
550 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

A New Algorithm for Finding Vertex-Disjoint Paths

Mehmet Kurt
1
, Murat Berberler

2
, and Onur Ugurlu

3

1
Department of Mathematics and Computer, Izmir University, Turkey
2
Department of Computer Science, Dokuz Eylul University, Turkey

3
Department of Mathematics, Ege University, Turkey

Abstract: The fact that the demands which could be labelled as “luxurious” in the past times, have became requirements
makes it inevitable that the service providers do new researches and prepare alternative plans under harsh competition

conditions. In order to, provide the customers with the services in terms of the committed standards by taking the possible

damages on wired and wireless networks into consideration. Finding vertex disjoint paths gives many advantages on the wired

or wireless communication especially on Ad-Hoc Networks. In this paper, we suggest a new algorithm that calculates

alternative routes which do not contain common vertex (vertex-disjoint path) with problematic route during a point-to-point

communication on the network in a short time and it is compared to similar algorithms.

Keywords: Vertex-disjoint paths, multipath, Ad-Hoc wireless networks.

Received September 2, 2013; accepted March 29, 2014; published online December 3, 2014

1. Introduction

Today, telecommunications technology continues to

progress at an enthusing rate. Just a few decades ago,

we were greatly pleased with audio communication

despite noise on the wired telephone network,

however, we are not pleased with the wireless network

through which we cannot get the expected quality

regarding both video and audio communications (when

the audio, video and speed rate standards are taken into

considerations)

That those needs which could be labelled as luxury

turned out to be necessary needs today makes the

service providers make new researches considering the

possible damages on the wired or wireless networks

that are used in order to, enable the service providers

give their customers the services in the standards that

they gave under harsh competitive financial

environment.

In recent years, one of the subjects on which the

researches have focused is the MultiPath that came out

in line with alternative plan preparation. This system

provides many advantages for both wired and wireless

[2].

Wired systems, for instance through a complex

communication network, data transmission from one

point to another can occur through many different

ways. These differences may cause a variety of

possibilities. Problem such as damage on the route or a

slowdown due to an unusual traffic can be overcame

by putting alternative routes into action. Transmission

rate of the data stack can be increased by parallel

paths.

“Ad-Hoc Networks” which is related to the concept

of multipath emerges as a highly active research topic

due to intense interest in wireless systems in recent

years. [1, 12, 18] Increasing use of Personal Digital

Assistant (PDA) devices, advanced mobile phones and

personal computers with the wireless adapter

represents “Ad-Hoc Networks”. The members of these

networks are both receivers (client) also transmitters

(server). A device, which is on the network, can

transmit the data it received to other devices in range.

In the example given in Figure 1, uppercase letters

indicate devices of the network and lowercase letters

indicate the coverage area of the devices. For instance,

the device that is indicated as C can send data to B, D,

E and F devices and also receive data from B, D and E

devices. This structure can be modelled by the directed

graph indicates in Figure 2.

Figure 1. Members and their ranges.

Figure 2. Graph model for Figure 1.

The fact that a device can transmit an incoming data
to the other devices in its range enables the possibility
of connection through various ways from any device to
another.
Figures 1 and 2 show that it is possible to reach to

device G from device C via these routes: C-D-E-F-G
or C-E-F-G or C-F-G.
In some cases, there may be a lot of data request

from device C to device G most densely on the route

C-F-G. In such a case, if an alternative route without

any common device is found then, the traffic can be

A New Algorithm for Finding Vertex-Disjoint Paths 551

directed to that route and transmission quality problem

of the network can be overcame. C-E-G route can be

chosen as an alternative of C-F-G.

An important issue in the concept of multipath is the

necessity of independent alternative ways. The routes

to be found due to a damaged member and available

connected routes, should be vertex-disjoint (node-

disjoint), a graph theory terminology, because any

device of the former route have already been damaged.

