
The International Arab Journal of Information Technology, Vol. 20, No. 3, May 2023 419

A Method of Extracting Malware Features Based

on Gini Impurity Increment and Improved TF-IDF

Shimiao Sun

School of Electrical and Information Engineering,

Beijing University of Civil Engineering and Architecture,

China
sunshimiao001@foxmail.com

Yashu Liu

School of Electrical and Information Engineering,

Beijing University of Civil Engineering and

Architecture, China

liuyashu@bucea.edu.cn

Abstract: In recent years, the quantities and types of malwares have grown explosively, which bring many challenges to identify

and detect them. In order to improve the identification efficiency of malicious code, a malicious code feature representation

method based on feature dimension reduction is proposed. By fusing the Gini impurity increment and the Improved Term

Frequency-Inverse Document Frequency algorithm (ITF-IDF), ΔGini-Improving Term frequency inverse document frequency

(ΔGini-ITFIDF) method is presented, which can get more valuable assembly instruction features for family detection. ΔGini-

ITFIDF standardizes the assembly instructions of the PE disassembly files, then, measures the two indicators of the expected

error rate increment and weight of the malicious code assembly instruction features, and obtains more valuable features to

identify malicious codes. The experimental results show that the classification accuracy of the ITF-IDF algorithm is significantly

improved compared with the ITF-IDF algorithm. At the same time, ΔGini-ITFIDF can effectively improve the classification

performance.

Keywords: Gini impurity increment, TF-IDF, feature selection, dimensionality reduction.

Received April 30, 2022; accepted February 12, 2023

https://doi.org/10.34028/iajit/20/3/14

1. Introduction

The development of network technology has promoted

the exchange of information among users, and has also

created favorable conditions for the breeding and

wreaking havoc of computer and mobile phone viruses

and Trojan horses. In March 2022, Internet security

threat report from CNCERT pointed out that the IP

address of computers controlled by virus Trojans in

China reached 5.32 million, an increase of 11.3%

compared with February, on the Internet, more than

9080 websites were tampered with by malware, an

increase of nearly 173.2% over the previous month, the

number of websites implanted with backdoors in China

was 2524, an increase of 40.5% over the previous month,

there were more than 3823 incidents involving

malicious programs and more than 4400 incidents

involving network vulnerabilities [6]. The attack of

malicious code on the computer brings harm to the

user's information security. The leakage of personal

privacy, and the loss and damage of data also have a

serious impact on daily life and work. Effective

interception and killing of malicious programs have

become an urgent problem.

To intercept and deal with malicious code, we must

effectively identify the category, source and other

attributes of malicious code. To achieve the above

objectives, effective and reasonable features contained

in different malicious code samples must be extracted.

In recent years, this research field has also made

significant progress and research results. Santos et al.

[21] analyzed the family and behavior purpose of

unknown malicious samples by selecting the frequency

of malicious code operation instructions. Tang et al. [23]

extracted opcode features of different granularities

through Multy-Granularity Opcode Droid

(MGOPDroid), and converted opcodes into sequences

to improve the anti-obfuscation of malicious code

identification. By researching the sequence of malicious

program Application Programming Interface (API) calls,

Amer et al. [4] and Al-Hashmi et al. [2] run malicious

code PE files in a sandbox and analyzed the behavior of

malicious code runtimes by recording API calls. Nataraj

et al. [17] converted binary executable files into gray-

scale images in 2011. This method used image

processing technology to analyze binary PE files of

malware, which had a far-reaching impact on texture

analysis and visual analysis of malware [7, 10, 14, 16].

Conventional methods always use static or dynamic

behaviors such as binary bytecode, API call sequences,

function call sequences and so on, which are got by

feature extraction tools such as Interactive Disassembler

Professional (IDA-pro) or running malicious programs

in sandbox. These methods usually obtain all the sample

features information, resulting in a large number of

redundant features, which affect the accuracy of the

detection results. Therefore, it is necessary to further

purify the features, filter out redundant features, obtain

more valuable features, to improve the accuracy of

malicious code detection.

https://doi.org/10.34028/iajit/20/3/14

420 The International Arab Journal of Information Technology, Vol. 20, No. 3, May 2023

Research shows that effectively reducing the feature

dimension, selecting high-quality features to filter out

redundant and irrelevant features has been widely used

in data mining fields, such as text feature extraction and

classification [8]. The purpose of the paper is to propose

a reasonable feature extraction method of malicious

code, so as to identify and classify malicious code more

efficiently. This paper takes the Portable Executable (PE)

disassembly files as the research object, constructs the

assembly instruction word vector, analyzes the impact

of assembly instructions’ weight in the sample family

on classification. Our method improves the

classification accuracy of malicious code by extracting

features that can better represent specific categories and

reducing the feature dimension.

This paper presents a method based on ΔGini-

Improving Term Frequency-Inverse Document

Frequency (ITFIDF) feature extraction method, which

is based on Gini impure increment and improved Term

Frequency-Inverse Document Frequency (TF-IDF)

algorithm for feature screening, dimensionality

reduction, and identifies malware through Random

Forest (RF) and K-Nearest Neighbor (KNN)

classification model. Different from the methods

proposed by Santos et al. [21], Mohammed et al. [16]

and other existing methods, the feature extraction

method proposed in this paper fully considers the impact

of the distribution of feature within and outside the

family on classification. ΔGini-ITFIDF selects high-

quality features and improves the classification

accuracy of the classifier. The main work of this paper

is as follows:

1. Decompiling PE files, we get the opcodes and

operands of assembly instructions, then normalize

them by some rules.

