
The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015 719

Preventing Collusion Attack in Android

Iman Kashefi
1
, Maryam Kassiri

2
, and Mazleena Salleh

1

1
Department of Computer Science, Universiti Teknologi Malaysia, Malaysia

2
Department of Computer and Information Technology, Islamic Azad University, Iran

Abstract: Globally, the number of Smartphone users has risen above a billion, and most of users use them to do their day-to-

day activities. Therefore, the security of smartphones turns to a great concern. Recently, Android as the most popular

smartphone platform has been targeted by the attackers. Many severe attacks to Android are caused by malicious applications

which acquire excessive privileges at install time. Moreover some applications are able to collude together in order to

increase their privileges by sharing their permissions. This paper proposes a mechanism for preventing this kind of collusion

attack on Android by detecting the applications which are able to share their acquired permissions. By applying the proposed

mechanism on a set of 290 applications downloaded from the Android official market, Google Play, the number of detected

applications which potentially are able to conduct malicious activities increased by 12.90% in compare to the existing

detection mechanism. Results showed that there were 4 applications among the detected applications which were able to

collude together in order to acquire excessive privileges and were totally ignored by the existing method.

Keywords: Android security, collusion attacks, colluding applications, over-privileged applications.

Received March 10, 2013; accepted May 6, 2014; published online August 16, 2015

1. Introduction

Today smartphones are ubiquitous; by providing
various services and different functionalities,
smartphones have become the inseparable part of
people’s life. Google Android is the most famous
smartphone platform and could possess the first rank in
mass-production of application development [18].
Android has dominated smartphone market by
attracting most phone manufacturers, carriers, and
developers to produce their services and applications
[24]. The number of Android users grows
tremendously [19]. According to a recent report
released by mobile security firm Lookout, the Android
Market is growing at three times the rate of Apple’s
App store [4]. There are currently near 1.5 million
Android apps in the market with a huge number of
downloads each day [10]. Dissimilar to Apple, Google
has no mechanism in auditing applications published in
market [10]. Therefore, from time to time, it may need
to remove malicious applications from the market after
they are proved to contain malware [4] or when
enough people registered complaints for an application
[16]. Moreover, since everyone who has registered as
an Android developer has permission to upload his/her
application to Android market, it has been changed to a
potential place for attackers to fulfill their malicious
intentions [3].

The occurrence of attacks reveals that Android’s
permission framework has some vulnerability which is
targeted by attackers. Currently, Android Operating
System (OS) is limited to promote users to review and
approve the permissions requested by an application at
install time [13]. The most common attacks are
perpetrated by applications which misuse critical
permissions that are approved by users. Unfortunately

most of the users are unaware of critical security
issues, while the major responsibility of maintaining
the security of the device in right level is left to end-
users. Disregarding the security practices may cause
leaking out the user sensitive information and
misusing the device and user’s properties in different
ways.

For instance, if a user installs an application that

have access to user’s location information, he/she is

not sure whether the data is being used in a proper way

or the application sends it to a remote server for

advertising reasons or even malicious purposes. In

other words, users blindly trust that application and

suppose that the application use them properly.

Unfortunately recent researches [2, 6, 7, 10, 13, 15,

16, 23] showed that currently there are various

applications with different malicious purposes

uploaded in market and users are attracted by their

splendid advertisements. These applications have been

developed with malicious purposes such as leaking

user sensitive information [25], calling to per-minute

telephone numbers to overcharge users, and disturbing

the normal function of the device. Each of these

malicious behaviors may impose severe harms to users.
Attacks resulted from granting excessive privileges

to the applications and lack of effective auditing on
application development in Google Play, along with
the significant role of the end-users with no or little
security knowledge have imposed serious harms to
user’s privacy, data, and properties. As the result, this
area has been changed to a point of concern for
security experts. In order to detect these attacks and
mitigate the consequent malicious actions, several
researches have been conducted, and different
approaches have been proposed.

720 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

One of the famous existing works, entitled Kirin , is

an extension to Android installer and has been

proposed by Enck et al.[3, 8, 22].It addresses the

problem by comparing the required permissions of an

application with a set of predefined policy rules and

makes users aware of excessive privileges requested by

the application which may be used to conduct

malicious activities.

