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Abstract: The quality of generated images is one of the significant criteria for Generative Adversarial Networks (GANs) 

evaluation in image synthesis research. Previous researches proposed a great many tricks to modify the model structure or loss 

functions. However, seldom of them consider the effect of combination of data augmentation and multiple penalty areas on image 

quality improvement. This research introduces a GAN architecture based on data augmentation, in order to make the model 

fulfill 1-Lipschitz constraints, it proposes to consider these additional data included into the penalty areas which can improve 

ability of discriminator and generator. With the help of these techniques, compared with previous model Deep Convolutional 

GAN (DCGAN) and Wasserstein GAN with gradient penalty (WGAN-GP), the model proposed in this research can get lower 

Frechet Inception Distance score (FID) score 2.973 and 2.941 on celebA and LSUN towers at 64×64 resolution respectively 

which proves that this model can produce high visual quality results. 
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1. Introduction 

Image synthesis is one of the important application areas 

of probabilistic generative models. Such models usually 

need to focus on the sample distribution itself. Previous 

researchers combined these approaches to deep neural 

networks and proposed many influential models. 

Variational Autoencoders (VAEs) [22] depend on 

approximate inference methods that introduce 

restrictions of both reconstruction error and Kullback-

Leibler (KL) divergence. With the help of 

parameterization trick, data sampling can be achieved in 

training process. However, Due to the limitation of the 

model, the generated samples from VAE are often 

blurry. Autoregressive models [20] directly model the 

probabilistic distribution. Since they need to sample 

data pixel by pixel, the generation efficiency is not 

satisfied, and the computation cost is relatively large. 

Flow-based models [6, 7] are also named change of 

variable models, they need to add many restrictions on 

the generator, thus cause limitations of the ability of 

generator. Generally, these models can be categorized 

into explicit density methods model that they all need to 

estimate probabilistic density of the real data 

distribution. 

Unlike the models above, Generative Adversarial 
Networks models (GANs) [9] are implicit density model 

which do not require direct estimation of the 

probabilistic density function and log-likelihood. The 

architecture of GANs normally contains two  

 

components which are generator and discriminator. The 

task of generator is to map the latent code to the real data 

space, while the discriminator can be considered as a 

binary classifier that distinguishes real data between 

generated data. The loss function is like the minmax 

game which is basically defined as below: 

     )1log(xlogmaxmin xDEDE pgxpdatax
DG

 
 

In formula (1), G and D represent generator and 

discriminator respectively. x ∈ pdata indicates the data 

from real data distribution and x ∈pg stands for fake data 

from the generator (x (x ∈ pg =G(z). The fake data can 

be obtained by G(z) where latent code z is normally 

sampled from standard Gaussian distribution or uniform 

distribution. During training process, generator aims to 

generated data which can cheat the discriminator. In 

other words, the object of generator is to minimize the 

Jensen-Shannon (JS) divergence between real data 

distribution and model distribution. Discriminator is 

used to measure the divergence between these two 

distributions, if the divergence between the two is large, 

the discriminator will give a lower score to the pg and a 

higher score to the pdata and vice versa. As training 

progresses, the generator generates data that is close to 

the real data distribution. When pg is exactly as the same 

as pdata. That is, the divergence is equal to 0 between 

real distribution and generated distribution, the 

probability for both the real data and the generated data 

is 0.5. Finally, the generator and discriminator reach at 

(1) 
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Nash equilibrium. 

However, JS divergence does not accurately measure 

the difference between two distributions. Since pg and 

pdata are manifolds of high-dimensional spaces, these 

two distributions often hardly overlap. So that, JS 

divergence is always equal to log2 for non-overlapping 

distributions. That is, the discriminator can distinguish 

two kinds of data very well in the beginning which leads 

to gradient vanishing. Moreover, it also causes the 

generator obtain less gradient information to update 

parameters during optimization process resulting in 

inability to generate better results. 

This research proposes the GAN model with data 

augmentation. To be specific, it acquires extra data with 

noise G(z+noise) from generator, and feed them to 

discriminator. During training, an encoder network 

needs to reconstruct G(z+noise) to z which forces 

generator to learn more concrete feature from real data. 