2. Literature Review

Scientists have done many researches about multipath

so far. A general analysis comparing multipath

algorithms and well-chosen single path algorithms

have been done by Cidon et al. [6]. They pointed out

the necessity of multipath algorithms for the interactive

network structures. The shortest path algorithms on the

basis of the first studies about disjoint-path is chosen

as the starting point [8, 19, 20]. However, these studies

failed to consider the condition of vertex-disjoint path

in the proposed algorithms.
In the following years, several studies had been

conducted which ignored the condition of vertex-

disjoint path but proposed methods that aimed at

minimizing the lengths of disjoint paths. In same of

these methods, constraints regarding the use of all

vertex are stated same studies are about minimizing the

energy consumed on the network [3, 4, 14, 15].

Another term of disjoint multipaths is edge-disjoint

paths enables re-usage of nodes used in the graph. In

fact vertex-disjoint paths include edge-disjoint paths.

In this study Guo and etc., have made the definitions of

edge-disjoint paths and offered an algorithm about

finding them.

Studies regarding the algorithms about the number

of vertex-disjoint paths are generally carried out for

special graph structures. Methods about special graph

types such as star graphs, n-k star graphs, hierarchical

cubic graphs, fixed-clique graphs and circular-arc. [5,

9, 10, 11, 13, 16, 17].

The algorithm including vertex-disjoint paths which

will be valid for all graph structures is the rearranged

of Ford-Fulkerson algorithm through.

3. Modified Ford-Fulkerson Algorithm

Ford-Fulkerson algorithm is published in 1956. This

algorithm is aims to find route that the most amount of

flow from source vertex to target vertex on the graph

model in which each edges have a flow capacity.

The working principle of the algorithm is as

follows: Finds a path from source vertex to target

vertex. It passes the small flow capacity on the path.

Then, it finds a new path and passes the new small

flow capacity on the new path. Process continues until

total flow finished or there is no new path.

Distinctly, the algorithm will find all the paths if the

edge capacities was equal to 1. Paths are disjoint

although are not the vertex-disjoint.

In this study, we added to Ford-Fulkerson algorithm

a condition that nodes could be used once and encoded

it in C programming language.

4. A New Algorithm: MebDisjPath

MebDisjPath algorithm finds vertex-disjoint paths on

the any kind of graph. The working principle of the

algorithm is as follows:

• Step 1: Finds the shortest paths between any two

nodes on the graph. In fact, the values required for

the algorithm are the shortest path lengths from each

vertices to target vertex. An example is illustrated in

Figure 3. S is the source vertex and T is the target

vertex. Numbers in other vertices are shortest path

length from them to T.

Figure 3. Final state example of step 1.

• Step 2: Starts walking with a neighbour of source
vertex which is the closest vertex to target vertex via
information on step 1. In Figure 4 we can see 4
neighbours and their shortest path lengths are 20,
17, 32 and 35. So, algorithm continuous to select the
vertex has 17. For a special case, if the most close
vertex’s neighbours are more than 1, then it
continuous to select a vertex that is the most close to
target vertex among them. It is illustrated in Figure
5.

Figure 4. Final state example of step 2.

Figure 5. An example for the special case explained in step 2.

• Step 3: When the path has been completed, it

marked (removed vertices and edges) vertices on

this path. Because they could not be used again.
• Step 4: Continuous until a new path which could not
be found.

552 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

Figure 6. A path completed.

Figure 7. Finding path is removed and re-calculated shortest path

lentghs.

The algorithm can find fewer paths than it should be
because it gives priority to the shortest path between
source and target vertices. To solve this problem, each
edge on the missing paths are removed one by one and
re-calculated paths again after the first step of the
algorithm. If the new path number found is equal to the
first then the edge is added to graph again. If the new
path number found is more than the first, the record is
updated. In this case, the edge is not added to graph.
When the algorithm terminates, all of the vertex
disjoint paths will have been found.
As a result, all cases which need record update are

reduced in two groups, (a) and (b). They have been
illustrated below in Figures 8, 9, 10, 11, 12 and 13.
Other all cases match with group (a) or group (b).

