
658 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

An Effective Approach to Software Cost Estimation

Based on Soft Computing Techniques

Marappagounder Shanker
1
,

Jayabalan Jaya

 2
, and Keppanagounder Thanushkodi

2

1
 Information and Communication Engineering, Anna University, Chennai

2
Akshaya College of Engineering and Technology, Coimbatore

Abstract: Employing estimation models in software engineering help in envisaging some essential traits of future entities like

software development effort, software reliability and programmers productivity. Of these models, the one that supports the

estimation of software effort has drawn substantial attention currently to carry out researches. Estimation by analogy is one

among the interesting techniques used for estimating the software effort. But, the process of estimating by analogy is unable to

handle categorical data accurately. A novel technique that relies on reasoning by analogy, fuzzy logic and linguistic

quantifiers is being proposed here for estimating effort, provided that the software project is represented either by categorical

or numerical data. Use of fuzzy logic-based cost estimation models is more suitable if unclear or inaccurate information are

considered. Fuzzy systems attempt to imitate the processes of the brain through a rule base. The proposed method utilizes

Fuzzy logic based analogy approach to estimate the cost and the effort. The performance analysis of the proposed scheme is

made using Mean Absolute Relative Error (MARE) and Mean Magnitude of Relative Error (MMRE) which is validated with

other existing techniques.

Keywords: Cost estimation, effort estimation, analogy, fuzzy logic, MARE, cost constructive model.

Received October 18, 2012; accepted June 30, 2014; published online August 9, 2015

1. Introduction

The goal of software engineering is to develop the

techniques and tools needed to develop high-quality

applications that are more stable and maintainable. In

order to assess and improve the quality of an

application during the development process,

developers and managers use several metrics [1].

Various business and technical motives such as shorter

development cycles, lower development costs,

improved product quality and access to source code,

more and more software developers and companies are

basing their software products on open source

components [13]. Structural organization of software

has a major influence on locality of changes during

software evolution. One of the important types of such

changes is those concerned with extending and

modifying the implemented functionality [12].

Structural organization of software has a main

power on locality of changes during software

development. One of the significant kinds of such

changes is those distressed with widening and adapting

the executed functionality [12]. The capability of

software quality models to precisely recognize critical

elements permits for the application of spotlighted

certification activities ranging from physical inspection

to testing, static and dynamic analysis, and automated

formal analysis techniques. Consequently, Software

quality models assist makes certain the dependability

of the delivered products. To forecast fault-proneness

of program modules in software engineering, various

statistical methods have been suggested [6].

Estimating the work-effort and the schedule

required to develop and/or maintain a software system

is one of the most critical activities in managing

software projects. The task is known as software cost

estimation [25]. Software size estimates are important

to determine the software project effort. However,

according to the last research reported by the Brazilian

Ministry of Science and Technology-MCT, in 2001,

only 29% of the companies accomplished size

estimates and 45.7% accomplished software effort

estimate. There is not a specific study that identifies

the causes of the effort low estimates index, but the

reliability level of the models can be a possible cause

[22]. Cost estimation is an essential component of

infrastructure projects. Accurate estimation will assist

project managers to choose adequate alternatives and

to avoid misjudging of technical and economic

solutions [24]. The accuracy of cost estimation

increases toward the end of the project due to detailed

and precise information [21].
Software cost estimation by analogy is one of the

most conspicuous machine learning techniques and is
basically a form of case based reasoning. Estimation
by analogy is based on the assumption that similar
software projects have similar costs. However, the
technique needs improvement especially while
handling the categorical variables [11]. The subjects of
estimation in the area of software development are
size, effort invested, development time, technology
used and quality. Particularly, development effort is
the most important issue. So far, several effort models
have been developed and most of them include

An Effective Approach to Software Cost Estimation Based on Soft Computing Techniques 659

software size as an important parameter. Function
point is a measure of software size that uses logical
functional terms business owners and users more
readily understand. Since, it measures the functional
requirements, the measured size stays constant despite
the programming language, design technology, or
development skills involved [5].

Some major problems encountered during cost
estimation process are:

• Factor that affect the cost are non-linear in nature

so, it is very difficult to establish a mapping

between these factors and output metrics.