Meantime, G(z+noise) will be fed to discriminator along 

with real data p(x) and generated data G(z). In order to 

fulfill 1-lipchiz constraints, it is necessary to consider 

adding p(z+noise) into the gradient penalty areas. That 

is, not only the areas between real data and fake data but 

also the areas form real data between data with noise 

should also be regarded as penalty area. Experiments 

have proved that these methods can improve the ability 

of discriminator, thereby helping generator to generate 

more realistic data. 

The contributions of this research are as follows: 
 

 A GAN model based on data augmentation and 

multiple penalty areas is proposed. 

 It has been proved that adding multiple penalty areas 

term to loss function can improve quality of 

generated images based on FID score. 

 The results on LSUN towers [26] and celebA [14] at 

64×64 resolution can surpass previous model 

DCGAN and WGAN-GP. 

The related work is introduced in section 2, and 

proposed method is shown in section 3. In section 4, the 

details of experiment analysis is mentioned. Finally, the 

conclusion of this study and future work are discussed 

in section 5. 

2. Related Work 

In order to improve the model's ability to get better 

generated results, some studies used data with added 

noise to participate in training process. Denoising 

autoencoder [25] introduced an idea that takes 

corrupting data as input to get the better reconstruction 

performance in autoencoders training. Under this 

condition, the encoder can learn more robust data 

features, thereby enhancing model's performance. 

Contractive autoencoder [23] added the Frobenius norm 

of the Jacobian matrix as penalty term to the loss 

function. This method reduces the impact of input 

changes on the latent code to a certain extent. So, there 

would be some benefit to model robust. Denoising 

feature matching [25] combined features distribution 

with denoising autoencoder to modify the loss function 

which get both qualitative and quantitative 

improvements in generated data. 

Instead of adding extra data to generator, some 

studies adopted other distribution distance metrics for 

discriminator. WGAN [1] modified the loss function of 

discriminator which took Wasserstein distance to 

replace JS divergence. In practice, it adds weight 

clipping trick to limit the range of parameters which 

contribute to convergence of loss function. Another [10] 

way is to bring the penalty area between pg and pdata 

as a regularization term to the loss function which force 

the gradient of these areas to be as close to 1 as possible. 

SNGAN [18] achieved control over the gradient range 

by regularizing the parameters matrix. In addition, both 

LSGAN [16] and RGAN [12] try to solve the problem 

that JS divergence causes the gradient to be 0. 

Specifically, LSGAN adopted least square loss function 

for discriminator which performs more stable. RGAN 

suggested using “relativistic discriminator” in the 

network architecture, the whole training process should 

contains increasing the probability that pg is real and 

decreasing the probability that pdata is real. 

In addition to the improvement of the loss function, 

many studies have enhanced ability of discriminator by 

adding extra information to the generator. Thus, it is 

effective for stabilizing the training of the model to get 

the good results. For instance, CGAN, AC-GAN, info 

GAN [5, 17, 19]. They control the output of the 

generator by adding label information. Under this 

circumstance, generator needs to consider both latent 

code and label information to generate samples, which 

can be seen as putting constrains on the generator's 

generation space. Meanwhile, the discriminator also 

needs to consider whether the label information matches 

the generated data. 

Some other methods have changed the structure of 

the model. DCGAN, improved DCGAN [21, 24] take 

advantage of the convolution layer instead of fully-

connected layer to extract data features, and obtains 

high-quality generated samples. 

BiGANs, VAEGAN, BEGAN, EBGAN [3, 8, 13, 

27] contribute image quality by combining autoencoder 

structure and GANs. The autoencoder structure can 

ensure the reconstruction ability of the model, and the 

discriminator can make the image more realistic.  

Inspired by these researches, this research introduces 

a GAN model based on data augmentation. Concretely, 

the ability of generator has been improved through an 

extra encoder. Under this design, generator could learn 

how to let generated data get rid of noise. Moreover, the 

ability of discriminator is also enhanced by adding 

multiple penalty areas as regularization term to the loss 

function. The details of the whole architecture are 

shown in section 3. 
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3. Proposed Methods 

3.1. Data Augmentation for Generator 

This research proposes a novel GAN model with data 

augmentation structure. To be specific, a noise vector is 

added into latent code z which is from prior distribution. 

