the edge. An edge consists of one

or more segments. An edge is also considered to be a

segment in which the nodes are the end points of the

edge.

Figure 2 shows an example of an undirected road

network with five nodes, a to e. Several edges and

segments are shown with their respective weights. For

example, the edge e(a, e) consists of segments s(a, o1),

s(o1, q) and s(q, e) having weights 3, 7 and 4,

respectively. There are eight objects in this example

(o1 to o7 and q). Query q and the data objects are shown

as star and rectangles, respectively.

A Safe Exit Approach for Continuous Monitoring of Reverse K-Nearest … 543

To simplify the presentation, Table 1 summarizes

the notations used in this paper.

Figure 2. Example of a road network.

Table 1. Notations used in this paper.

Notation Definition

G = (N, E, W) Graph Model of a Road Network

dist(a, b)

Length of the Shortest Path between Objects a and b

ni A Node in the Road Network

ei= (nj, nk) An Edge in the Edge set E

W(ei)= d(nj, nk) Weight of the Edge ei=(nj, nk)

q

A Query Point in the Road Network

k

The Number of Requested RNNs

O

The Set of Objects O={o1, o2, …, on}

pse A Safe Exit Point at which the Safe Region of q and its Non-Safe Region Meet

O+

Set of Answer Objects
+ + + +

1 2
{ , , … }= ,

n
O o o o

O-

Set of Non-Answer Object
- - -

1 2

-
{ , , …, }=

n
oO o o

IO+

Influence Region of Answer Objects

IO-

Influence Region of non-Answer Objects

3.1. Problem Description

In this paper, we primarily address the problem of
continuous monitoring of RKNN queries on moving
queries in road networks. To provide a clear
explanation, we use the example road network shown
in Figure 2, in which there are seven objects, o1 to o7
and a query q in a road network. Let us assume that a
moving query requests three RNNs at point P1. In
order to get the three RNNs, we expand the road
network from point q until we find them. As
mentioned earlier, query q is moving in a road network
and it moves from P1 to P2. As for getting the three
nearest neighbors at point P2, the simple approach is to
repeat the procedure executed at P1. However, this
recomputation whenever query q changes its location
significantly degrades the performance of the
algorithm. To address this issue, we introduce the safe
exit approach.

Figure 3 shows the safe region of q and its safe exit
points for the example in Figure 2. As shown in Figure
3, before q reaches either f or g, the RNNs of q are

{o1,

o4}. When q passes through either f or g, the query is
re-evaluated based on the updated location of q in
order to refresh the query answer and the safe exit
points.

Figure 3. Safe exit points for q.

4. SEA for Moving RKNN Queries

In this section, we present a new SEA for moving
RKNN queries in a road network. Algorithm 1 depicts
the skeleton of our proposed SEA for computing safe
regions. It consists of three phases: Finding of Useful
Objects (UOs) that could contribute to the safe region,
computation of the influence region of the UOs and
computation of safe exit points.

Algorithm 1: Computation of safe regions (o, q).

Input o: Data objects, q: Query object

Output: Safe Region (SR)

/*Phase 1: Retrieve UOs */

 Point set p’: road network (o, q)

 Point set A: {o
+
∈p’|dist (o, q)<dist(o, ok+1)} /* find answer

objects */

 Point set NA: {o
-
∈p’|dist (o, q)>dist (o, ok)}/* find non-

answer objects */

/*Phase 2: Computation of Influence Region */

 while A is non-empty do

 Point p ← pick object (A);

 Calculate influence region; /*details in Algorithm 2*/

 Store in influence region set IR
+
;

 end

 while NA is non-empty do

 Point p ← pick object (NA);

 if object= UO then

 Calculate influence region;/* details in Algorithm 2

*/

 Store in influence region set IR
-

 else

 prune the object

 end

/*Phase 3: Computation of Safe Region */

 Computesafe region from sets IR
+
 and IR

-

/*details in phase 3 section */

 Storesafe region SR;

 return SR;