• Data present at the starting phases are incomplete

and imprecise so measurement of metrics are

difficult.

• There are many models available for estimation

purpose but the problem is how to determine which

model is useful in which situation.

• Difficulty to use algorithmic model and non-

algorithmic model together [7].

The modern society is continuously becoming more
and more dependent on software systems and
information technology. Thus, a proper estimation
method of projects affects the cost and quality of a
project. Many estimation models have come into
existence. This has brought researchers attention to
develop good software project estimation models [10].

The novel method introduced in this paper for

estimating the software effort employs fuzzy analogy

method to overcome the shortcomings of using fuzzy

and analogy in a separate manner. A set of candidate

measures for software projects similarity have been

developed and validated and these measures have their

basis on fuzzy sets, fuzzy reasoning and linguistic

quantifiers. Though the software projects are

represented either by numerical or categorical data, this

novel scheme has the potential to estimate the software

effort. The usual analogy procedure does not work on

categorical data. Hence, estimation by analogy that is

based on fuzzification is dealt in this work. The rest of

the paper is organized as follows: Section 2 deals with

some of the recent research works related to the

proposed technique. Section 3 explains the fuzzy

analogy technique. Section 4 describes the proposed

technique for cost estimation with all necessary

mathematical formulations and figures. Section 5

discusses about the experimentation and evaluation

results with necessary tables and graphs. Section 6

concludes the paper.

2. Related Works

The proposed technique aims to estimate the software

cost in an efficient way. Numerous techniques have

been developed so far to estimate the effort and cost

associated with the software projects. In this segment,

we have presented few of the significant researches for

iris recognition.

Many researchers have been focused on software
cost estimation based on soft computing techniques.
Here, we are presenting some of the methodology
proposed by various researchers.

Rao et al. [16] have proposed a computationally

efficient Functional Link Artificial Neural Network

(FLANN) for cost estimation and to reduce the

computational complexity so that, the neural net

becomes suitable for on-line applications. FLANN do

not have any hidden layer; the architecture becomes

simple and training does not involve full back

propagation. In the course of adversity in neural

networks, this dynamic neural network excellently

works which would initially use COCOMO (Cost

Constructive Model) approach to predict the cost of

software and uses FLANN technology with backward

propagation. The proposed network processes each and

every neuron crystal clear so that, the entire network

was completely “white box”. This method gives much

more accurate value when compared with others

because their method involves proper training of data

using back propagation algorithm which was used to

train the network, becomes very simple because of

absence of any hidden layer.

Reddy and Raju [17] have proposed a software

effort estimation model based on artificial neural

networks. The model was designed accordingly to

improve the performance of the network that suits to

the COCOMO model. The proposed method uses multi

layer feed forward neural network to accommodate the

model and its parameters to estimate software

development effort. The network was trained with back

propagation learning algorithm by iteratively

processing a set of training samples and comparing the

network’s prediction with the actual effort. COCOMO

dataset was used to train and to test the network and it

was observed that proposed neural network model

improves the estimation accuracy of the model.

Attarzadeh and Ow [2] have proposed a fuzzy logic

realistic model to achieve more accuracy in software

effort estimation. The main objective of this research

was to investigate the role of fuzzy logic technique in

improving the effort estimation accuracy by

characterizing inputs parameters using two-side

Gaussian function which gave superior transition from

one interval to another. The methodology adopted in

this study was use of fuzzy logic approach rather than

classical intervals in the COCOMO II. Using

advantages of fuzzy logic such as fuzzy sets, inputs

parameters could be specified by distribution of its

possible values and these fuzzy sets were represented

by membership functions.

Prasad et al. [15] have presented a method

concerned with developing software effort estimation

models based on artificial neural networks. The models

were designed to improve the performance of the

network that suits to the COCOMO Model. Artificial

neural network models were created using radial basis

660 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

and generalized regression. A case study based on the

COCOMO81 database compares the proposed neural

network models with the Intermediate COCOMO.

Software cost estimation is an important phase in

software development. It predicts the amount of effort

and development time required to build a software

system. It is one of the most critical tasks and an

accurate estimate provides a strong base to the

development procedure. Kaushik et al. [8] have

discussed the most widely used software cost

estimation model, the COCOMO. The model was

implemented with the help of artificial neural networks

and trained using the perceptron learning algorithm.

