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Abstract: In recent years, the quantities and types of malwares have grown explosively, which bring many challenges to identify 

and detect them. In order to improve the identification efficiency of malicious code, a malicious code feature representation 

method based on feature dimension reduction is proposed. By fusing the Gini impurity increment and the Improved Term 

Frequency-Inverse Document Frequency algorithm (ITF-IDF), ΔGini-Improving Term frequency inverse document frequency 

(ΔGini-ITFIDF) method is presented, which can get more valuable assembly instruction features for family detection. ΔGini-

ITFIDF standardizes the assembly instructions of the PE disassembly files, then, measures the two indicators of the expected 

error rate increment and weight of the malicious code assembly instruction features, and obtains more valuable features to 

identify malicious codes. The experimental results show that the classification accuracy of the ITF-IDF algorithm is significantly 

improved compared with the ITF-IDF algorithm. At the same time, ΔGini-ITFIDF can effectively improve the classification 

performance. 
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1. Introduction 

The development of network technology has promoted 

the exchange of information among users, and has also 

created favorable conditions for the breeding and 

wreaking havoc of computer and mobile phone viruses 

and Trojan horses. In March 2022, Internet security 

threat report from CNCERT pointed out that the IP 

address of computers controlled by virus Trojans in 

China reached 5.32 million, an increase of 11.3% 

compared with February, on the Internet, more than 

9080 websites were tampered with by malware, an 

increase of nearly 173.2% over the previous month, the 

number of websites implanted with backdoors in China 

was 2524, an increase of 40.5% over the previous month, 

there were more than 3823 incidents involving 

malicious programs and more than 4400 incidents 

involving network vulnerabilities [6]. The attack of 

malicious code on the computer brings harm to the 

user's information security. The leakage of personal 

privacy, and the loss and damage of data also have a 

serious impact on daily life and work. Effective 

interception and killing of malicious programs have 

become an urgent problem. 

To intercept and deal with malicious code, we must 

effectively identify the category, source and other 

attributes of malicious code. To achieve the above 

objectives, effective and reasonable features contained 

in different malicious code samples must be extracted. 

In recent years, this research field has also made  

 
significant progress and research results. Santos et al. 

[21] analyzed the family and behavior purpose of 

unknown malicious samples by selecting the frequency 

of malicious code operation instructions. Tang et al. [23] 

extracted opcode features of different granularities 

through Multy-Granularity Opcode Droid 

(MGOPDroid), and converted opcodes into sequences 

to improve the anti-obfuscation of malicious code 

identification. By researching the sequence of malicious 

program Application Programming Interface (API) calls, 

Amer et al. [4] and Al-Hashmi et al. [2] run malicious 

code PE files in a sandbox and analyzed the behavior of 

malicious code runtimes by recording API calls. Nataraj 

et al. [17] converted binary executable files into gray-

scale images in 2011. This method used image 

processing technology to analyze binary PE files of 

malware, which had a far-reaching impact on texture 

analysis and visual analysis of malware [7, 10, 14, 16]. 

Conventional methods always use static or dynamic 

behaviors such as binary bytecode, API call sequences, 

function call sequences and so on, which are got by 

feature extraction tools such as Interactive Disassembler 

Professional (IDA-pro) or running malicious programs 

in sandbox. These methods usually obtain all the sample 

features information, resulting in a large number of 

redundant features, which affect the accuracy of the 

detection results. Therefore, it is necessary to further 

purify the features, filter out redundant features, obtain 

more valuable features, to improve the accuracy of 

malicious code detection. 
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Research shows that effectively reducing the feature 

dimension, selecting high-quality features to filter out 

redundant and irrelevant features has been widely used 

in data mining fields, such as text feature extraction and 

classification [8]. The purpose of the paper is to propose 

a reasonable feature extraction method of malicious 

code, so as to identify and classify malicious code more 

efficiently. This paper takes the Portable Executable (PE) 

disassembly files as the research object, constructs the 

assembly instruction word vector, analyzes the impact 

of assembly instructions’ weight in the sample family 

on classification. Our method improves the 

classification accuracy of malicious code by extracting 

features that can better represent specific categories and 

reducing the feature dimension. 