Figure 8. Group (a).1.

Figure 9. Group (a).2.

Figure 10. Group (a).3.

Figure 11. Group (b).1.

Figure 12. Group (b).2.

Figure 13. Group (b).3.

Meaning of index used in Figures 8 and 9 is:

x= a or b

● a: If the edge which must be erased was neighbor to
source vertex.

● b: If the edge which must be erased was not
neighbor to source vertex.

● (x).1: Simple graph.
● (x).2: Missing path, after the first result.
● (x).3: New paths found by removing edge.

BFS algorithm has been modified to finding the
shortest paths in the first step of our algorithm. The
complexity of modified BFS is O(m+n) for unweighted
graphs [7]. On the other part of our algorithm’s
complexity is O(n2) because the largest cost is routing
n×n matrix. Total complexity for our algorithm is
O(Epn2) as its steps have been run all of the paths. P is
the total number of vertex-disjoint paths. E is the total
number of edges found after the first step of the
algorithm.

5. Analysis of Exam Results

They have been produced 90 kinds of matrix for
testing and its analysis.
Matrices which are shown on the Table 1 contains

100, 200, …, 1000 vertices and vertex-disjoint paths
about %25, % 50, %75, %95 and %100 ratio.

Table 1. For vertex-disjoint paths ratio (mm: ss. sp-minute: second.

split second).

Number

of

Vertices

Path Ratio %25 %50 %75 %95 %100

G
a
m

s

F
fd

is
jp

a
th

M
eb

d
is
jp

a
th

G
a
m

s

F
fd

is
jp

a
th

M
eb

d
is
jp

a
th

G
a
m

s

F
fd

is
jp

a
th

M
eb

d
is
jp

a
th

G
a
m

s

F
fd

is
jp

a
th

M
eb

d
is
jp

a
th

G
a
m

s

F
fd

is
jp

a
th

M
eb

d
is
jp

a
th

100 0.344 0 0 0.344 0 0 0.344 0.01 0 0.35 0 0 0.35 0 0

200 1.016 0.03 0 1.125 0.04 0.01 1.031 0.04 0.01 1.28 0.05 0.01 1.28 0.04 0

300 2.266 0.07 0.02 2.859 0.12 0.04 2.672 0.18 0.02 3.313 0.16 0.01 2.93 0.10 0

400 4.891 0.13 0.04 5.875 0.27 0.08 5.312 0.39 0.05 7.125 0.27 0.01 5.67 0.24 0

500 9.,047 0.23 0.05 10.64 0.44 0.13 10.344 0.72 0.09 15.016 0.47 0.01 10.04 0.40 0

600 14.5 0.41 0.13 18.29 0.66 0.21 15.570 1.19 0.14 23.890 0.91 0.03 15.54 0.71 0

700 21.,40 0.63 0.18 28.42 1.07 0.35 24.485 1.88 0.24 38.688 1.41 0.04 23.35 1.15 0

800 32.07 0.97 0.28 38.53 1.66 0.49 35.406 2.85 0.30 1:02.73 2.13 0.06 31.76 2.55 0

900 39.93 1.38 0.35 54.75 2.43 0.70 53.094 4.14 0.43 1:36.31 3.14 0.06 42.59 2.61 0.01

1000 52.50 1.90 0.65 1:17.95 3.40 1.09 1:10.84 5.64 0.61 1:50.14 4.50 0.08 55.57 5.09 0.01

The total numbers of matrices are 50. Matrices

which are shown on the Table 2 contains 100, 200, …,
1000 vertices and numbers elements of 1 about 25, 50,
75 and %95. The total numbers of matrices are 50.

Removed

Finding Path

Missing Path 1

Missing Path 2

Removed

Missing Path 2

Missing Path 1

Finding Path

A New Algorithm for Finding Vertex-Disjoint Paths 553

Table 2. Number of 1’s ratio (mm: ss. sp-minute: second. split
second).