Then it is reconstructed into E(G(z+noise)) with the help 

of an extra decoder. For the generator, it not only needs 

to generate G(z) and G(z+noise), but also needs to 

minimize the norm between E(G(z+noise)) and z. That 

is, a noise penalty term is added to the loss function of 

the generator which constrains the generation space of 

the generator to a certain extent, and improves the 

robustness of generator to noise. Under this 

circumstance, generator can not only learn to produce 

the image but also handles to filter noise from generated 

data. 

In practice, the noise vector comes from a Gaussian 

distribution. To simplify the computation, square of 

L2(Euclidean) norm is adopted as metric in this 

experiment. Finally, the Penalty Term (NP) can be 

defined as below: 

2

2||))((|| znoisezGENP   

So, the loss function of generator is shown as follows: 

)())((min 1 NPxDE pgx
G
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The first term of (3) is as the same as original GAN that 

generator should maximum the output of fake data in 

discriminator. While λ1 is the hyperparameter which 

balance the ability of generator between generation 

power and robustness to noise. If the λ1 is too big, the 

generator focuses more on robustness to noise but loss 

generation ability to noise. However, if the λ1 is too 

small, it will bring down the robustness. So that, the 

model should be evaluated under different value of λ1 

during experiments. 

3.2. Multiple Penalty Areas under 1-lipchiz 

Constrains 

Structurally, the discriminator is not quite different from 

original GAN, but now it is required to distinguish real 

samples from G(z) and G(z+noise). So, the loss function 

can be defined as: 

))((
2

1
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The formula (4) explains that the real data should be 

discriminated as real, but G(z) and G(z+noise) should be 

discriminated as fake. 

In practice, this model utilizes Wasserstein distance 

as distribution metric to measure these two 

distributions. For the purpose of making discriminator 

to be converged, it should satisfy D∈1−Lipschitz. In 

response to this constraint, WGAN requires weight 

clipping to realize this limitation. To be specific, it sets 

an upper bound c and lower bound −c for gradient of 

weights. To be specific, if the parameter W is greater 

than c, change w equals to c; if the parameter W is less 

than −c, change w equals to −c. In this way, the value of 

discriminator between pg and pdata will not be pulled 

away infinitely.  

However, weight clipping may cause long time for 

training [10] or result in gradient vanishing if the 

clipping parameter is too large or small. WGAN-GP 

Gulrajani et al. [10] proposed another way to achieve 

better performance which added a gradient penalty term 

(
2)1||))(((||  xxDGP ) to the loss function which limits the 

gradient range of x. However, it is intractable to give 

enforcing to everywhere. In order to simplify the 

calculation, only the area between pdata and pg is 

penalized in the implementation.  

In this work, since the generator produces extra data 

G(z+noise), the Gradient Penalty (GP) area should also 

contain area between real data and G(z+noise) 

intuitively. Under this condition, discriminator can 

better form smooth decision boundary and provides 

more effective gradient information to generator. So 

that, the data are sampled from these two straight lines 

of p(data), p(z) and p(z+noise). This process can be 

descried by Figure 1 as below: 
 

 

 

 

 

 

 

 

 

Figure 1. Multiple penalty areas. 

All in all, the loss function of discriminator is shown 

as below: 

GPxDE
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D
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In formula (5), discriminator needs to maximize the 

value of real data while reduce the value of G(z) and 

G(z+noise).Where λ2 represents the penalty coefficient. 

In this work, the λ2=1 is used, since it has been found it 

works very well on datasets celebA and LSUN towers. 

The difference between this model and previous models 

is shown as below. 

According to Table 1, GAN and DCGAN utilize JS 

divergence and negative log-likelihood respectively, it 

is difficult to accurately measure the difference in 

distribution distance, while WGAN uses weight 

clipping which will limit the model ability and lead to 

unstable training. However, WGAN-GP and this model 

adopt the gradient penalty method to satisfy 1-lipschitz, 

G(z+noise) 

p(data) Penalty 

ara 

G(z) 

(2) 

(3) 

(4) 

(5) 



Generative Adversarial Networks with Data Augmentation and Multiple Penalty                                                                  ...  431 

which does not limit the model capability and is easy to 

calculate. The special envoy is the multiple penalty 

areas proposed in this study, which enables 

discriminator to form a better decision boundary and 

thus bring good gradient information to generator.  