This paper presents a method based on ΔGini- 

Improving Term Frequency-Inverse Document 

Frequency (ITFIDF) feature extraction method, which 

is based on Gini impure increment and improved Term 

Frequency-Inverse Document Frequency (TF-IDF) 

algorithm for feature screening, dimensionality 

reduction, and identifies malware through Random 

Forest (RF) and K-Nearest Neighbor (KNN) 

classification model. Different from the methods 

proposed by Santos et al. [21], Mohammed et al. [16] 

and other existing methods, the feature extraction 

method proposed in this paper fully considers the impact 

of the distribution of feature within and outside the 

family on classification. ΔGini-ITFIDF selects high-

quality features and improves the classification 

accuracy of the classifier. The main work of this paper 

is as follows: 

1. Decompiling PE files, we get the opcodes and 

operands of assembly instructions, then normalize 

them by some rules. 

2. We improve the traditional TF-IDF algorithm to 

highlight the discrimination of TF-IDF to malware 

families. 

3. By analyzing the two indicators of expected error rate 

increment and weight of features, we propose a 

feature extraction algorithm based on Gini impure 

increment and improved TF-IDF fusion, ΔGini-

ITFIDF, to improve the classification performance. 

2. Related Work 

Malicious code feature extraction is always divided into 

static feature extraction and dynamic feature extraction. 

Static analysis technology refers to extract the features 

of malicious code without executing it in a dedicated 

device such as a sandbox or a virtual machine, but it is 

often necessary to analyze the compiler information, 

import/export table, assembly code, resources, various 

string information (version information, URL, special 

identification, etc.,) and shell information are used for 

feature extraction. The method of actually running 

executable files in sandbox, virtual machine and other 

environments and getting key features is called dynamic 

feature extraction. Compared with the static analysis 

method, the dynamic analysis actually runs the PE file, 

and obtains malicious code features which more 

accurately describes the difference in the behavior of the 

malicious code, but there are also problems such as 

time-consuming and resource-consuming. Therefore, it 

is difficult to quickly process a large number of 

malicious code samples. This section reviews and 

summarizes the related research on malicious code 

feature extraction methods. 

Abou-Assaleh et al. [1] used bytecode sequence-

based N-Grams as static features for the first time. In 

terms of operating instructions for malicious code, Kang 

et al. [12] used the Long-Short Term Memory (LSTM) 

method in word2vec to extract the opcode of malicious 

code and the name of the API calling function for 

classification. Jeon and Moon [11] extracted opcode 

sequences from PE files of malicious code and 

constructed a convolutional recurrent neural network 

including opcode convolutional encoders. Pektaş and 

Acarman [19] detected malicious samples by analyzing 

the calling behavior and checking the execution path of 

the malicious code during the calling process through 

the instruction call graph, using the opcode sequence of 

the malicious code as a feature. O’Shaughnessy and 

Breitinge [18] constructed the letter-letter frequency-

letter corresponding Huffman encoding as a composite 

feature to reduce the complexity of feature generation 

and feature analysis. 

In terms of feature dimensionality reduction, Singh et 

al. [22] analyzed the implicit semantics of malware 

through Latent Semantic Indexing (LSI), and reduced 

the dimension of malware features by relying on 

singular values to improve the performance of 

classification. Şahin et al. [20] performed features 

dimensionality reduction by Principal Component 

Analysis (PCA) and Linear Discriminant Analysis 

(LDA) to solve the problem of limited system resources. 
Table 1 shows a comparison of different related works. 

Table 1. Related work comparison. 

Reference Feature Malware detection Method 

Santos et al. [21] Opcode Opcode sequences frequency 

extraction 

Al-Hashmi et al. [2] API calls deep learning+ EGBoosting 

Nataraj et al. [17] Binary Gray Image + machine learning 

Mohammed et al. [16] Binary Frequency image + CNN 

Jeon and Moon [11] Opcode Opcode sequence + CRNN 

Pektaş and Acarman [19] Opcode Opcode + FCG + LSTM and CNN 

Singh et al. [22] Opcode Latent Semantic Indexing +RF 

Our method Opcode ΔGini-ITFIDF + RF, KNN 

Most of the above methods were aimed at all features, 

and do not take into account the redundant information 

that may exist in the extracted features. Using LSI [22], 

LDA [20] or the TF-IDF method mentioned by Al-

Hashmi et al. [2] for malware feature selection didn’t 

consider the distribution of features within and outside 

the malware family. In addition, comparing with the 

Gini index mentioned by Al-Hashmi et al. [2], Gini 
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impurity increment (ΔGini) value is proportional to 

expected classification accuracy, which is more directly 

reflects the classification effect. This paper improved 

the TF-IDF method to further filter the features by using 

the feature weight inside and outside the family, and use 

Δ Gini-ITFIDF as the indicator to measure feature 

importance and obtain more efficient classification 

performance. 