Number of

Vertices

1’s Ratio %25 %50 %75 %95

G
a
m

s

F
fd

is
jp

a
th

M
eb

d
is
jp

a
th

G
a
m

s

F
fd

is
jp

a
th

M
eb

d
is
jp

a
th

G
a
m

s

F
fd

is
jp

a
th

M
eb

d
is
jp

a
th

G
a
m

s

F
fd

is
jp

a
th

M
eb

d
is
jp

a
th

100
25 PATH 42 PATH 72 PATH 94 PATH

0.344 0 0 0.344 0 0 0.344 0 0 0.375 0 0

200
51 PATH 94 PATH 151 PATH 192 PATH

0.812 0.02 0.02 1.00 0.05 0.02 1.109 0.05 0.01 1.235 0.05 0

300
74 PATH 149 PATH 215 PATH 288 PATH

2.032 0.05 0.05 2.453 0.15 0.05 2.860 0.18 0.03 3.266 0.14 0.01

400
105 PATH 191 PATH 298 PATH 381 PATH

4.422 0.14 0.07 5.187 0.28 0.11 5.703 0.34 0.05 7.110 0.23 0.01

500
131 PATH 245 PATH 370 PATH 462 PATH

8.454 0.24 0.14 9.593 0.5 0.16 10.93 0.6 0.11 13.21 0.47 0.01

600
144 PATH 301 PATH 452 PATH 563 PATH

13.01 0.34 0.25 15.06 0.83 0.31 19.81 1.01 0.16 28.73 0.8 0.03

700
165 PATH 344 PATH 512 PATH 660 PATH

19.06 0.53 0.44 22.21 1.25 0.43 28.29 1.55 0.23 37.37 1.19 0.04

800
178 PATH 395 PATH 573 PATH 757 PATH

26.26 0.71 0.54 31.35 1.9 0.65 35.96 2.32 0.34 46.71 1.91 0.04

900
214 PATH 436 PATH 693 PATH 856 PATH

35.67 1.1 0.97 44.65 2.7 1.05 51.09 3.64 0.41 1:19.12 2.75 0.06

1000
243 PATH 486 PATH 741 PATH 957 PATH

47.48 1.54 1.40 1:0.03 3.71 1.51 1:10.17 6.96 0.94 2:21.09 5.39 0.07

● MebDisjPath: The new algorithm’s results.

● FFDisjPath: The modified ford-fulkerson

algorithm’s results.

● Gams: general algebraic modelling system results.

● Computer system configuration: Intel 2.4GHz, 2GB

RAM, linux mandriva 11

● Compiler and optimizer: Gcc 4.2 compiler for linux,

-O2 optimizer.

Moreover, GAMS 22, 5 version is used to finding
optimum solutions of problem. It is possible to more
clearly examine the results on the Table 1 with
following figures. Let compare to FFDisjPath and
mebDisjPath methods with different paths ratios via
Figures from 14 to 21.

Figure 14. %25 path ratio.

Figure 15. %50 path ratios.

Figure 16. %75 path ratio.

Figure 17. %95 path ratio.

Figure 18. %100 path ratio.

Figure 19. 1000 vertices (1: %25 path ratio, 2: %50 path ratio, …).

Figure 20. 900 vertices (1. %25 path ratio, 2. %50 path ratio …).

Figure 21. 300 vertices (1. %25 path ratio, 2. %50 path ratio, …).

We can make the following comments through these

figures:

• In the same path ratios, although the work time
increases, the speed of mebDisjPath algorithm is
better than FFDisjPath.

• In almost all test mebDisjPath works in less than
one second, whereas FFDisjPath can work in five or
six seconds.

• For the same number of vertices, process time is
maximum in some of the path rations. This ratio is
about 75% for FFDisjPath, whereas it is about 50%
for mebDisjPath.

It is possible to more clearly examine the results on the
Table 2 with following figures. Let compare to
FFDisjPath and mebDisjPath methods with different
numbers of 1’s ratio via Figures from 22 to 29.

Figure 22. 1’s ratio %25.

Figure 23. 1’s ratio %50.