The COCOMO dataset was used to train and to test the

network.
The effort invested in a software project was one of

the most challenging task and most analyzed variables
in recent years in the process of project management.
Software cost estimation predicts the amount of effort
and development time required to build a software
system. It was one of the most critical tasks and it
helps the software industries to effectively manage
their software development process. There were a
number of cost estimation models. Each of these
models has their own pros and cons in estimating the
development cost and effort. Kaushik et al. [9] have
investigated the use of back-propagation neural
networks for software cost estimation. The model was
designed in such a manner that accommodates the
widely used COCOMO model and improves its
performance. It deals effectively with imprecise and
uncertain input and enhances the reliability of software
cost estimates. The model was tested using three
publicly available software development datasets.

Software cost estimation was a challenging and
onerous task. Estimation by analogy was one of the
expedient techniques in software effort estimation
field. However, the methodology utilized for the
estimation of software effort by analogy was not able
to handle the categorical data in an explicit and precise
manner. Early software estimation models are based on
regression analysis or mathematical derivations.
Today’s models are based on simulation, neural
network, genetic algorithm, soft computing, fuzzy
logic modelling etc., Ziauddin et al. [25] have utilized
a fuzzy logic model to improve the accuracy of
software effort estimation. In this approach fuzzy logic
was used to fuzzify input parameters of COCOMO II
model and the result was defuzzified to get the
resultant Effort. Triangular fuzzy numbers are used to
represent the linguistic terms in COCOMO II model.

3. An Efficient Software Cost Estimation

System Based on Fuzzy Analogy

Prediction of work effort and plan needed for the

development and/or maintenance of software system

plays a vital role in software project management and

this process is termed as software cost estimation. The

estimation of time and cost help in coarse validation

and observation of the project’s advancements at the

time of development process. Once, the development

process is finished, these estimates assist in the

evaluation of project productivity. Software cost

estimation can be defined as the method of forecasting

the effort needed to develop a software system.

Majority of the cost estimation models try to construct

an effort estimate, which can then be changed into the

project period and expenditure. Even when effort and

cost have close association, they are not essentially

connected by a simple transformation function. Effort

is generally measured in terms of person months of the

programmers, analysts and project managers. This

effort estimate can be then be converted into a dollar

cost figure through the computation of an average

salary per unit time of the staff engaged and then,

multiplying the resultant by the estimated effort

required.

3.1. Analyze Software Functional and

Programmatic Requirements

Software estimation involves the investigation and

filtering of the software operational requirements in

addition to the identification of technical and

programmatic constraints and necessities. This allows

the work elements of the project-specific Work

Breakdown Structure (WBS) to be divergent and

necessitates the prediction of software size and effort.

Three steps are available for making analysis and

filtering of the requirements:

1. The software functional requirements are to be

examined and filtered to the minimum level of

detail that is achievable. Proper risk adjustments can

be made only if the unclear requirements are

accurately detected. These unclear requirements

make the estimation of software size to be difficult

and reproduce larger uncertainty. If an incremental

development strategy is employed, the filtering will

be relying on the requirements that are specific for

each increment.

2. The physical architecture hierarchies of the software

that depend on the functional requirements are

analyzed and refined. The architecture is described

by the software segments to be created. This is then

followed by the decomposition of each segment into

the lowest level function that is feasible.

3. Investigates the project and software plans for

discovering the programmatic constraints and

requirements, which incorporates imposed budgets,

schedules, margins and make/buy decisions.

3.2. Work Elements and Procurements

This step aims to define the work elements and

procurements of the software project, which will be

used up in the software estimate. The work elements

and procurements will naturally come under the

An Effective Approach to Software Cost Estimation Based on Soft Computing Techniques 661

following categories of a project-specific WBS such

as: Software management, software development test

bed, software development environment, software

systems engineering, software test engineering etc.

These WBS categories contain actions across the

software life-cycle from requirements analysis through

end of system test. The software operations and

support (including maintenance) does not belong to the

range of these estimates. Work elements such as SQA

and IV and V are not mostly the piece of software

manager’s budget, but are listed here to make the

software managers understand that these services are

being offered by the project.