3. Methodology 

3.1. Gini Impurity 

In the RF [9] algorithm composed of decision tree [24], 

several subdatasets are extracted from the dataset by 

bootstrap sampling method, and a Classified Regression 

Tree (CART) is constructed for each subdataset. When 

constructing CART, several features are randomly 

selected to form feature subsets to select node fields, and 

each node in each CART can have higher purity. Then, 

for CART tree, the classification and regression effects 

are determined by voting and mean value respectively. 

Gini impurity [13] is an important field selection 

indicator of CART in verifying the purity of each node, 

which comes from information entropy. Gini impurity 

measures the expected error rate of a feature in the data 

set, and its decline rate, i.e., increment, shows the 

impact of features on dependent variables. The 

calculation formula of Gini impurity is shown in 

Equation (1): 
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Here, pj represents the occurrence probability of the j-th 

item in the possible value of an event, which can also be 

expressed by empirical probability as: 

2

1

)(1)( 



J

j

j

D

D
DGini  

Among them, |D| represents all samples in the event, and 

|Dj| represents the number of occurrences of the type j 

sample in the dataset and the probability value pj refers 

to the frequency represented, that is, the probability of 

class j samples. Therefore, for a characteristic Ai, the 

Gini purity is as shown in Equation (3).  

])|(1)[(])|(1)[()(
1

2

1

2 



J

j

iji

J

j

ijii ADPAPADPAPAGini

])(1)[1(])(1)[( 2

1

2

1


 




J

j i

ijii
J

j i

iji

DD

DD

D

D

D

D

D

D  

The decline rate of Gini impurity is expressed as 

Equation (4). 
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According to the results of Equation (4), select the 

features with large decline rate of Gini impurity, that is 

the features that have a great impact on the classification 

results. 

3.2. TF-IDF Algorithm and its Improvement  

TF-IDF [5] is Composed of Term Frequency (TF) and 

Inverse Document Frequency (IDF). If the frequency of 

the entry in the sample is high and the entry appears less 

in other sample files, the entry has a better classification 

effect on the text than other entries. Expressed as the 

product of word occurrence frequency and inverse 

document frequency: 

jj idftf *TFIDF   

The definition of term frequency tfj is as follows: 
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There are k entries in each type of document, nj is the 

number of entries j in each document. The denominator 

is the sum of the number of entries in each document, 

that is the total number of entries. Inverse document 

frequency idfj is: 
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Here, D is the total number of documents, and Dj is the 

number of inverse text documents, that is the number of 

texts containing the entry in the corpus. 

The TF indicates the importance of each term in the 

text. With the decrease of Dj, it shows that the frequency 

of this entry in the whole dataset decreases and the 

inverse file frequency IDF increases. Therefore, TF-IDF 

tends to retain entry features that are important to this 

document and not important to other texts. 

The traditional TF-IDF algorithm can effectively 

judge whether the entry feature is representative for the 

text. If the frequency of an entry in a kind of text is very 

high, it can show that the entry occupies an important 

position, and the better representativeness in this kind of 

text. But there is also a problem, the increasement of the 

number of an entry in the same type of text also 

increases the number of documents Dj containing the 

entry in the whole corpus, which reduces the IDF value. 

Hence, it is necessary to further distinguish whether the 

text with frequent occurrence of this entry is the same 

type of text. If more entries appear in the same type of 

text, the impact on TF-IDF value should be positive. On 

the contrary, if they appear frequently in other types of 

text, the impact on TF-IDF value should be negative. 

Facing the above problems, in order to better 

distinguish the category of word segmentation entries, 

Zhang et al. [25] made some improvements to the 

traditional TF-IDF algorithm to adapt to text 

classification, the Equation is: 

D
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in family A documents, Dj is the number of entry j in the 

document set, and D is the total number of documents. 

It can be seen that the formula takes into account the 

distribution of features within and outside the family. 