4.1. Phase 1: Finding UOs

This phase aims at finding potential points that could
contribute to the computation of safe regions. We first
define some pruning rules to retrieve a small number
of data objects to avoid the computation cost. We then
divide the UOs into two types; namely, answer objects
(denoted by O

+) and non-answer objects (denoted by
O

-).
Before we present the pruning rules, let us first

define answer objects. An object o is called an answer
object if dist(o, q)< dist(o, o′) where o′ is any other
object in the road network. Similarly, we can
generalize it for RkNN: an object o is called an answer
object if dist(o, q)< dist(o, ok+1) where ok+1 is the (k+1)

th
object. In Figure 3, object o1 is the RNN of q because
the distance from o1 to q is less than that from o1 to any
other object in the road network. Likewise, if we want
to find the 3RNNs, objects o1 and o4 both are the
3RNNs of q because the distance from o4 to q is less
than that of the fourth nearest object.

Let us now look at the pruning rules that identify

the UOs:

544 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

• Pruning Rule 1: All answer objects are UOs.

Explanation: We can generalize the above definition

of answer objects to state that answer objects are

RNNs. Therefore, all RNNs should be considered

UOs.
• Pruning Rule 2: An object O cannot be a UO if its

kNN does not contain any O
+ (answer object).

Explanation: From the definition of safe exit points
(which we explain in detail in phase 3), the safe
region includes the intersection of all answer
objects and excludes the union of all non-answer
objects. In other words, if the influence region of a
non-answer object does not contain any portion of
the answer objects, then it cannot be a UO. In phase
2, we will explain how to calculate the influence
region of answer and non-answer objects.

Before we present the next pruning rule, let us
define the term blocking object. An object o is
called a blocking object if the shortest path between
q and o only contains answer objects. In other
words, a blocking object is considered the first non-
answer object in any particular path towards q. In
Figure 3, objects o2 and o5 are blocking objects.
Object o3 is not a blocking object because the
shortest path from o3 to q is {o3, b, o2, a, o1, q}, which
contains another blocking object, o2.

• Pruning Rule 3: An object o cannot be a UO if the
shortest path between q and o contains any blocking
object.

On applying these pruning rules to the road
network example, segments s(o2, a), s(a, o1), s(o1, q),
s(q, e), s(e, d), s(d, o4) and s(d, o5) are used to
construct an unpruned network and the rest of the
network is considered to be a pruned network.

4.2. Phase 2: Computation of Influence Region

for UOs

After we retrieve the set of UOs, the next step is to
compute the influence region of every UO.

• Influence Region of Answer Objects: Is defined as
follows:

() { (,) (,)
+ +

I o = p|dist o p ≤ 1 }
+

k+
dist o o

Where ok+1 denotes the (k+1)
th nearest object to o.

The influence region of an answer object can be

computed from the distance of the answer object to

the (k+1)
th answer object. Consider object o1 in

Figure 2: 3NNs of o1=(q, o2, o7) with weights (7, 7,

19).

Going by the definition of the influence region of

answer objects, we need to compute the distance to

the (k+1)
th object (in this example, it refers to 4NN),

which is object o3 and dist(o1, o3)=20. This means

that an area of up to 20 units, starting from o1

towards q is the influence region of o1. The

influence region comprises segments (o1, q), (q, e),

(e, d), (d, m) and (o1, q), (q, e), (e, d), (d, n) with

weights (7, 4, 7, 2), respectively. The sum of these

weights is 20, which is dist(o1, o3). Similarly, the

influence region of o4can be computed as follows:

3NNs of o4=(o3, o5, q) with weights (8, 10, 17).

Object o6 is the 4NN of q and dist(o4, o6)=18.

Therefore, the influence region of o4 is 18 units

from o4 in the direction of q.