3.3. Estimate Software Size

This process is done to predict the size of software

because software size is another criterion that

influences the expense of software. The two main

software size metrics are the Source Lines of Code

(SLOC) and the function points. SLOC is a natural

artifact that computes the physical size of the software.

However, it remains unavailable until the coding phase

and cannot be defined in a similar way across various

programming languages. Function Points is a perfect

software size metric for price prediction.

3.4. Effort Estimation

• Fuzzy Logic: is a methodology that has the basis on

fuzzy set theory for providing solution to issues,

which are more complicated for quantitative

recognition. Fuzzy logic comprises of three steps as

follows:

1. Fuzzification.

2. Inference Engine.

3. Defuzzification.

The fuzzifier converts the input into linguistic terms
using membership functions. The membership
functions specify the extent to which a given
numerical value of a particular variable fits the
linguistic term being addressed. The fuzzy inference
engine does the mapping between the input
membership functions and the output membership
functions with the help of fuzzy rules. These fuzzy
rules emerge from expert’s idea the relationships
being modeled. A defuzzifier executes the
Defuzzification process, which combines the output
into a single label or numerical value as per the
requirement.

• Fuzzy Membership Function: A mathematical
definition for a fuzzy set can be produced by
assigning to each possible individual in the universe
of discourse, a value describing its grade of
membership in the fuzzy set to a bigger or smaller
extent as denoted by a larger or smaller membership
grade. The universe of discourse refers to the input
space. A membership function is a curve, which

describes the way each point in the input space is
mapped to a membership value or degree of
membership between 0 and 1. A membership
function is used to characterize the fuzziness in a
fuzzy set. A membership function categorizes the
element in the set into discrete or continuous.
Various shapes are utilized for graphical
representations. Hence, the selection of shape of the
membership function is vital. Several types of
member functions are available. But here,
Triangular Membership Function (TMF) is used.

• TMF: It is a three point function given by a lower
limit p, an upper limit q and the modal value such
that p<m<q. The value q-m is called margin when it
is equal to the value m-p. It can be symmetrical and
asymmetrical.

0

() () / () (,)

() / () (,)

if x p or x q

f x x p m p if x p m

q x q m if x m q

≤ ≥

= − − ∈

− − ∈






• Fuzziness: Fuzziness of a TMF is defined by
Equation 2.

 , 0 1
2

fuziness of TMF TMF
m

λ µ−
= < <

Where m indicates the model value, µ and λ
represent the right and left boundaries respectively.
Higher value of fuzziness reveals that the TMF is
fuzzier.

• Effort Estimation by Fuzzy: In fuzzification, the
triangular fuzzy number is utilized and is defined by
Equation 3.

0 ()

() / ()
()

() / ()

0

if S a

S m if S m
T S

S m if m S

if S

µ µ µ

λ λ λ

λ

≤

− − ≤ ≤
=

− − ≤ ≤

≥







Where S is the size as input, E the effort as output,
µ, m and λ are the parameters of membership
function T(S), m is the model value, µ and λ are the
right and left boundaries respectively.

Let (m, 0) split the base of the triangle in ratio k:
1 internally, where k is a real positive number. Thus,
the value of m is given by Equation 4.

1+

+
=

k

k
m

λµ

Fuzziness can be now defined as in Equation 5.

2

F
m

λ µ−
= so, approximately

2kF

µ = 1- * m
k +1

 
  
 

2

1 *
1

F
m

k
λ = +

+


  

Hence, the TMF ()E∂ is represented by Equation 8.

(1)

(3)

(2)

(4)

(5)

(6)

(7)

662 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

1/

1/

0

(/)

2
()

(/)

2

0

b

b

b b

b

b b

b

if E a

E a
if a E am

m

E

E a
if am E a

m

if E a

µ

µ
µ

µ

δ
λ

λ

λ

λ

≤

−
≤ ≤

−

=
−

≤ ≤

−

≥













• Defuzzification: The output fuzzy estimate of E can

be calculated as a weighted average of the

optimistic (aα
b
), most likely (am

b
) and pessimistic

estimate (aβ
b
). Fuzzy effort estimate (E) is given by

the formula in Equation 9.