Although, Kirin could principally prevent these

kinds of attacks, is not able to detect applications

which are capable of sharing their permissions in order

to acquire excessive privileges; in other words, Kirin

checks the granted permissions to a single application

rather than a sandbox [3]. Android uses sandboxing as

a mechanism to isolate apps’ process in order to

restrict the interference of the applications [10]. By

checking the required permissions declared in the

manifest file of each application, it is possible to detect

over-privileged applications, but the problem emerges

when two or more malicious applications developed by

the same author try to pass this checking system

separately and then collude together in order to share

their acquired permissions. These applications

individually request for few critical permissions which

are not enough for conducting a malicious activity,

therefore they are not considered as over-privileged

applications. However, after installation, they are able

to increase their privileges through using an Android

security mechanism which facilitates the interaction

between applications with the same author.

This paper introduces a comprehensive mechanism

for detecting over-privileged applications. This

mechanism not only detects individual over-privileged

applications, but also a group of applications which

acquire excessive privileges through sharing their

permissions. Moreover, in order to address different

kinds of attacks mentioned above, some new rules has

been defined and added to this mechanism. The results

of applying the proposed mechanism on downloaded

applications from the Android official market, Google

Play, has been discussed based on the different

categories of applications in the market. This paper

makes the following contributions:

• It proposes a method for detecting over-privileged

applications which acquire excessive privileges

through sharing their permissions by using a same

shared-user-id.

• Moreover, it enhances the coverage of the existing

detection mechanism; Kirin, by adding some more

rules in order to detect different kinds of malicious

activities.

The remainder of this paper is organized as follows:

Section 2 describes the Android architecture, security

mechanisms and permission framework, section 3

elaborates the proposed mechanism for detecting

applications which are potentially capable of

conducting colluding attack and also proposes the new

rules in order to enhance the detection of over-

privileged applications. Results are presented and

discussed in section 4 and finally the work is

concluded in section 5.

2. Android

Android is an open source software stack for portable

devices that includes an OS, middleware, and key

applications [12]. Android is based on Linux and

presents critical system functionalities like security

management, memory management, process

management, and network stack. In the Android

conceptual model, the kernel layer is supposed to be

between the hardware and the rest of the software

layers to provide core functionalities for Android

services [12]. The middleware layer includes native

Android libraries (written in C/C++), Android runtime

module and an application framework. Accordingly,

the application framework encompasses applications

written in C/C++ or Java that exclusively serve for

system purposes.

Android applications are developed as integration of

four primary components. The components of one

application may or may not be able to communicate

with one, some, or all of the components in another

application. These components are: Activities,

services, content providers, and broadcast receivers.

“Activities” present the user interfaces (or screens) of

an application; “Services” control backbone processing

and they are hidden to the user; “Content Provider”

components are the preferred method of sharing data

between applications; and “Broadcast Receivers” are

implemented in the form of mailboxes to receive

messages from other applications. Applications are

enabled to broadcast messages to an implicit or explicit

destination. In explicit broadcasting the message is sent

to a specific component while, in implicit

broadcasting, “Broadcast Receivers” which subscribe

to receive such messages are able to receive them [3,

17, 21].

There is a communicating mechanism called Inter-

Component Communication (ICC) mechanism which

facilitates the interaction of one component with other

components of the application or with components of

other applications. This mechanism is fully provided

through the middleware. Applications commence ICC

channels by sending a specific message entitled Intent.

Intents are responsible for encapsulating the

information relevant to the ICC call [17, 18].

Intents may be sent explicitly to named components

or implicitly using a named action string [11]. In the

action string, the required action, relevant data as

argument for the action, component category that

should manage the intent and some extra fields to

define different required data are precisely specified

[18]. Android will redirect implicit intents to

appropriate components automatically through

Preventing Collusion Attack in Android 721

checking the intents with the intent filters of the

components. Components use intent filters to subscribe

to specific action strings. Intent filters associated with

individual components of applications should be

included in the manifest file. The so called manifest

file introduces crucial details of the application to the

Android OS. These details are very critical to the

system and are evaluated by the Android installer. The

manifest file declares the set of permissions that an

application requests along with other useful details

about the permissions and the way of accessing to the

components of an application form other apps.