However, the improved algorithm only takes into 

account the number of texts containing entry j in the 

document of family A and the number of entry j in the 

sample set, thus ignoring the number of entry j in other 

families. This will increase the proportion of entries in 

the texts of family A and others, which will lead to the 

increase of Dj. If the number of entries j in the samples 

of other families is too large, it will weaken the 

influence of Dj on idfj. In addition, the large number of 

documents containing entry j in other documents does 

not mean that the proportion will be large. Therefore, 

this paper made further improvements on this basis, and 

calculated the frequency of an entry j in documents of 

the family A and others respectively. Based on this, the 

original IDF definition is modified as follows: 
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Here dj is the number of documents containing entry j in 

family A, d is the total number of documents contained 

in family A, D is the total number of documents, and Dj 

is the number of documents containing entry j in the 

document set. Taking the proportion of documents 

containing entry j in family A and other documents as 

variables can avoid the situation of large sample size but 

small proportion. In the family A documents where 

entry j is located, the value of idfj' is positively 

correlated with the proportion of the number of 

documents containing entry j, and the stronger the 

ability of this entry to distinguish family A. In the 

documents of other families, the value of idf’ is 

negatively correlated with the proportion of the number 

of documents containing entry j, and the weaker the 

ability of this entry to distinguish family A. Therefore, 

the value of idf’ determines whether an entry has been 

distinguishability. 

In Addition, the original TF algorithm only 

represents the weight of entries in a single sample, 

which makes the frequency of entries in a family 

complex, resulting in large fluctuation of TF-IDF value. 

Not only it can’t represent the weight of entries in the 

family, but also lead to the possibility of erroneously 

screening important features in feature screening. 

Therefore, in order to more intuitively represent the 

weight of entries in the family, this paper further 

modifies the TF algorithm. 
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Here, Nj is the number of entries in family A where entry 

j belongs, and the denominator represents the total 

number of all entries in family A. In this way, the 

frequency corresponding to the entry changes from the 

frequency of the entry in the document to the frequency 

in the whole family, so that each entry in the same 

family corresponds to a unique TF-IDF value. It can’t 

only better reflect the degree of distinction between 

entries and families, but also simplify the screening 

process of entries. 

To sum up, this paper gets the final improved TF-IDF 

algorithm, defined as: 
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ITF-IDF algorithm avoids the influence of category on 

the weight calculation of malicious code, and can screen 

out the characteristic terms that highlight the 

characteristics of this category, and can also filter out 

the redundant term features that have little impact on the 

classification. 

4. Feature Extraction 

4.1. Preprocessing of Assembly Instructions 

Firstly, this paper preprocesses the malicious samples, 

which can be transformed into code in the form of 

assembly language through reverse tools. This 

experiment uses IDA-Pro to disassemble these samples 

and convert it into assembly codes. And it uses the pefile 

in Conda to parse and generate assembly text. 

Because the assembly instructions of malicious code 

are messy, rich in meaning and different in length, there 

are many redundant interference information. In order 

to solve the above problems, we first need to consider 

the normalization of the length of the operation code, 

and standardize the operands of the assembly code such 

as register, memory, immediate number, calling 

instruction, and the number of operations after the jump 

instruction. The specific methods are as follows: 

1. Opcode length normalization. 

The length range of opcodes in assembly instructions is 

about 2-6 characters, about 48% of opcodes are within 

3 characters, 29% of opcodes are 4 characters, 18% of 

opcodes are 5 characters, and 5% of opcodes are 6 

characters. However, more than 90% of the characters 

of the called opcode are less than three. Therefore, this 

paper uniformly selects the first three characters of the 

opcode, such as, call → cal, push → pus. If the character 

length is less than 3, the insufficient character bits shall 

be filled with spaces, such as, js→js(“_”represents 

space). 

2. Operand standardization and normalization 

a)  Register. There are three kinds of registers 

commonly used, 8b, 16b and 32B. This paper 

standardizes three different types of registers as 

follows, al→rg8, ax→r16, eax, ebx, ecx, edx, edi, 

esi, ebp, esp.etc.,→r32(Since all 32B registers 

(9) 

(10)  

(11)  
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described in R32 is too rough, R32 standardization 

is not adopted in this paper). 

b)  Memory. [eax+3Ch], [edi+4]. etc., operating 

instructions representing memory are 

standardized into mem. 

c)  Immediate. 5A4Dh, 70h. etc., operation 

instructions representing immediate numbers are 

standardized into val. 

d)  Call instruction. Only the operands that call the 

internal instruction are processed. For example, 

the internal function “call sub_101C02D” after 

normalization is “call sub”. 

e)  The operand after the jump instruction. 

Normalize “jnz short loc_1018887” to “jnz loc”. 