15

1 2 3

1
1 2 3

() () ()
b b b

i
i

w a w am w a
E EM

w w w

α β

=

+ +
= +

+ +
C

Where w1, w2 and w3 are the weights of the

optimistic, most likely and pessimistic estimate

respectively and EMi is the 15 effort multipliers

from COCOMO. Maximum weight should be

provided to the most expected estimate. Here, the

value of m indicates the size in KLOC. The values

of α and β, k, F, w1, w2 and w3 are arbitrary

constants. The effort is obtained in terms of persons

per month.

• Fuzzy Rules: The fundamental element of the

COCOMO model is utilized for the generation of

the fuzzy rules to estimate nominal effort, free of

cost drivers. In this way, by dividing input and

output spaces into fuzzy regions, the

correspondence between mode, size and resulting

effort can be produced [14, 23]. The parameters of

the effort MFs were established for the given mode,

size pair. 3 MFs representing effort were obtained

for a random size and 3 modes respectively. Rules

formulated depending on the fuzzy sets of modes,

sizes and efforts appear in the following form:

Figure 1. Fuzzy rules.

In this work, an optimized fuzzy logic based

framework is proposed for managing the imprecision

and uncertainty associated with the data at earlier

phases of the project and to accurately predict the

software effort as well. This framework is constructed

upon the existing cost estimation model, called the

COCOMO. The COCOMO model is an empirical

model that was formed by gathering data from a large

number of software projects. Making analysis on these

data can discover formulae that were the best fit to the

observations. These formulae give the relation between

the size of the system and product, project and team

factors and the effort required to develop the system. In

COCOMO, effort is stated by Person Months (PM).

Cost drivers have up to six levels of rating and they

are: Very low, low, nominal, high, very high, and extra

high. Each rating has an equivalent real number Effort

multiplier (EF), based upon the factor and the level to

which the factor can control productivity.

Product attributes are related to the necessary

characteristics of the software product being

developed. Platform attributes are the constraints

enforced on the software by the hardware platform.

Personnel attributes are multipliers, which consider the

knowledge and abilities of the people functioning on

the project. Project attributes are connected with the

specific features of the software development project.

Scale Factors (SF) are acceptable product

objectives, flexibility, team coherence, etc., EF

indicate software reliability, database size, reusability,

complexity, etc., the imprecise nature of the cost

drivers have an important effect on the accuracy of the

effort estimates derived from software effort estimation

models. The vagueness and uncertainty of software

effort drivers cannot be prevented from occurring.

Hence, a fuzzy model that adopts fuzzy sets can be

beneficial for verifying the cost drivers in an easier

way.

3.5. Cost Estimation

This step aids in estimating the size of the software

product. The two main types of cost estimation

methods are the algorithmic and non-algorithmic cost

estimation methods. Algorithmic models change

extensively in mathematical complexity. Few of them

rely on simple arithmetic formulas that use summary

statistics like means and standard deviations. Others

rely on regression models and differential equations.

For the purpose of enhancing the accuracy of

algorithmic models, the model has to be adjusted or

calibrated to local conditions. These models cannot be

used off-the-shelf. Calibration can also result in

inaccuracy. The initial step to predict cost is to decide

the cost of procurements. The cost of procurements

involves the determination of cost of support and

services such as workstations, test-bed boards and

simulators, ground support equipment, network

charges and phone charges.

This is particularly correct in situations, where the

expense is made to fit into the budget imposed on the

software project. Consequently, it may be essential to

repeat the estimates of other steps several times,

decrease the effort and procurements or guess more

risk to fit into the imposed budget. If the schedule

becomes too large, costs will get elevated because

(9)

(8)

An Effective Approach to Software Cost Estimation Based on Soft Computing Techniques 663

effort moves out to more expensive years. The goal of

software costing is to precisely forecast the cost

involved in developing the software. If the project cost

has been computed as a piece of a project bid to

customer, then a choice has to be made about the price

cited to the customer. Typically, price is simply cost

plus profit. Figure 2 depicts the entire cost estimation

process.

Figure 2. Block diagram for the entire proposed methodology.

4. Results and Discussion

The datasets used for this work are the Desharnais
dataset [19], NASA 93 [20] and COCOMO NASA
dataset.