In the following of this section, an overview of the

core security mechanisms of Android which are

sandboxing, application signing, and permission

framework will be presented [3, 5, 21].

2.1. Sandboxing

Android is a privilege-separated OS. Each application

is isolated from other applications and placed within its

own distinct system identity and its own Dalvik Virtual

Machine (DVM). System files are accessible by either

the “system” or “root” user. Accordingly, an

application can only access its own files or files of

other applications that are unprotected and publicly

available. This provides a sandbox for each application

which isolates it from other applications and from the

system [4].

2.2. Application Signing

The Android security mechanism obliges all

developers to digitally sign their applications with a

certificate and the private key should be held by them.

There is no necessity to acquire these certificates from

an authority. The Android only employs the certificate

as a means of identifying the author of the application

so that, it will be able to launch reliable connections

between applications of the same author [14].

2.3. Permission Framework

Not only Android provides security measures in kernel

layer but also it considers application level security in

the permission framework and it mainly limits special

actions that an application is allowed to perform [14].

This mechanism ensures that an application has no

permission to perform operations that adversely impact

other applications, the OS, or the user [4]. To use

Android resources and share data, an application needs

to declare the permissions in its manifest file. A

permission is somehow a plain text that can be defined

by Android or application developers [9]. There are

about 100 built-in permissions in Android [22] which

restrict access to the Android components and manage

operations such as making phone calls, using internet,

writing SMS, and so forth. To acquire permissions, the

user will be prompted at install time to approve the

application’s requested permissions. Moreover, each

component of an application can be protected by

permission. In this way, such components are only

available to other components of the same application,

or the components of other applications which have

already acquired the related permission.

3. Proposed Mechanism

In order to access Android components and

consequently use Android core services, applications

need to acquire related permissions. Many of the

Android components provide critical services for

applications in order to perform their purposes

properly, however misusing this protected services

may impose serious risks on user’s privacy and

sensitive information. Applications must declare the

needed permissions for performing their functionalities

between <uses-permission> tags in the manifest file.

These permissions are granted to the applications after

user approval at install time and cannot be revoked

once they are donated. As it is mentioned in section 1,

in android official market, Google Play, there is no

effective audit on publishing applications and

consequently no constraint on requesting permissions

by applications. Many applications request permissions

more than what they basically require [1]. Therefore, in

this way malicious applications can be published in the

market and acquire several critical permissions through

user approval and conduct dangerous attacks on

victim’s smartphone.

In order to make users aware of the possibility of

conducting malicious activities by the installed app,

this mechanism checks all the requested permissions of

the application. This checking process retrieves the

declared permissions in the manifest file and compares

them with the predefined set of rules based on the

mechanism proposed by Enck et al.[8]. If the requested

permissions of an application matches to one of the

rules, the mechanism determines that the examined app

has excessive privileges and gives an alert to the users

in order to help them make up their mind whether to

use the application or not. The rules are combinations

of different critical Android standard permissions that

together can give a malicious application the

opportunity of conducting dangerous activities.

Despite the fact that the detection mechanism

proposed by Enck et al. [8] can principally prevent

attacks resulted from excessive privileges acquired by

a single application [3], still it is not able to detect

excessive privileges that may be acquired by two or

more applications through sharing their permissions.

These permissions can be used in order to conduct a

collusion attack. The flaw of this mechanism is that

each of these applications can pass the permission test

separately, while the union of their obtained

permissions may match one of the security rules.

722 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

As it was explained in section 2, Android is based

on the Linux and benefits from a privilege separation

mechanism by giving each application a unique User

ID, separate memory space and resources and giving

them a virtual isolated environment called sandbox.

After approving the requested permissions of an

application by the user, android assigns these

permissions to the application’s sandbox. All

components of the application inherit the permissions

granted to the sandbox in order to access the Android

components and use its core services.

Applications can also ask Android to place them in

a common sandbox to share same resources, same User

ID and consequently same permissions. Sharing

resources and permissions facilitates the functionality

of applications which are developed by the same

author and need communicating with each other. In

order to use this facility, applications should declare

the same “sharedUserId” in their manifest file and

should be signed by the same author.