Table 1. The comparisons with previous models. 

Model Loss function 

GAN JS divergence 

DCGAN Negative log-likelihood 

WGAN Wasserstein with weight 

clipping 

WAGAN-GP Wasserstein with gradient 

penalty(between real data and 

fake data G(z) 

Model in this study Wasserstein with multiple 

penalty areas (between real data 

and fake data G(z), real data 
and G(Z+noise)) 

3.3. The Architecture of Networks 

Generally speaking, generator is a deconvolution 

structure model with Leaky ReLU [15] nonlinearity that 

transfer latent code z into an image of 64×64 spatial 

resolutions. Our generator is shown as below, where 

“G”, “D” and “E” indicates generator, discriminator and 

encoder respectively. The discriminator is a deep 

convolution neural network that classifies whether the 

input data is real or not. As mentioned before, the 

encoder aims to encode the G(z+noise) into latent code 

z, so the architecture is comparable to the discriminator, 

only the output layer is 100 dimensions. The data flow 

and hyper parameters are shown as Figure 2 and Table 

2: 

 

 

 

 

 

Figure 2. The data flow of our model. 

Table 2. The hyperparameters of our model. 

Nonlinearity (G) LeakyReLU, LeakyReLU 

LeakyReLU 
tanh 

Nonlinearity (D) LeakyReLU, LeakyReLU 

LeakyReLU 
tanh 

Nonlinearity (E) LeakyReLU, LeakyReLU 

LeakyReLU 
tanh 

Depth (G) 3 

Depth (D) 3 

Depth (E) 3 

Batch norm (G) True,True 

Batch norm (D) True,True 

Batch norm (E) True,True 

Base filter count (G) 512,256,128 

Base filter count (D) 64,128,256 

Base filter count (D) 64,128,256 

4. Experiments 

The model proposed in this research was trained on both 

CelebA and LSUN tower datasets at 64×64 resolution 

which contains 202599 and 708201 images respectively 

for 300k epochs with 0.0001 learning rate and 256 batch 

size.  

Due to the variety of criteria, there are several 

methods for measuring quality of image synthesis. 

Broadly speaking, the most common ways are Inception 

Score (IS) [2] and FID score [11]. Both two evaluate 

fidelity and quality of images based on Inception model. 

However, IS does not compare the generated images 

with the real images directly and only relying on 

ImageNet may miss useful features. FID can take into 

account the difference between the real distribution and 

the generated distribution. A lower FID means that the 

two distributions are closer, which means that the 

quality and diversity of the generated images is higher. 

Some other methods, such as RMS Contrast [4], is not 

widely used. In these experiments, FID score is used as 

the criteria for model evaluation. First, the model is 

trained on these datasets to figure out the best noise 

intensity based on FID score. The hope is to identify the 

ideal noise intensity for each dataset. In the second part, 

it is proved that penalty area including p(data), G(z) and 

G(z+noise) can benefit the results comparing with that 

only consider area of p(data) and G(z) Finally, this 

model is compared with DCGAN and WGAN-GP. FID 

score and image samples are used to provide a 

perceptually comparison. 

4.1. The Effective Noise Intensity 

The goal of this analysis is to find out the ideal noise 

intensity on celebA and LSUN tower datasets. Hence 

the parameter λ1 are set as 0.1, 0.5, 0.9, 1.5, and 3 

respectively to acquire the generated images at 64×64 

resolutions and feed these generated samples to a pre-

trained Inception network to calculate the FID score. 

The architecture and hypermeter are all the same, only 

the noise intensity is different.  

Table 3. The FID score on celebA with different λ1. 

/celebA1λNoise  FID score 

0.1 3.353 

0.5 3.255 

0.9 2.941 

1.5 10.631 

3 19.155 

Table 4. The FID score on LSUN towers with different λ1. 