• Dataset Description: The original version of the
Desharnais dataset includes 81 projects, of which 4
were excluded owing to incomplete values. The
dataset owns 9 independent variables and 1
dependant variable. Actual Effort in person hours is
considered as the 10

th
 variable for the matrix B.

The NASA 93 dataset contains 93 complete projects
with 17 independent variables, of which 15 are
categorical. This dataset is in COCOMO 81 format
collected from NASA centers published in Predictor
Models In Software Engineering (PROMISE). Here,
the DevEffort variable is taken into account for
generating matrix B.

Table 1 represents the difference of both actual and
estimated efforts for all the 3 datasets. Here, we
represented the effort of only 5 projects from each data
set and the performance was calculated for the whole
database.

Table 1. Effort comparison of different datasets.

Projects

No.

Effort

COCOMO NASA NASA 93 Desharnais

Actual

Effort

Estimated

Effort

Actual

Effort

Estimated

Effort

Actual

Effort

Estimated

Effort

1 278 268.22 117.6 109.90 5152 5036.45

2 1181 1112.06 117.6 113.93 5635 5432.06

3 1248 1191.16 31.2 27.76 805 946.24

4 480 420.35 36 35.01 3829 3709.38

5 120 103.14 25.2 23.74 2149 2134.32

• Performance Analysis: Different investigators have

utilized different error measurements. The most
accepted error measure is the Mean Absolute
Relative Error (MARE).

 ()1
(/) /

i
i i i

nMARE est acl acl n
=

∑= −

Where esti is the estimated effort, acli is the actual
effort and n is the number of projects in the model.

In the proposed method, 3 types of dataset are

utilized. The comparison of MARE values of all the

three datasets is described in Figure 3. From the graph,

it can be noted that the NASA 93 data set has low

MARE value when compared against the other 2

datasets.

M
A

R
E

 COCOMO NASA

 Dataset

 Desharnais Dataset NASA 93 Dataset

Figure 3. The MARE measure for all the three data sets.

The MARE measures for all the datasets used in effort
estimation process is given in Table 2.

Table 2. MARE measures of all the datasets.

Datasets MARE

Desharnais Dataset 0.000724

NASA 93 Dataset 0.000507

COCOMO NASA Dataset 0.026174718

The value of MARE for effort can be compared

with other existing methods stated in [4]. The

comparison between the proposed method and the

existing method is shown in Table 3. The proposed

method utilizing Desharnais dataset is compared

against the existing method.

Table 3. MMRE comparison for Desharnais dataset.

Methods MMRE

Proposed Method 0.000713

Fuzzy Set Method [18] 0.00138

The MRE and MMRE can be computed using the

formulas in Equations 11 and 12 respectively.

 (-) /
ii i

MRE acl est acl=

1 N

i
i

MMRE MRE
N

∑=

The comparison of proposed method with the existing

method based on MRE and MMRE measure is

expressed in Figure 4.

M
M

R
E

 Fuzzy Method Proposed Method Neuro-Fuzzy Method

Figure 4. MMRE comparison for COCOMO NASA dataset.

Here, the MMRE measure of the proposed method,

making use of COCOMO NASA dataset is compared

(10)

(11)

(12)

664 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

to the existing method cited in [18]. The MMRE

measure is estimated in %.
The measurements are displayed in Table 4. From

Figure 4 and Table 4, it is evident that our proposed
method works efficiently with COCOMO NASA
dataset, when compared to the existing methods
mentioned in [3, 18].

Table 4. MMRE comparison for COCOMO NASA dataset

Methods MMRE (%)

Proposed Method 2. 6

Fuzzy Method 32.651

Neuro-Fuzzy Method 56.46

Thus, it is apparent that the proposed method of cost

estimation system, which relies on soft computing

techniques, can effectively estimate the effort and cost

of the software project models.

5. Conclusions

In this paper, a novel method for estimating the

software project effort is proposed. This technique

depends on reasoning by analogy, fuzzy logic and

linguistic quantifiers. This kind of approach holds well,

when the software projects are expressed by

categorical and/or numerical data. Therefore, this

proposed approach enhances the classical analogy

process that does not consider categorical data. In the

fuzzy analogy approach, fuzzy sets are used to

characterize both the categorical and the numerical

data. The proposed methodology is cross validated

with 3 datasets such as COCOMO NASA, Desharnais,

and Nasa 93. The NASA 93 Dataset outperforms the

other two datasets and all the datasets are compared

with the existing effort estimation techniques. The

results of experimentation reveal that the proposed

method is capable of effectively estimating both effort

and cost of the software project models.