Figure 24. 1’s ratio %75.

 FFDisjPath
 MebDisjPath

 FFDisjPath
 MebDisjPath

 FFDisjPath
 MebDisjPath

 FFDisjPath
 MebDisjPath

 FFDisjPath
 MebDisjPath

 FFDisjPath
 MebDisjPath

 FFDisjPath
 MebDisjPath

 FFDisjPath
 MebDisjPath

 FFDisjPath
 MebDisjPath

 FFDisjPath
 MebDisjPath FFDisjPath

 MebDisjPath

554 The International Arab Journal of Information Technology, Vol. 12, No. 6, November 2015

Figure 25. 1’s ratio %95.

Figure 26. 1000 vertices (1. %25 1’s ratio, 2. %50 1’s ratio, …).

Figure 27. 900 vertices (1. %25 1’s ratio, 2. %50 1’s ratio, …).

Figure 28. 800 vertices (1. %25 1’s ratio, 2. %50 1’s ratio, …).

Figure 29. 300 vertices (1. %25 1’s ratio, 2. %50 1’s ratio, …).

We can make the following comments through these

figures:

• In the same 1 density ratio, although the work time

increases as the number of vertices increases, the

speed of mebDisjPath is beter than FFDisjPath.

• In almost all test mebDisjPath works in less than

one second whereas FFDisjPath can work

approximately five or six seconds for the graphs

which have got a lot vertices or 50% 1 density.

• In the same number of vertices, process time is

maximum in some of the 1 density rations. This

ratio is about 75% for FFDisjPath, whereas it is

about 50% for mebDisjPath.

• mebDisjPaths performs much better than

FFDisjPath in graphs which have got big 1 density

ratio.

All of the programs and tested problems which are

used to calculate algorithm’s perform are published on

http://kisi.deu.edu.tr/murat.berberler/ANAfFVDP/

6. Conclusions

According to results derived from the proposed

algorithm finding the vertix disjoint paths in terms of

the shortest paths towards the target vertex is a

considerably rapid method.

MebDisjPath Algorithm is faster than FFDisjPath as

the number of vertices increases in the same disjoint-

vertex ratio.

MebDisjPath algorithm is faster than FFDisjPath as

the 1 density ratio increases in the same vertices

number.

It is thought that similar point of view with

mebDisjPath Algorithm gives results to us for edge-

disjoint paths. Also this point of view can give results

for vertex-disjoint paths which they contain k=2, 3, …

common vertices.

References

[1] Abbas A., “A Hybrid Protocol for Identification

of a Maximal Set of Node Disjoint Paths in

Mobile Ad-Hoc Networks,” the International

Arab Journal of Information Technology, vol. 6,

no. 4, pp. 344-358, 2009.

[2] Ben-Asheri Y., Feldman S., and Feldman M.,

“Dynamic Multipath Allocation in Ad Hoc

Networks,” the Computer Journal, vol. 54, no. 2,

pp. 197-212, 2011.

[3] Chang H. and Tassiulas L., “Energy Conserving

Routing in Wireless Ad-Hoc Networks,” in

Proceedings of the 19
th
 Annual Joint Conference

of the IEEE Computer and

Communications Society, pp. 22-31, 2000.

[4] Chang H. and Tassiulas L., “Fast Approximate

Algorithms for Maximum LifeTime Routing in

Wireless Ad-Hoc Networks,” in Proceedings of

the European Commission International

Conference on Networking Broadband

Communications, High Performance Networking,

and Performance of Communication Networks,

Paris, France, pp. 702-713, 2000.

[5] Chen C. and Chen J., “Nearly Optimal One-to-

Many Parallel Routing in Star Networks,” IEEE

Transaction on Parallel and Distributed Systems,

vol. 8, no. 12, pp. 1196-1202, 1997.

[6] Cidon I., Rom R., and Shavitt Y., “Analysis of

Multi-Path Routing,” IEEE/ACM Transactions

on Networking, vol. 7, no. 6, pp. 885-896, 1999.