The bold lines in Figures 4 and 5 show the

influence region of o1 and o4, respectively.

Figure 4. Influence region of o1.

Figure 5. Influence region of o4.

• Influence Region of Non-Answer Objects: Is

defined as follows:

 () { | (,) (,)}
-

kI o = p dist p q < dist p o

The influence region of a non-answer object can be

computed from the distance of an answer object to the

k
th object. Consider object o2 in Figure 2: 3NNs of

o2=(o1, o7, o3) with weights (7, 12, 13).

The influence region of object o2 is 13 units from o2

towards q since the distance from o2 to 3NN with o3 is

13. Similarly, if we consider o5, its third nearest

neighbor is o7 and dist(o5, o7)=14. Thus, the influence

region of object o5 is 14 units from o5 towards q.

The bold lines in Figures 6 and 7 show the influence

region of o2 and o5, respectively. The nearest neighbor

s for answer objects change when the query object

moves outside of the influence region, whereas in the

case of non-answer objects, the result changes when

the query object moves to the inside of the influence

region. In other words, the nearest neighbors of an

answer object remain the same until the query object

lies inside the influence region, but for non-answer

objects the nearest neighbors remain the same until the

query object lies outside of the influence region.

Figure 6. Influence region of o2.

(1)

(2)

A Safe Exit Approach for Continuous Monitoring of Reverse K-Nearest … 545

Figure 7. Influence region of o5.

Algorithm 2: Computation of influence region (A, NA).

Input A: Answer objects set, NA: non-answer objects set

Output: IR
+
 Influence Region of answer objects, IR

-
 Influence

Region of non-answer objects

/*Influence Region of answer objects */

while A is non-empty do

 Point x ← pick object (A);

 Compute distance from chosen object to ok+1;

 Expand the region from the chosen object to the ok+1

unit distance towards q;

 Store in the influence region set IR
+
;

 end

 while NA is non-emptydo

 Point y ← pick object (NA);

 Compute distance from the chosen object to ok;

 Expand the region from the chosen object to the ok

unit distance towards q;

Store in the influence region set IR
–

 end

 return IR
+ and IR

–

4.3. Phase 3: Computation of Safe Exit Points

The safe region S(q, r) of a query “q” is defined as

follows:

 (,) { }
+ -

S q r = IIO - UIO

The safe region of query q is based on the influence
region of answer objects and non-answer objects.
Figure 8 shows how the safe region can be computed
based on data points. In the figure, the dataset contains
four points, p1, p2, p3 and p4. The answer objects of
query q are {p2, p4}. The intersection of the influence
regions of all the answer objects is considered to be the
safe region. Secondly, in the example, data points {p1,

p3} are non-answer objects. The safe region of query q
should exclude the entire influence region of non-
answer objects.

 Figure 8. Conceptual example.

In the previous section, we computed the influence
region of all answer and non-answer objects.
Therefore, by applying the safe region definition, the
area between points f and g can be considered a safe
region. Points f and g are the safe exit points and form
the boundary where the safe region of a query and its

non-safe region meet. Figure 3 shows the safe exit
points for the road network example.

5. Performance Evaluation

In this section, we evaluate the performance of our
proposed Continuous Monitoring of RNN (CMRNN)
algorithm by means of simulation experiments and a
comparison with a conventional naïve method that
recomputes the results at each timestamp. Section 5.1
presents our experimental settings while section 5.2
discusses our experimental results.

5.1. Experimental Settings

In the experiments, we used real-world road network
data obtained from [17], which comprises roads in San
Francisco consisting of approximately 175, 812 nodes
and 223,000 edges. Table 2 lists the default parameters
used in our experiments. In each experiment, we
evaluated the performance by varying a single
parameter with all the other parameters set to default
values marked in bold. Each query object randomly
selected a node and started moving towards it.
Whenever a moving client reached a node, one of its
adjacent nodes was selected randomly as the
destination and it continued traveling towards it. Since,
the query objects move, we simulated their movement
using a network-based moving objects generator [2].