Although, this Android mechanism eases the

interaction of applications of the same origin, it can be

misused by malicious applications. In this way,

colluding applications can bypass the permission

checking mechanism individually and gain more

privileges by permission sharing in order to conduct

malicious activities. Figure 1 illustrates 3 applications

which 2 of them have shared a User ID and are placed

in a common sandbox. Each application has its own

components which enable it to conduct different

activities and provide various services. The

components of an application can also be protected by

a permission. So, in order to access to Android core

services and protected components of other apps, each

application must acquire the related permissions which

are shown in the left side of each sandbox. In Figure 1,

sandbox is denoted by S, app by A, component by C,

and permission by P. If P(Si) represents the set of

permissions granted to the sandbox Si; P(Ai), the set of

permissions acquired by the application Ai; and P(CAi),

permission set of the components of application Ai

which is inherited form the relevant sandbox, then

P(A1)={P1, P2, P4}, P(A2)={P1, P2}, and P(A3)= {P3,

P4}.

a) App1 and its sandbox. b) App2 and App3 share their

permissions in a common sandbox.

P1: Permission

C: Component

Figure 1. Applications and sandboxes.

Components of App2 and App3 inherit the

permissions granted to their common sandbox which is

the union of the permissions obtained by App2 and

App3:

2 3 2 2 3

() () () () () { 1, 2, 3, 4}
A A

P C P C P S P A P A P P P P= = = =U

Both of the applications could increase their privileges

by sharing the permissions acquired at install time. In

order to depict the functionality of the proposed

mechanism, it is assumed that rule R is one of the

predefined rules for detecting over-privileged apps.

With regard to the scenario presented in Figure 1, rule

R is defined as: R={P1, P2, P4} which states: “if an

application could acquire permission P1, P2, and P4, it

is considered as an over-privileged application and

potentially is able to perform malicious actions”, in

other words:

 [()]if R P A Ri =I

Then Ai is over-privileged.

In order to compare the effectiveness of the

proposed mechanism with the existing one, first the

results of applying each mechanism on the presented

scenario are discussed, then the checking process and

techniques used in the proposed mechanism are

explained in detail. The result of evaluating the three

applications illustrated in Figure 1 with the Kirin

mechanism which checks the acquired permissions of

an individual application, will be:

1

[() { 1, 2, 4}]R P A P P P R= =I

Therefore Ai is over-privileged.

2

[() { 1, 2}]R P A P P R= ≠I

Therefore A2 is not over-privileged.

3

[() { 4}]R P A P R= ≠I

Where Ai is not over-privileged.

By applying the proposed method and considering

the granted permissions to each sandbox, different

results are obtained:

1

[() { 1, 2, 4}]R P A P P P R= =I

Therefore Ai is over-privileged.

2 2

[() () { 1, 2, 4}]R P A R P S P P P R= = =I I

Therefore A2 is over-privileged.

3 2

[() () { 1, 2, 4}]R P A R P S P P P R= = =I I

Therefore A3 is over-privileged.

As it is observed, App2 and App3 which could

bypass the first mechanism, were detected as over-

privileged applications by the proposed mechanism.

Figure 2 demonstrates the flowchart of the detection

process used in this mechanism.

(1)

(3)

(4)

(5)

(6)

(7)

(8)

(2)

Preventing Collusion Attack in Android 723

Figure 2. The algorithm of detecting applications which are able to

collude together.

The first step to prevent colluding attack perpetrated
by applications with the same author is to detect the
applications that are able to be run in a common
sandbox. In order to share a sandbox, applications need
to declare the same ‘sharedUserId’ in their manifest
file. Therefore, upon installing the application, this
mechanism checks whether the application has
declared the ‘sharedUserId’ in its manifest file or not,
if it is so, it searches for any other applications
installed on the phone with the same ‘sharedUserId’.
As it was mentioned in section 2, only applications that
are signed by the same author can use this facility.
Therefore, as the second step, the similarity of the
signatures of the applications with the same
‘sharedUserId’ are checked.

In case of the similarity of the signatures, requested

permissions of these applications which are declared as

uses-permissions in the manifest file are retrieved.