 

Figure 1. Examples of word segmentation results of some malicious 

samples. 

The processed opcodes and operands show the 

corresponding types more intuitively, reduce the feature 

dimension and sample complexity, reduce the 

interference of complex features on the follow-up work. 

Figure 1 shows part of the vocabulary content extracted 

by the sample “0a152188e52dafab247c7c9120aeef0cF 

e092db7” after the assembly instruction is normalized. 

4.2. ΔGini-ITFIDF Feature Extraction Method 

After the malicious code sample is standardized in the 

section 4.1. Method to obtain the parsed text, the 

opcodes of each assembly instruction are taken as a 

feature entry. Then, a malicious sample feature 

extraction algorithm based on Gini impure increment 

and ITF-IDF fusion is constructed (ΔGini-ITFIDF). 

1. Screening phase of Gini impurity increment. 

Calculate the Gini impure increment for the entries in 

various samples in the dataset, and sort the filtered 

Gini impure increment values, observe the 

proportion of Gini indicators in different ranges, and 

reasonably set the threshold according to the 

proportion to filter out the entries with low Gini 

impure increment. Get the optimized feature subset 

to construct a new feature set. 

2. Screening phase of ITF-IDF. Calculate the ITF-IDF 

weight X of each feature in this class over the filtered 

feature subset, set the threshold according to the 

situation of different file sets, filter out the features 

with the weight in the last a% in various samples, and 

form a new feature subset of each type of samples, 

Ui={x1, x2, ..., xki}. 

 Here, i refers to the number of sample categories, i=1, 

2,..., n, and k refers to the number of sample features, 

k=1,2,...,m. Because the important features of 

different categories of samples are different, it is 

necessary to obtain the union set of these new feature 

subsets to construct a new feature set 

n  21 U  ∪  ...  ∪U  ∪U=U . 

3. Classifier construction. Take the filtered entries as 

features, put the new feature subset into the classifier 

model and adjust the classification parameters. The 

training set and test set are divided by 10 cross-

validation, the classification performance of our 

model is evaluated by accuracy. Feature extraction 

process of ΔGini-ITFIDF is shown in Figure 2. 

 
Figure 2. Process of feature selection algorithm. 

5. Experimental Evaluation and Result 

In the experiment, our dataset and Microsoft Kaggle 

BIG2015 dataset [15] are used in this paper. Our dataset 

consists of 10 families and 15000 samples and the 

detailed distribution of samples in each family is shown 

in Table 2. BIG2015 dataset consists of 9 families and 

10868 samples and the detailed distribution of samples 

in each family is shown in Table 3. According to the 

method in section 4.1., our dataset obtains the 

standardized analytical text containing 345 feature 

terms. The BIG2015 dataset obtains the standardized 

analytical text containing 334 characteristic terms. The 

following is the first example ΔGini-ITFIDF feature 

extraction and analysis process on our dataset, then 

gives the comparison of experimental results on 

BIG2015 dataset. 

5.1. Gini Impurity Increment Experiment 

Calculate the Gini impurity increment of the entry in our 

dataset, conduct further correlation analysis on the entry, 

and arrange the Gini impurity increment of each feature 

in the original feature set in descending order, and its 

distribution is shown in Figure 3. 

It can be seen from Figure3 that the Gini impurity 

increment of about 60 features is close to 0, while the 

features whose Gini impurity increment lower than 

0.005 have almost no impact on the classification effect, 

which can be regarded as redundant features. Therefore, 

this paper sets the threshold as 0.05 to filter out features 

that have little impact on the classification effect. The 

experiment shows that the Gini impurity increment 

value of 57 features is lower than 0.005. 

The 57 features are filtered out to obtain the 

optimized feature subset, named S1. 
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Table 2. Sample distribution of our dataset. 

Family name Number of samples 

Agent 1500 

SoftPulse 1500 

Allaple 1500 

Mentiger 1500 

AdLoad 1500 

Nimnul 1500 

LMN 1500 

Virut 1500 

WBNA 1500 

AGeneric 1500 

Table 3. Sample distribution of BIG2015 dataset. 