Table 2. Experimental parameter settings.

Parameter Range

Number of Objects

1, 5, 50, 70, 100 (×1000)

Number of Queries (Nqry) 1, 3, 5, 7, 10 (×1000)

Number of Requested RNNs (k) 8, 16, 32, 64, 128

Query Speed (Vqry) 20, 40, 60, 80, 100 (km/h)

We evaluated and compared the performance of our
algorithm with that of a naive algorithm in terms of
total computation cost (total CPU time) and total
communication cost. Communication cost refers to the
number of messages sent between server and clients.

5.2. Experimental Results

Figure 9 illustrates the effect of number of objects on
computation cost. Both algorithms demonstrated poor
performance when the number of objects was very
high because then the algorithms needed to handle the
updates of more objects. In addition, in the case of our
CMRNN algorithm, the influence regions of more
objects are calculated, which increases the
computation time. However, when the number of
objects was low or medium our algorithm performed
better because of the safe region.

100

T

im
e

(S
ec

o
n
d
s)

10

1

 1 2.5 5 10 15 25 50 75 125 200

 Number of Object (×1,000)

Figure 9. Effect of number of objects on computation time.

Naïve

CMRNN

(3)

546 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

Figure 10 illustrates the effect of number of objects

on communication cost. It shows that the messages

sent by both algorithms tended to increase as the

number of objects increased. However, our algorithm

shows better performance because of the fact that

when the query remains within the safe exit points,

recomputation of query results is not required, which

ultimately reduces the number of messages sent

between query and server.

70

 N
u
m

b
er

 o
f

M
es

sa
g
es

 (
×

1
0
,0

0
0
)

60

50

40

30

20

10

0

 1 2.5 5 10 15 25 50 75 125 200

 Number of Object (×1,000)

Figure 10. Effect of number of objects on communication cost.

In Figures 11 and 12, we study the effect of the

speed of the query objects on the performance of the

algorithms. The naïve algorithm incurred constant

computation and communication costs because each

client in the naïve algorithm asked for updates at every

timestamp, regardless of the speed of the moving

query. For our CMRNN algorithm, the experimental

results indicate that the performance of the algorithm

decreased gradually as the speed of the query object

increased because queries left their safe regions more

frequently. The figures show that the communication

and computation costs of our algorithm increased

when the speed was very high. This is because the

algorithm had to run all three phases (find UOs,

compute the influence region of UOs and compute safe

exit points) frequently.

8

 T

im
e

(S
ec

o
n
d
s)

7

6

5

4

3

2

1

0

 20 40 60 80 100
 Average Speed (in km/h)

Figure 11. Effect of speed on computation cost.

900

N
u
m

b
er

 o
f

M
es

sa
g
es

 (
×

1
0
,0

0
0
)

800

700

600

500

400

300

200

100

0

 20 40 60 80 100
 Average Speed (in km/h)

Figure 12. Effect of speed on communication cost.

Figures 13 and 14 compare the performance of

CMRNN and the naïve algorithm WRT the number of

queries. Figure 13 shows that for both algorithms,

computation time increased as the number of queries

increased, but CMRNN performed much better. The

communication cost of the naïve algorithm does not

depend on the number of queries because each object

reports its location whenever it changes its location

(refer to Figure 14). However, the computation and

communication costs of CMRNN increase mainly

because more UOs are required to be found if the

number of queries is large. The fact is that when the

number of UOs is large then the influence region of

more objects need to be computed, which degrades the

performance of CMRNN.

70

 T

im
e

(S
ec

o
n
d
s)

60

50

40

30

20

10

0

 50 100 250 500 750 1000

 Number of Queries

Figure 13. Effect of number of queries on computation cost.