Then, the union of the permissions acquired by the

applications is compared against the rules in order to

detect the applications with excessive privileges. These

over-privileged applications are potentially capable of

conducting malicious activities by misusing their

acquired permissions.
In addition to the rules proposed by Kirin, stated in

Table 1, five more rules were defined in order to

address different attacks which are not covered by the
existing policies.

Existing policies can be classified in a set of rules

which address malicious activities like location

tracking, voice call eavesdropping, tampering with the

incoming SMS or sending SMS spam, and the ability

of debugging other applications, while new rules

address spying through video and audio recording,

accessing to the personal data, and sniffing the

received data through MMS. Description of the new

rules is stated in Table 2.

Table 1. Rules proposed by Kirin.

Rule Number Rule Description

1 This rule protects against app debugging by third-party applications.

2

This rule protects against eavesdropping. Malicious applications

may determine the phone number and device IDs, record a call and

send them to a remote server by acquiring a set of permissions

including recording audio and access to internet.

3

This rule protects against eavesdropping and calls intercepting. By

acquiring a set of permissions including processing outgoing call,

recording audio, and access to internet, malicious applications may

eavesdrop a call or monitor, redirect and prevent outgoing calls.

4

This rule protects against location tracking. Malicious Apps may

determine the user’s exact location and send the acquired

information to a remote server if they obtain a set of permissions

including access to precise location and internet.

5

This rule protects against location tracking. By acquiring a set of

permissions including access to approximate location and internet,

malicious applications may determine the user’s approximate

location and send it to a remote server.

6

This rule protects against interacting with SMS. Malicious apps may

monitor, edit or delete messages sent to user’s device without

showing them to user by obtaining a set of permissions including

receiving and writing SMS.

7

This rule protects against interacting with SMS. By obtaining a set

of permissions including sending and writing SMS, malicious

applications may monitor, edit or delete messages sent to user’s

device without showing them to user and may send multiple

messages to premium numbers and charge the user.

Table 2. Rule proposed by this work.

Rule Number Rule Description

8

This rule protects against interacting with MMS. Malicious apps

may monitor multimedia messages sent to user’s device and send

them to a third party for malicious purposes by acquiring a set of

permissions including receiving and sending MMS.

9

This rule protects against misusing the calendar data. By obtaining

a set of permissions including reading calendar data and access to

internet, malicious applications can access the calendar sensitive

data and send them to a remote server.

10

This rule protects against misusing the contact list data. By

acquiring a set of permissions including reading the contact list

data and access to internet, malicious applications may misuse the

contact list sensitive data and send them to a third party.

11

This rule protects against spying. Malicious applications may take

pictures and video without the user awareness and send them to a

remote server for malicious purposes by obtaining a set of

permissions including access to camera and internet.

12

This rule protects against spying and eavesdropping. Malicious

apps may record audio without the user awareness and send it to a

third party for malicious purposes if they acquire a set of

permissions including recording audio and access to internet.

The new rules have been constructed based on the

methodology proposed by Enck et al. [8]. Moreover,

the lists of critical permissions introduced by Sarma et

al. [20] have been considered in defining these rules.

The statistics provided by them represents the level of

the criticality of each component and the related

permission based on the incidence of using these

permissions by benign and malicious applications. The

new defined rules enhance the detection of over-

privileged applications by addressing different kinds of

attacks. Though, there are still more attacks that are not

724 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

addressed by these policies and should be considered

in the same way in future.

4. Results and Discussions

In order to evaluate the proposed method, a sample

set of 290 applications from different categories of the

Android official market, Google Play, was

downloaded. With the purpose of obtaining more

accurate results, the sample set of apps was selected

randomly from the most popular apps of the different

categories in the Android market. Both existing and

proposed mechanisms were implemented and

installed on the android emulator along with the

downloaded apps. Android APIs were used in order to

retrieve the required information of the installed apps

such as the information declared in the manifest file

and also the signatures. The set of rules stated in

Table 1 and 2 were employed in order to detect the

applications that are potentially able to perform

malicious activities. First, the existing method

proposed by Enck et al. [8] was applied on the

installed apps by the application implemented for this

purpose and then, the same set of applications were

examined by the proposed method exactly in the same

way. Results showed 12.90% increase in the number

of applications detected by the proposed method. It

proves that among the tested apps, there are

applications with normal privileges which are able to

share permissions and become over-privileged. As it

is shown in the Figure 3, the number of applications

with the capability of voice call eavesdropping has

been increased by 27.27%. These applications which

were detected based on the rule number 2 and 3, were

not able to conduct voice call eavesdropping

individually, while they became able to do so after

sharing their permissions. A similar result obtained

when the proposed mechanism checked the

application set by applying rule number 4 and 5.