Reference

[1] Al Dallal J., “Mathematical Validation of Object-
Oriented Class Cohesion Metrics,” International
Journal of Computers, vol. 4, no. 2, pp 45- 52,
2010.

[2] Attarzadeh I. and Ow S., “A Novel Algorithmic
Cost Estimation Model Based on Soft Computing
Technique,” Journal of Computer Science, vol. 6,
no. 2, pp. 117-125, 2010.

[3] Du W., Ho D., and Capretz L., “Improving
Software Effort Estimation Using Neuro-Fuzzy
Model with SEER-SEM,” Global Journal of
Computer Science and Technology, vol. 10, no.
12, pp. 52-64, 2010

[4] Idri A., Abran A., Khosgoftaar T., “Fuzzy
Analogy: A New Approach for Software Cost
Estimation,” in Proceedings of the 11

th

International Workshop in Software
Measurements, Montréal, Canada, pp. 93-101,
2001.

[5] Iraji M. and Motameni H., “Object Oriented
Software Effort Estimate with Adaptive Neuro
Fuzzy use Case Size Point (ANFUSP),”
International Journal of Intelligent Systems and
Applications, vol. 4, no. 6, pp. 14-24, 2012.

[6] Jiang Y., Cukic B., and Ma Y., “Techniques for
Evaluating Fault Prediction Models,” Empirical
Software Engineering, vol. 13, no. 5, pp. 561-
595, 2008.

[7] Kashyap D., Tripathi A., and Misra A.,
“Software Development Effort and Cost
Estimation: Neuro-Fuzzy Model,” Journal of
Computer Engineering, vol. 2, no. 4, pp. 12-14,
2012.

[8] Kaushik A., Chauhan A., Mittal D., and Gupta S.,
“COCOMO Estimates Using Neural Networks,”
International Journal of Intelligent Systems and
Applications, vol. 4, no. 9, pp. 22-28, 2012.

[9] Kaushik A., Soni A., and Soni R., “A Simple
Neural Network Approach to Software Cost
Estimation,” Global Journal of Computer
Science and Technology Neural & Artificial
Intelligence, vol. 13, no. 1, pp. 1-10, 2013.

[10] Khan I. and Alam M., “Software Cost Estimation
using a Neuro-Fuzzy Algorithmic Approach,”
International Journal of Computer Science and
Management Research, vol. 2, no. 7, pp. 3140–
3147, 2013.

[11] Malathi S. and Sridhar S., “Estimation of Effort
in Software Cost Analysis for Heterogenous
Dataset Using Fuzzy Analogy,” International
Journal of Computer Science and Information
Security, vol. 10, no. 10, pp. 1-5, 2012.

[12] Olszak A., Bouwers E., Jrgensen B., and Joost
V., “Detection of Seed Methods for
Quantification of Feature Confinement,” in
Proceedings of the 50

th
 International Conference

on Objects, Models, Components, Patterns, pp.
552-268, 2012.

[13] Orsila H., Geldenhuys J., Ruokonen A., and
Hammouda I., “Update Propagation Practices in
Highly Reusable Open Source Components,”
available at: http://www.zakalwe.fi/
~shd/publications/orsila_update_propagation_pra
ctices_2008.pdf, last visited 2008.

[14] Pedrycz W., Peters H., and Ramanna S., “A
Fuzzy Set Approach to Cost Estimation of
Software Projects,” in Proceedings of IEEE
Canadian Conference on Electrical and
Computer Engineering, Alberta, Canada, pp.
1068-1073, 1999.

[15] Prasad P., Sudha K., Rama S., and Ramesh S.,
“Software Effort Estimation using Radial Basis
and Generalized Regression Neural Networks,”
Journal of Computing, vol. 2, no. 5, 2010.

[16] Rao B., Sameet B., Swathi K., Gupta K.,
RaviTeja C., and Sumana S., “A Novel Neural
Network Approach for Software Cost Estimation
Using Functional Link Artificial Neural Network
(FLANN),” International Journal of Computer

An Effective Approach to Software Cost Estimation Based on Soft Computing Techniques 665

Science and Network Security, vol. 9 no. 6, pp.
126-131, 2009.