1000

N
u
m

b
er

 o
f

M
es

sa
g
es

 (
×

1
0
,0

0
0
)

900

800

700

600

500

400

300

200

100

0

 50 100 250 500 750 1000

 Number of Queries

Figure 14. Effect of number of queries on communication cost.

Figure 15 shows the performance trend when k was

modified in real time while all the other parameters

were set to the default values shown in Table 2. The

simulation reveals an interesting trend and comparison

between the performance of CMRNN and the naive

algorithm. The horizontal axis in Figure 15 represents

real time. At specified instances, the value of k was

incremented. This resulted in temporary performance

degradation for our CMRNN algorithm and caused

spikes. For short durations, the naïve algorithm

outperformed CMRNN for those values of k. However,

after CMRNN updated its new objects database and

computed safe exit points, its query processing time

began to decrease again and it subsequently

outperformed the naive algorithm. This gain in

performance was sustained until there was another

change in the value of k. These results lead to the

conclusion that while the naïve algorithm is a good

choice for systems with rapid variations in k, CMRNN

based systems yield higher performance gains for

systems with stable k.

Naïve

CMRNN

Naïve

CMRNN

Naïve

CMRNN

Naïve

CMRNN

A Safe Exit Approach for Continuous Monitoring of Reverse K-Nearest … 547

80
 C

o
m

p
u
ta

ti
o
n
 T

im
e

(i
n
 S

ec
o
n
d
s)

70

60

50

40

30

20

10

0

 5 10 15 20 25 30
 Real Time (in Seconds)

Figure 15. Effect of k on computation time.

6. Conclusions

In this paper, we studied the processing of continuous

RKNN queries in road networks and proposed a new

algorithm called CMRNN that computes the safe exit

points for moving RNN queries in road networks. The

results of experiments conducted using real datasets

indicate that our algorithm significantly reduces

computation costs as well as the communication costs

between server and client. Consequently, CMRNN

could be highly beneficial in real-life scenarios where

mobile devices have limited network bandwidth and

where the server demands a high throughput. There are

several promising directions for future research. We

plan to extend the algorithm to cater to scenarios in

which both the queries and the data objects are

moving.

Acknowledgements

We thank anonymous reviewers for their valuable
comments and suggestions. This research was
supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF)
funded by the Ministry of Education
(2013R1A1A2A10012956 and NRF-
2012R1A1A2043422).

References

[1] Benetis R., Jensen C., Karciauskas G., and

SaltenisS., “Nearest Neighbor and Reverse

Nearest Neighbor Queries for Moving Objects,”

in Proceedings of International Symposium on

Database Engineering and Applications, pp. 44-

53, 2002.

[2] Brinkhoff T., “A Framework for Generating

Network-Based Moving Objects,”

GeoInformatica, vol. 6, no. 2, pp. 153-180, 2002.

[3] Cheema M., Brankovic L., Lin X., Zhang W.,

and Wang W., “Continuous Monitoring of

Distance-Based Range Queries,” IEEE

Transaction on Knowledge and Data

Engineering, vol. 23, no. 8, pp. 1182-1199, 2011.

[4] Cheema M., Lin X., Zhang W., and Zhang Y.,

“Influence Zone: Efficiently Processing Reverse

K Nearest Neighbors Queries,” in Proceedings of

the 27
th
 International Conference on Data

Engineering, Hannover, Germany, pp. 577-588,

2011.

[5] Cheema M., Lin X., Zhang Y., Wang W., and

Zhang W., “Lazy Updates: An Efficient

Technique to Continuously Monitoring Reverse

kNN,” the International Journal on Very Large

Data Bases, vol. 2, no. 1, pp. 1138-1149, 2009.

[6] Cheema M., Lin X., Zhang Y., Zhang W., and Li

X., “Continuous Reverse K Nearest Neighbors

Queries in Euclidean Space and in Spatial

Networks,” the International Journal on Very

Large Data Bases, vol. 21, no. 1, pp. 69-95,

2012.