Therefore, 10.53% increase in the number of

applications which are potentially able to perform

location tracking was observed. The results also

showed 25.00% increase in the number of

applications which are able to tamper with incoming

SMS or send SMS spam (rule number 6 and 7), 8.00%

in the number of applications capable of sharing users

personal data with the third party (rule number 8, 9,

and 10) and 12.5% in the number of applications

capable of spying through capturing video or audio

(rule number 11 and 12). All these applications which

were detected by the proposed mechanism as

potentially dangerous apps, could easily pass the

existing checking mechanism. The acquired

permissions of each of them did not match to any of

the mentioned rules in the Tables 1 and 2, while the

overall permissions obtained by these applications

after installation, matched to the defined rules. Figure

3 depicts the growth of the number of detected

applications based on the types of the attacks.

Existing
mechanism

 All
 Rule

 2 and 3

 Rule

4 and 5

 Rule

6 and 7

 Rule

8 and 9and 10

 Rule

 11 and 12

Proposed

mechanism

Figure 3. Detected apps before and after applying the proposed

method

The applications detected by the proposed

mechanism has been totally ignored by Kirin while

they are potentially able of conducting serious attacks

to user’s privacy and sensitive information in Android

devices. The significant increase in the number of

detected applications shows that considering the

applications which are able to collude together in

detecting over-privileged applications in Android is

highly important.

Moreover, among the 290 examined applications,

45 of them were matched the new rules which showed

that the detection of over-privileged applications has

been expanded to a wide variety of possible attacks.

As it is observed in the obtained results, comparing

the signatures of the applications with the same

‘sharedUserId’ which is used in this mechanism is a

definite method to determine the applications of the

same origin which are able to collude together in

order to acquire excessive privileges. However,

misusing the unprotected components of applications

with different authors through sending explicit intents

is not addressed by this method. In other words, if it is

assumed that the author of an application becomes

aware of the detailed functionality of another

application’s components, then there would be a

probability of misusing an application with different

author through sending explicit intents to its

unprotected components.

During the evaluation process and applying the

proposed detection method on different categories of

the Google Play, it was observed that the percentage of

detected applications varies in each categories.

Investigation in the results proved that applications in

some categories usually require more permissions to

function properly than the other categories and also in

some cases they follow the same permission patterns

which conforms with the hypothesis that applications

in one category probably have similar requirements in

order to fulfill their purposes. Figure 4 demonstrates

the number of detected over-privileged applications

among 20 categories of the Google Play. Results

shows that categories like “Communications”, “Music

and Audio” and “Social” usually are more sensitive to

the defined rules.

Preventing Collusion Attack in Android 725

Figure 4. Detected applications according to the different

categories of the Google play.

The obtained results along with the statistical

analysis done by Sarma et al. [20] on the permissions

of each category in the Google play will be used in

future work in order to define more fine grained rules

that conforms with the functionality of the applications

in each category. This can have a significant impact on

reducing the false positive rate in detecting over-

privileged applications.

5. Conclusions

This paper addressed the colluding attack in Android

by checking the applications which are potentially able

to conduct malicious activities. These applications are

able to collude in order to acquire extra privileges

through permission sharing. The considerable number

of detected applications that were able to share their

permissions which was 12.90% of all detected

applications showed the impact of employing the

proposed mechanism in detecting over-privileged

applications. Moreover, by employing the new defined

rules, the proposed mechanism could address new

kinds of attacks, as the result, a number of applications

with the capability of conducting these kinds of attacks

were detected. Finally, analyzing the results showed

that defining more fine grained rules by taking the

functionality of each application into consideration,

can result in reducing the false positive rate in

detecting over-privileged applications which will be

the next step for improving this mechanism in the

future work.