[17] Reddy C. and Raju K., “A Concise Neural
Network Model for Estimating Software Effort,”
International Journal of Recent Trends in
Engineering, vol. 1, no. 1, pp. 188-193, 2009.

[18] Reddy C. and Raju K., “Improving the Accuracy
of Effort Estimation through Fuzzy Set
Representation of Size,” Journal of Computer
Science, vol. 5, no. 6, pp. 451-455, 2009.

[19] Shepperd M., Schofield C., and Kitchenham B.,
“Estimating Software Project Effort Using
Analogies,” IEEE Transaction on Software
Engineering, vol. 23, no. 11, pp. 736-743, 1997.

[20] Shirabad S. and Menzies T., “The PROMISE
Repository of Software Engineering Repository.
Repository,” available at: http://promise.site.
uottawa.ca/SERepository, last visited 2014.

[21] Sodikov J., “Cost Estimation of Highway
Projects in Developing Countries: Artificial
Neural Network Approach,” Journal of the
Eastern Asia Society for Transportation Studies,
vol. 6, pp.1036-1047, 2005.

[22] Tronto I., Silva J., and Anna N., “The Artificial
Neural Networks Model for Software Effort
Estimation,” INPE ePrint, vol. 2006, 2006.

[23] Wang L. and Mendel J., “Generating Fuzzy
Rules by Learning from Examples,” IEEE
Transactions on System, Man, and Cybernetics,
vol. 22, no. 6, pp. 1414-1427, 1992.

[24] Yahya A., Ahmad R., and Lee S., “Impact of
CMMI Based Software Process Maturity on
COCOMO II’s Effort Estimation,” the
International Arab Journal of Information
Technology, vol. 7, no. 2, pp. 129-138, 2010.

[25] Ziauddin., Kamal S., khan S., and Nasir J., “A
Fuzzy Logic Based Software Cost Estimation
Model,” International Journal of Software
Engineering and Its Applications, vol. 7, no. 2,
pp. 7-18, 2013.

Marappagounder Shanker

Marappagounder Shanker received

his BTech degree in the stream of

Information Technology from V.L.B

Janakiammal College of Engineering

and Technology, Anna University,

Chennai, and ME degree in

computer science engineering from Kongu

Engineering College, Anna University, Chennai. He is

also an SAP Certified Business Intelligence (BI)

Consultant. He has worked with HCL Technologies as

Software Engineer for 2 years.He is currently working

with ATOS. His specializations include software

engineering, ERP(SAP)-data warehousing. His current

research interests include:Cost and effort estimation

techniques in software engineering.

Jayabalan Jaya received her Ph.D

in Information and Communication

Engineering from Anna University,

Chennai. She completed her M.Tech

in Advanced communication

systems (University second rank

holder) from SASTRA University,

Tanjore, Tamilnadu and BE in Electronics

Communication Engineering from Sri Ramakrishna

Engineering College, Coimbatore, Tamilnadu. She has

published two books, Digital Signal Processing and

Digital Image Processing and has published 20

research papers in International level and 34 research

papers in National level. She is a proud member of

various chapters like IEEE, Indian Society for

Technical Education (ISTE) Computer Society of India

(CSI), Indian Women Network IWN, International

Association of Computer Science & Inf. Tech.

(IACSIT), ICTACT, International Association of

Engineers (IAENG) and IETE.

Keppanagounder Thanushkodi
received his Bsc degree in electrical

and electronics engineering from

College of Engineering, Chennai,

University of Madras in 1972, MSC

degree (Engg) in power systems

engineering from University of

Madras in PSG College of Technology, Coimbatore

and in 1991, and PhD in power electronics from

Bharathiyar University, Coimbatore. He has highly

professionalized teaching experience for 43 years. He

has published more than 150 Papers in various Journals

and 200 Papers in National and International

Conferences. Currently he is The Director, Akshaya

College of Engineering and Technology, Coimbatore.

His research interests include the areas of power

system, power electronics, computer networking,

image processing, software engineering and virtual

instrumentation.