[7] Cho H. and Chung C., “An Efficient and

Scalable Approach to CNN Queries in a Road

Network,” in Proceedings of the 31
st

International Conference on Very Large Data

Bases, Trondheim, Norway, pp. 865-876, 2005.

[8] Cho H., “Continuous Range K-Nearest Neighbor

Queries in Vehicular Ad Hoc Networks,” the

Journal of Systems and Software, vol. 86, no. 5,

pp. 1323-1332, 2013.

[9] Cho H., Choe S., and Chung T., “A Distributed

Approach to Continuous Monitoring of

Constrained K-Nearest Neighbor Queries in

Road Networks,” Mobile Information Systems,

vol. 8, no. 2, pp. 107-126, 2012.

[10] Cho H., Kwon S., and Chung T., “A Safe Exit

Algorithm for Continuous Nearest Neighbor

Monitoring in Road Networks,” Mobile

Information Systems, vol. 9, no. 1, pp. 37-53,

2013.

[11] Gao Y., Zheng B., Chen G., Lee W., Lee K., and

Li Q., “Visible Reverse K-Nearest Neighbor

Queries,” in Proceedings of the 25
th

International

Conference on Data Engineering, Shanghai,

China, pp. 1203-1206, 2009.

[12] Kang J., Mokbel M., Shekhar S., Xia T., and

Zhang D., “Continuous Evaluation of

Monochromatic and Bichromatic Reverse

Nearest Neighbors,” in Proceedings of the 23
rd

International Conference on Data Engineering,

Istanbul, Turkey, pp. 806-815, 2007.

[13] Kolahdouzan M. and Shahabi C., “Voronoi-

Based K Nearest Neighbor Search for Spatial

Network Databases,” in Proceedings of the 30
st

International Conference on Very Large Data

Bases, Ontario, Canada, pp. 840-851, 2004.

[14] Korn F. and Muthukrishnan S., “Influence Sets

based on Reverse Nearest Neighbor Queries,”

ACM SIGMOD Record, vol. 29, vo. 2, pp. 201-

212, 2000.

[15] Li G., Li Y., Li J., Shu L., and Yang F.,

“Continuous Reverse K Nearest Neighbor

Monitoring on Moving Objects in Road

Networks,” Information Systems, vol. 35, no. 8,

pp. 860-883, 2010.

Naïve

CMRNN

548 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

[16] Li P., Fan Y., and Du J., “An Efficient Technique

for Continuous K-Nearest Neighbor Query

Processing on Moving Objects in a Road

Network,” in Proceedings of the 10
th

International Conference on Computer and

Information Technology, Bradford, UK, pp. 627-

634, 2010.

[17] Real Datasets for Spatial Databases, available at:

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.

htm, last visited 2013.

[18] Rizvi S. and Chung T., “JAM: Justifiable

Allocation of Memory with Efficient Mounting

and Fast Crash Recovery for NAND Flash

Memory File Systems,” the International Arab

Journal of Information Technolgy, vol. 7, no. 4,

pp. 395-402, 2010.

[19] Safar M., Ebrahimi D., and Taniar D., “Voronoi-

Based Reverse Nearest Neighbor Query

Processing on Spatial Networks,” Multimedia

Systems, vol. 15, no. 5, pp. 295-308, 2009.

[20] Song Z. and Roussopoulos N., “K-Nearest

Neighbor Search for Moving Query Point,” in

Proceedings of the 7
th
 International Symposium

Advances in Spatial and Temporal Databases,

California, USA, pp. 79-96, 2001.

[21] Stanoi I., Agrawal S., and Abbadi A., “Reverse

Nearest Neighbor Queries for Dynamic

Databases,” available at: http://infolab.usc.edu/

csci599/Fall2007/papers/b-2.pdf, last visited

2013.