References

[1] Bartel A., Klein J., Le Y., and Monperrus M.,

“Automatically Securing Permission-Based

Software by Reducing the Attack Surface: An

Application to Android,” in Proceedings of the

27
th
 IEEE/ACM International Conference on

Automated Software Engineering, USA, pp. 274-

277, 2012.

[2] Bradley T., “DroidDream Becomes Android

Market Nightmare,” available at:

http://www.pcworld.com/businesscenter/article/2

21247/droiddream_2015becomes_android_marke

t_nightmare.html, last visited 2015.

[3] Bugiel S., Davi L., Dmitrienko A., Fischer T.,

and Sadeghi A., “Xmandroid: A New Android

Evolution to Mitigate Privilege Escalation

Attacks,” Technical Report, Technische

Universität Darmstadt, Germany, 2011

[4] Chan P., Hui L., and Yiu S., “A Privilege

Escalation Vulnerability Checking System for

Android Applications,” in Proceedings of the 13
th

International Conference on Communication

Technology, Jinan, pp. 681-686, 2011.

[5] Davi L., Dmitrienko A., Sadeghi A., and

Winandy M., “Privilege Escalation Attacks on

Android,” in Proceedings of the 13
th

International Conference on Information

Security, Boca Raton, USA, pp. 346-360, 2010.

[6] Egele M., Kruegel C., Kirda E., and Vigna G.,

“PiOS: Detecting Privacy Leaks in iOS

Applications,” in Proceedings of the 18
th
 Annual

Network and Distributed System Security

Symposium, San Diego, USA, pp. 1-15, 2011.

[7] Enck W., Gilbert P., Chun B., Cox L., Jung J.,

McDaniel P., and Sheth A., “TaintDroid: An

Information-Flow Tracking System for Real-time

Privacy Monitoring on Smartphones,” in

Proceedings of the 9
th
 USENIX Symposium on

Operating Systems Design and Implementation,

Vancouver, Canada, pp. 99-106, 2010.

[8] Enck W., Ongtang M., and McDaniel P., “On

Lightweight Mobile Phone Application,” in

Proceedings of the 16
th
 ACM Conference on

Computer and Communications Security,

Chicago, USA, pp. 235-245, 2009.

[9] Fang Z., Han W., and Li Y., “Permission Based

Android Security: Issues and Countermeasures,”

Computer and Security, vol. 43, pp. 205-218,

2014.

[10] Faruki P., Bharmal A., Laxmi V., Ganmoor V.,

Gaur M., Conti M., and Rajarajan M., “Android

Security: A Survey of Issues, Malware

Penetration and Defenses,” Communications

Surveys and Tutorials, vol. 17, no. 2, pp. 998-

1022, 2014.

[11] Fragkaki E., Bauer L., Jia L., and Swasey D.,

“Modeling and Enhancing Android’s Permission

System,” in Proceedings of the 17
th
 European

Symposium on Research in Computer Security,

pp. 1-18, 2012.

[12] Google Inc., “Android Security Overview,

Security and Permissions,” available at:

http://source.android.com/tech/security/#android-

application-security, last visited 2015.

[13] Hsiao Sh-W., Hung S-H, Chien R., and Yeh C-

W., “PasDroid: Real-time Security Enhancement

for Android,” in Proceedings of the 8
th

International Conference on Innovative Mobile

and Internet Services in Ubiquitous Computing,

Birmingham, England, pp. 229-235, 2014.

726 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

[14] Kashefi I. and Salleh M., “A Survey on

Mitigating Attacks Related to Shortcomings of

Andoid Permission Framework,” Journal of

Theoretical and Applied Information Technology,

vol. 55, no. 2, pp. 1-9, 2013.

[15] Mahaffey K. and Hering J, “App Attack:

Surviving the Explosive Growth of Mobile

Apps,” pp. 1-93, 2010.

[16] Mittal P., Dhruv B., Kumar P., and Rawat S.,

“Analysis of Security Trends and Control

Methods in Android Platform,” in Proceedings of

International Conference on Innovative

Applications of Computational Intelligence on

Power, Energy and Controls with their Impact on

Humanity, Ghaziabad, pp. 75-79, 2014.