Family name Number of samples 

Ramnit 1547 

Lollipop 2478 

Kelihos_ver3 2942 

Vundo 475 

Simda 42 

Tracur 751 

Kelihos_ver1 398 

Obfuscator.ACY 1228 

Gatak 1013 

Gatak 1013 

5.2. ITF- Agorithm Experiment 

After the feature subset S1 is obtained through the 

feature screening of Gini impure increment, in order to 

select a reasonable threshold for ITF-IDF, 100 samples 

are randomly selected in each family of the feature 

subset to filter out the features with the ITF-IDF value 

of the last 5%, 10%, 15%, 20% and 25% in each family 

and sample. At the same time, in order to verify the 

improvement effect of TF-IDF algorithm in this paper. 

The ITF-IDF algorithm in this paper is compared with 

the improved algorithm in [25], and the feature subsets 

extracted by merging are put into the RF model for 

classification. The results are shown in Figure 4. 

It can be seen from Figure 4 that the classification 

accuracy of feature subset extracted by ITF-IDF 

significantly improved compared with reference [25], 

which also shows that the improvement of TF-IDF 

algorithm in this paper highlights the weight of entries 

in the family, so that the ITF-IDF value can better 

represent the importance of entries in the family, which 

is also an advantage that the algorithm in [25] does not 

have. In addition, it can be seen from the figure that 

when 20% of the features are filtered out, the 

classification accuracy reaches the maximum value, and 

as the number of filtered features increases, the 

classification accuracy decreases. This is due to the fact 

that too few features lead to a reduction in the 

complexity of the tree in RF, resulting in a reduction in 

the strength of the tree, which affects the accuracy. 

 
Figure 3. Gini impurity increments with different characteristics. 

 

Figure 4. The classification results of different ITF-IDF methods 

after screening different ratio features. 

5.3. Feature Extaction Algorithm Effective-Ness 

Experiment 

In the experiment, each feature set is tested by 10 fold 

cross-validation. The classification results (est=20) in 

three different feature sets are shown in Figure 5. It is 

customary to use the horizontal axis to represent the 

number of cross-validation, the vertical axis to represent 

the classification accuracy, and three different dashed 

lines represent the classification results of different 

feature sets. 

 
Figure 5. Classification results of each feature subset of our dataset 

(est=20). 

As can be seen in Figure 5, the RF model has 

significantly improved the classification accuracy after 
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the fusion of Gini impure increment and ITF-IDF 

feature extraction algorithm. It is preliminarily verified 

that the feature extraction algorithm proposed in this 

paper has the significance of improving the 

classification performance. 

5.4. Compaison and Analysis of Microsoft BIG 

20015 Experimental 

Because the sample distribution of our dataset is 

relatively balanced, in order to verify the applicability 

of the algorithm in other unbalanced datasets, this paper 

further uses Microsoft Kaggle BIG2015 dataset for 

comparison. The feature extraction method of BIG2015 

is the same as our dataset. 

Compared with our dataset, BIG2015 dataset is 

unevenly distributed in each category, which makes the 

classification of samples more difficult. This paper also 

standardizes the assembly instructions of BIG2015 

dataset, filters the features of the dataset through the 

fused feature extraction algorithm, and generates two 

feature subsets S1 and S2. The classification results of 

the three datasets under the random forest algorithm are 

shown in Figure 6.  

 

Figure 6. Classification results of each feature subset of BIG2015 

(est=20). 

As can be seen from Figure 6, under the BIG2015 

dataset, the accuracy of the filtered feature subset in the 

random forest classifier is significantly improved 

compared with the original feature set. Then, this paper 

calculates the average value of the classification 

accuracy under the RF classifier with different 

parameters for each feature subset of our dataset and 

BIG2015 dataset respectively. The parameters of RF are 

selected as 10, 15, 20, and 25 respecti-vely. The 

classification results are shown in Table 4.  
The results in Table 4 show the classification 

performance of our and BIG2015 datasets on RF model. 

It shows that the classification accuracy has been 

improved by 3%-5% respectively after twice feature 

extraction through Gini impurity increment and fusion 

ITF-IDF feature extraction algorithm. 

In section 5.3., the effectiveness of the feature 

extraction algorithm proposed in this paper has been 

verified.  

In order to further verify the improvement of the 

classification performance of them, this paper also uses 

the other classification algorithm for experiment. 

Compared with Support Vector Machine (SVM), 

Adaboost and Naïve Bayes, KNN has the advantages of 

no parameter estimation, insensitivity to outliers, and 

has higher accuracy on multi-classification problems. 
Therefore, it is widely used in text feature classification 

[3]. Considering above factor, this paper uses KNN 

algorithm for comparison experiment. 