[7] Cormen H., Leiserson E., Rivest L. and Stein C.,

Introduction to Algorithms, MIT Press, 2001.

[8] Eppstein D., “Finding the k Shortest Path,” in

Proceedings of the 35
th

 Annual Symposium on

Foundation of Computer Science, New Mexico,

USA, pp. 154-165, 1994.

[9] Fu S., Chen H. and Duh R., “Node-Disjoint Paths

and Related Problems on Hierarchical Cubic

Networks,” Networks, vol. 40, no. 3, pp. 142-

154, 2002.

[10] Fujita S., “Polynomial Time Algorithm for

Constructing Vertex-Disjoint Paths in

Transposition Graphs,” Networks, vol. 56, no. 2,

pp. 149-157, 2010.

 FFDisjPath
 MebDisjPath

 FFDisjPath
 MebDisjPath

 FFDisjPath
 MebDisjPath

 FFDisjPath
 MebDisjPath

 FFDisjPath
 MebDisjPath

A New Algorithm for Finding Vertex-Disjoint Paths 555

[11] Gu P. and Peng S., “Node-to-Set Disjoint Paths

Problem in Star Graphs,” Information Processing

Letters, vol. 62, no. 4, pp. 201-207, 1997.

[12] Guo Y., Kuipers F., and Van Mieghem P., “Link-

Disjoint Paths for Reliable Qos Routing,” the

International Journal of Communications

Systems, vol. 16, no. 9, pp. 779-798, 2003.

[13] Gurski F. and Wanke E., “Vertex Disjoint Paths

on Clique-Width Bounded Graphs,” Theoretical

Computer Science, vol. 359, no. 1, pp. 188-199,

2006.

[14] Kang I. and Poovendran R., “Maximizing Static

Network Lifetime of Wireless Broadcast Ad-Hoc

Networks,” in Proceedings of International

Conference on Communication, Alaska, USA,

pp. 2256-2261, 2003.

[15] Liang W. and Liu Y., “On-Line Disjoint Path

Routing for Network Capacity maximization in

Energy-Constrained Ad-Hoc Networks,” Ad-Hoc

Networks, vol. 5, no. 2, pp. 272-285, 2007.

[16] Lin C. and Duh R., “Constructing Vertex-

Disjoint Paths in (n,k)-Star Graphs,” Information

Sciences, vol. 178, no. 3, pp. 788-801, 2008.

[17] Natarajan S. and Sprague P., “Disjoint Paths in

Circular Arc Graphs,” Nordic Journal of

Computing, vol. 3, no. 3, pp. 256-270, 1996.

[18] Sesay S., Yang Z., and He A., “Survey on Mobile

Ad-Hoc Wireless Network,” Information

Technology Journal, vol. 3, no. 2, pp. 168-175.,

2004.

[19] Sidhu D., Nairand R., and Abdallah S., “Finding

Disjoint Paths in Networks,” ACM SIGCOMM

Computer Communication Review, vol. 21, no. 4,

pp. 43-51, 1991.

[20] Sidhu P., Abdauah S., and Nair R., “A Distance

Vector Algorithm for Aletnate Path Routing,”

Technical Report, University of Maryland, 1990.

Mehmet Kurt assistant professor

received his BE, ME and PhD

degrees in mathematics and

computer science from Ege

University in 2000, 2004 and 2010.

Currently, he is with mathematics

and computer science, Izmir University, Turkey. He

research interests include graph theory, computer

networks and algorithms.

Murat Berberler received his BE,

ME, PhD degrees in mathematics

and computer science from Ege

University in 2003, 2006 and 2009.

Currently, he is with school of

computer science, Dokuz Eylul

University, Turkey. He research

interests include computer networks, design and

analysis of algorithms and mathematical modeling.

Onur Ugurlu received his BE

degree in mathematics in 2011.

Currently, he is is the ME degree

candidate with school of computer

science, Ege University, Turkey. His

research interests include artificial

intelligence and graph theory.