[17] Nauman M. and Khan S., “Design and

Implementation of a Fine-grained Resource

Usage Model for the Android Platform,” the

International Arab Journal of Information

Technology, vol. 8, no. 4, pp. 440-448, 2011.

[18] Nauman M., Khan S., and Zhang X., “Apex:

Extending Android Permission Model and

Enforcement with User-Defined Runtime

Constraints,” in Proceedings of the 5
th
 ACM

Symposium on Information, New York, USA, pp.

328-332, 2010.

[19] Pettey C., “Gartner Says 428 Million Mobile

Communication Devices Sold Worldwide in First

Quarter 2011, a 19 Percent Increase Year-on-

Year,” available at: http://www.gartner.com/it/

page.jsp?id=1689814, last visited 2011.

[20] Sarma B., Li N., Gates C., Potharaju R., Nita-

Rotaru C., and Molloy I, “Android Permissions:

A Perspective Combining Risks and Benefits,”

in Proceedings of the 17
th
 ACM Symposium on

Access Control Models and Technologies, New

York, USA, pp. 13-22, 2012.

[21] Shabtai A., Fledel Y., Kanonov U., Elovici Y.,

and Dolev S., “Google Android: A state-of-the-

Art Review of Security Mechanisms,” available

at: http://arxiv.org/abs/0912.5101, last visited

2009.

[22] Shabtai A., Fledel Y., Kanonov U., Elovici Y.,

Dolev S., and Glezer C, “Google Android: A

Comprehensive Security Assessment,” IEEE

Security and Privacy, vol. 8, no. 2, pp. 35-44,

2010.

[23] Thurm S. and Kane Y., “Your Apps Are

Watching You,” The Wall Street Journal,

available at: http://online.wsj.com/article/

SB1000142405274870469400457602008370357

4602.html, last visited 2015.

[24] Zhou X., Lee Y., Zhang N., Naveed M., and

Wang X., “The Peril of Fragmentation: Security

Hazards in Android Device Driver

Customizations,” in Proceedings of IEEE

Symposium on Security and Privacy,

Washington, USA, pp. 409-423, 2014.

[25] Zhou Y., Zhang X., Jiang X., and Freeh V.,

“Taming Information-Stealing Smartphone

Applications (on Android),” in Proceedings of

the 4
th
 International Conference on Trust and

Trustworthy Computing, Pittsburgh, PA, USA,

pp. 93-107, 2011.

Iman Kashefi received his MS

degree in computer science at

Universiti Teknologi Malaysia

(UTM) in the field of information

security in connection with the years

of related work experience in IT

Development Center of Iran. The

Best Student award of the UTM was granted to him

and he was honored to receive the Pro-Chancellor

award among the eight best PhD and MS graduates of

the UTM. He received his Bachelor’s degree in the

field of computer engineering from Islamic Azad

University of Tehran and has published Journal

papers in the field of network security and Android

security. Along with conducting research on

smartphones security, currently he works as Solution

Manager in Mobile Communication Company of Iran

(MCCI).

Maryam Kassiri is a lecturerat

Islamic Azad University (IAU),

lecturing under the Department of

Computer and Information

Technology. She received her MS

degree in Management of

Information Technology from

Payam-e-Noor University, and her BS degree in

Information Technology Engineering from Islamic

Azad University. She also serves as an IT expert in the

eLearning sector of IT Development Center of Iran,

affiliated to Industrial Development and Renovation

Organization of Iran. She has published some Journal

and Conference papers related to her research works

including eLearning and Network Security.

Preventing Collusion Attack in Android 727

Mazleena Salleh is an associate

professor at Universiti Teknologi

Malaysia (UTM), lecturing under the

Department of Computer Science,

Faculty of Computing. She has

taught several courses in the area of

computer hardware system,

cryptography and computer security. She received her

PhD in Computer Science at UTM in the field of

computer networking while her Master’s degree from

Virginia Polytechnic State University in the field of

electrical engineering. She has published several

journal and conference papers related to her research

works that include watermarking, steganography,

chaos image encryption, network analysis, e-learning

and knowledge management. Her current research is

on computer security related issues namely data

survivability and availability in cloud, elliptic curve

cryptography, body sensor network and detection of

misuse in computer forensic.