[22] Sun H., Jiang C., Liu J., and Sun L., “Continuous

Reverse Nearest Neighbor Queries on Moving

Objects in Road Networks,” in Proceedings of

the 9
th
 International Conference on Web-Age

Information Management, Hunan, China, pp.

238-245, 2008.

[23] Tao Y., Papadias D., and Lian X., “Reverse Knn

Search in Arbitrary Dimensionality,” in

Proceedings of the 30
th
 International Conference

on Very Large Data Bases, Ontario, Canada, pp.

744-755, 2004.

[24] Wang H. and Zimmermann R., “Snapshot

Location-Based Query Processing on Moving

Objects in Road Networks,” in Proceedings of

the 16
th
 ACM SIGSPATIAL International

Conference on Advances in Geographic

Information Systems, California, USA, 2008.

[25] Wu W., Yang F., Chan C., and Tan K.,

“Continuous Reverse K-Nearest-Neighbor

Monitoring,” in Proceedings of the 9
th

International Conference on Mobile Data

Management, Beijing, China, pp. 132-139, 2008.

[26] Xia T. and Zhang D., “Continuous Reverse

Nearest Neighbor Monitoring,” in Proceedings

of the 22
nd

 International Conference on Data

Engineering, Georgia, USA, 2006.

[27] Xuan K., Zhao G., Taniar D., and Srinivasan B.,

“Continuous Range Search Query Processing in

Mobile Navigation,” in Proceedings of the 14
th

International Conference on Parallel and

Distributed Systems, Victoria, Australia, pp. 361-

368, 2008.

[28] Yiu M., Mamoulis N., Papadias D., and Tao Y.,

“Reverse Nearest Neighbor in Large Graphs,”

IEEE Transactions on Knowledge and Data

Engineering, vol. 18, no. 4, pp. 540-553, 2006.

[29] Yung D., Yiu M., and Lo E., “A Safe-Exit

Approach for Efficient Network-Based Moving

Range Queries,” Data Knowledge Engineering,

vol. 72, pp. 126-147, 2012.

[30] Zhang J., Zhu M., Papadias D., Tao Y., and Lee

D., “Location-Based Spatial Queries,” available

at: http://infolab.usc.edu/csci599/Fall2007/papers

/c-4.pdf, last visited 2013.

Muhammad Attique received the

BCs degree in information and

communication systems engineering

from National University of Science

and Technology, Pakistan, in 2008.

He is currently doing MS degree in

computer engineering from Ajou

University, South Korea. His research interests include

location based services, spatial queries in road

network, moving objects and moving query processing

in mobile networks.

Yared Hailu received the BCs

degree in electrical engineering from

Arba Minch University, Ethiopia in

2008; received Ms degree in

computer engineering from Ajou

University, South Korea 2013. His

current research interest includes

flash memory storages, embedded system, energy

efficient computing and location based services.

Sololia GudetaAyele received

BCs degree in electrical

engineering from Haramaya

University, Dire Dawa, Ethiopia in

2011. She is currently perusing

MSC degree in Computer

engineering in Ajou University,

South Korea. Her research interest includes flash

memory performance enhancement, location based

services, spatial queries in road network, moving

objects and moving query processing in mobile

networks.

A Safe Exit Approach for Continuous Monitoring of Reverse K-Nearest … 549

Hyung-Ju Cho received his BCs

and MS degrees in computer

engineering from Seoul National

University in 1997 and 1999,

respectively and his PhD degree in

computer science from KAIST in

2005. He is currently a research

assistant professor at the department of information

and computer engineering, Ajou University, South

Korea. His current research interests include moving

object databases and query processing in mobile peer-

to-peer networks.

Tae-Sun Chung received the BCs

degree in computer science from

KAIST, in 1995 and the MS and

PhD degree in computer science

from Seoul National University, in

1997 and 2002, respectively. He is

currently an associate professor at

school of information and computer engineering at

Ajou University. His current research interests include

flash memory storages, XML databases and database

systems.