LSUN/1λ Noise FID score 

0.1 3.304 

0.5 2.973 

0.9 6.717 

1.5 18.281 

3 31.173 

The left column of Tables 3 and 4 indicates the 

different noise intensity and the right column is the FID 

score accordingly. It can be found that the noise 
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z+noise 

 

G

 

D

 

G(z) 
D(G(z)) 

Real data 

D(data) 

G(z+noise) D(G(z+noise)) 

E
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intensity with 0.9 achieves the best result comparing to 

others in celebA. And noise intensity with 0.5 gets the 

lowest score in LSUN towers. These settings are used in 

the subsequent experiments. 

4.2. Measuring the Effect of the Multiple 

Penalty Areas 

It is meaningful that the penalty areas should contain 

p(data) G(z) and G(z+noise) (multiple penalty areas) in 

this model. Under this circumstance, discriminator can 

obtain more information to update the parameters which 

benefit the results.  

In this section, the noise intensity parameter is set as 

0.9 and 0.5 which are the best settings of experiment 5.1. 

To evaluate the effect of multi-penalty area, it has been 

compared to the penalty area only contains p(data) and 

G(z). The results are shown as below: 

Table 5. The FID score on celebA and LSUN under different penalty 

areas. 

Dataset Noise FID score Penalty area 

celebA 0.9 3.356 p(data), G(z)  

celebA 0.9 2.941 p(data), G(z) and 

G(z+noise)  

LSUN 0.5 3.318 p(data), G(z)  

LSUN 0.5 2.973 p(data), G(z) and 

G(z+noise)  

Table 6. The FID score on LSUN towers under different penalty 
areas. 

Dataset Noise FID score Penalty area 

LSUN towers 0.5 3.318 p(data), G(z) 

LSUN 

towers 

0.5 2.973 p(data), G(z) and 

G(z+noise) 

It can be found from Tables 5, and 6 that the model 

with regular penalty area only gets 3.356 and 3.318 in 

celebA and LSUN respectively. Nevertheless, the 

model with multiple penalty areas can get the lower FID 

score both in celebA and LSUN. This proves that the 

quality of images can be improved with multiple penalty 

areas. 

4.3. Comparison to Previous Models 

In this section, this model was compared with DCGAN 

WGAN-GP based on FID score. DCGAN tries to 

improve the quality of generated images and introduces 

the concept of deconvolution into the model. WGAN-

GP adopts the same Wasserstein loss function as the 

model proposed in this study, but only contains regular 

penalty regions since there is no data augmentation. 

Basically, the results of comparison on celebA and 

LSUN towers are shown as below: 

 

 

 

 

 

Table 7. The comparison to different models in celebA and LSUN 
towers. 

DCGAN WGAN (GP=1) OURS (λ1=0.9,GP=1) 

  
 

FID 

6.198 3.327 2.973 

Table 8. The comparison to different models in LSUN towers. 

DCGAN WGAN (GP=1) OURS (λ1=0.9,GP=1) 

  
 

FID 

8.026 3.327 2.941 

 

According to the results of Tables 7 and 8, DCGAN 

cannot get better results under the same number of 

iterations, and the generated pictures are blurry. Due to 

the lack of noise reduction ability and the help of 

multiple penalty areas, the results of WGAN-GP are 

clearer than DCGAN, but there is more or less noise. 

Intuitively, the model proposed in this research is the 

best which also has the smallest FID score. 

5. Conclusions 

This research introduces a mechanism of data 

augmentation which can be achieved by considering 

extra data G(z+noise). Thereby when using Wasserstein 

distance as the metric of discriminator, discriminator 

needs to give the penalty on multiple areas. That is it not 

only needs to enforce constraints between the real data 
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and G(z), but also need to limit gradient norm between 

the real data and G(z+noise). Experiments have proved 

that this method can help discriminator to learn 

smoother decision boundaries and improve the quality 

of generated images. However, this method requires the 

design of an additional encoder and the complexity of 

the model structure is slightly increased. Moreover, the 

model has only been verified on the celebA and LSUN 

towers at resolution 64*64, and only one evaluation 

standard is used. In future work, it is hoped that this 

method can be extended to higher resolution or text 

generation, or to verify the effect of this method in the 

loss function of other GAN models. 
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