The number of nearest neighbors k is 1-10 

respectively. For each number of nearest neighbors and 

each feature subset, 10 times of cross validation and 

average value are adopted. The classification results are 

shown in Table 5.  

The results in Table 5 show that KNN classifier can 

obtain the highest accuracy of 98.16% on our dataset 

(k=6) and 93.32% on BIG2015 dataset (k=2). 

Compared with the original features, after filtering the 

features by the fusion feature extraction algorithm, the 

classification accuracy is improved by 5%-7%. 

Comparing the results in Tables 4 and 5, we can see 

that whether RF or KNN model is adopted, the accuracy 

of the features extracted by ΔGini-ITFIDF method has 

been significantly improved, which shows the 

effectiveness of our method. In addition, for datasets 

with unbalanced sample distribution such as BIG2015, 

our method can still improve its classification accuracy, 

which shows that our method has more robustness. 

Table 4. Classification accuracy of different datasets in the RF model. 

 Our dataset BIG2015 

Original S1 S2 Original S1 S2 

est=10 95.5% 96.96% 98.45% 90.24% 92.75% 95.54% 

est=15 95.63% 97.2% 98.69% 90.59% 92.72% 95.86% 

est=20 95.64% 97.38% 98.74% 90.12% 93.38% 96.1% 

est=25 95.84% 97.36% 98.77% 90.33% 93.23% 95.81% 

Table 5. Classification accuracy of different datasets in the KNN 

model. 

 Our dataset BIG2015 

Original S1 S2 Original S1 S2 

k 

1 93.73% 96.04% 98.14% 86.4% 90.5% 92.96% 

2 93.78% 95.99% 97.98% 86.64% 90.27% 93.32% 

3 93.8% 96.16% 98.32% 86.7% 90.08% 92.23% 

4 93.25% 95.92% 98.23% 86.52% 89.19% 91.34% 

5 93.23% 95.87% 98.09% 85.83% 89.22% 91.69% 

6 93.14% 95.94% 98.16% 85.66% 88.83% 91.24% 

7 93.02% 95.7% 98.02% 86.13% 88.71% 91.1% 

8 93.22% 95.51% 97.93% 84.76% 87.32% 90.79% 

9 93.01% 95.62% 97.96% 85.17% 88.56% 90.58% 

10 92.78% 95.43% 97.91% 84.73% 87.33% 90.41% 

The above experiments show that the enhanced data 

sets obtained after feature selection by the ΔGini-

ITFIDF algorithm for two different data sets have 

significantly improved the classification accuracy of 

classification frameworks such as RF and KNN. It not 

only reflects the positive effect of ΔGini-ITFIDF on 

improving the classification of malicious codes, but 

highlighting the research significance of improving the 

feature selection algorithm in this paper. 
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At the end of this paper, the results obtained by other 

feature extraction methods on our dataset are compared 

with the method in this paper, and the results are shown 

in Table 6. The comparative experiments are: the 

experiment of converting the frequency of malicious 

code opcodes [21], the experiment of executing 

sequence by binary extraction of opcodes [11], the 

experiment of feature extraction of grayscale images by 

frequency conversion of adjacent bytes [16]. It can be 

seen from Table 6 that our method has a better 

classification effect than other malicious code feature 

extraction methods. 

Table 6. Comparison of different references methods. 

Method Accuracy 

Santos et al. [21] 93.8% 

Jeon and Moon [11] 95.91% 

Mohammed et al. [16] 98.3% 

Our Method 98.74%（est=20） 

6. Conclusions 

According to Gini impurity increment and TF-IDF, this 

paper presents a feature extraction algorithm, ΔGini-

ITFIDF, which combines Gini impure increment and 

ITF-IDF, and applied to malware classification. ΔGini-

ITFIDF can extract more representative features and 

improve the classification accuracy of many traditional 

classification models. At the same time, the 

applicability of the feature selection model in 

unbalanced dataset is verified. Compared with other 

methods, ΔGini-ITFIDF uses Gini impurity increment 

and feature distribution weight inside and outside the 

family as feature selection indicators for the first time. 

Experimental results show that our method has more 

practical significance in improving classification 

accuracy. 

Although ΔGini-ITFIDF can improve classification 

accuracy of unbalanced datasets. However, compared 

with balanced datasets, there is still room for further 

improvement. How to improve the fluctuation of 

classification performance caused by dataset balance is 

the main research direction in the future. 
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