2. We improve the traditional TF-IDF algorithm to

highlight the discrimination of TF-IDF to malware

families.

3. By analyzing the two indicators of expected error rate

increment and weight of features, we propose a

feature extraction algorithm based on Gini impure

increment and improved TF-IDF fusion, ΔGini-

ITFIDF, to improve the classification performance.

2. Related Work

Malicious code feature extraction is always divided into

static feature extraction and dynamic feature extraction.

Static analysis technology refers to extract the features

of malicious code without executing it in a dedicated

device such as a sandbox or a virtual machine, but it is

often necessary to analyze the compiler information,

import/export table, assembly code, resources, various

string information (version information, URL, special

identification, etc.,) and shell information are used for

feature extraction. The method of actually running

executable files in sandbox, virtual machine and other

environments and getting key features is called dynamic

feature extraction. Compared with the static analysis

method, the dynamic analysis actually runs the PE file,

and obtains malicious code features which more

accurately describes the difference in the behavior of the

malicious code, but there are also problems such as

time-consuming and resource-consuming. Therefore, it

is difficult to quickly process a large number of

malicious code samples. This section reviews and

summarizes the related research on malicious code

feature extraction methods.

Abou-Assaleh et al. [1] used bytecode sequence-

based N-Grams as static features for the first time. In

terms of operating instructions for malicious code, Kang

et al. [12] used the Long-Short Term Memory (LSTM)

method in word2vec to extract the opcode of malicious

code and the name of the API calling function for

classification. Jeon and Moon [11] extracted opcode

sequences from PE files of malicious code and

constructed a convolutional recurrent neural network

including opcode convolutional encoders. Pektaş and

Acarman [19] detected malicious samples by analyzing

the calling behavior and checking the execution path of

the malicious code during the calling process through

the instruction call graph, using the opcode sequence of

the malicious code as a feature. O’Shaughnessy and

Breitinge [18] constructed the letter-letter frequency-

letter corresponding Huffman encoding as a composite

feature to reduce the complexity of feature generation

and feature analysis.

In terms of feature dimensionality reduction, Singh et

al. [22] analyzed the implicit semantics of malware

through Latent Semantic Indexing (LSI), and reduced

the dimension of malware features by relying on

singular values to improve the performance of

classification. Şahin et al. [20] performed features

dimensionality reduction by Principal Component

Analysis (PCA) and Linear Discriminant Analysis

(LDA) to solve the problem of limited system resources.
Table 1 shows a comparison of different related works.

Table 1. Related work comparison.

Reference Feature Malware detection Method

Santos et al. [21] Opcode Opcode sequences frequency

extraction

Al-Hashmi et al. [2] API calls deep learning+ EGBoosting

Nataraj et al. [17] Binary Gray Image + machine learning

Mohammed et al. [16] Binary Frequency image + CNN

Jeon and Moon [11] Opcode Opcode sequence + CRNN

Pektaş and Acarman [19] Opcode Opcode + FCG + LSTM and CNN

Singh et al. [22] Opcode Latent Semantic Indexing +RF

Our method Opcode ΔGini-ITFIDF + RF, KNN

Most of the above methods were aimed at all features,

and do not take into account the redundant information

that may exist in the extracted features. Using LSI [22],

LDA [20] or the TF-IDF method mentioned by Al-

Hashmi et al. [2] for malware feature selection didn’t

consider the distribution of features within and outside

the malware family. In addition, comparing with the

Gini index mentioned by Al-Hashmi et al. [2], Gini

A Method of Extracting Malware Features Based on Gini Impurity Increment ... 421

impurity increment (ΔGini) value is proportional to

expected classification accuracy, which is more directly

reflects the classification effect. This paper improved

the TF-IDF method to further filter the features by using

the feature weight inside and outside the family, and use

Δ Gini-ITFIDF as the indicator to measure feature

importance and obtain more efficient classification

performance.

3. Methodology

3.1. Gini Impurity

In the RF [9] algorithm composed of decision tree [24],

several subdatasets are extracted from the dataset by

bootstrap sampling method, and a Classified Regression

Tree (CART) is constructed for each subdataset. When

constructing CART, several features are randomly

selected to form feature subsets to select node fields, and

each node in each CART can have higher purity. Then,

for CART tree, the classification and regression effects

are determined by voting and mean value respectively.

Gini impurity [13] is an important field selection

indicator of CART in verifying the purity of each node,

which comes from information entropy. Gini impurity

measures the expected error rate of a feature in the data

set, and its decline rate, i.e., increment, shows the

impact of features on dependent variables. The

calculation formula of Gini impurity is shown in

Equation (1):













J

j

jjj

J

j

j

J

j

jj

ppp

pppppGini

11

1

21

22 1)(

)1(),...,(

Here, pj represents the occurrence probability of the j-th

item in the possible value of an event, which can also be

expressed by empirical probability as:

2

1

)(1)(



J

j

j

D

D
DGini

Among them, |D| represents all samples in the event, and

|Dj| represents the number of occurrences of the type j

sample in the dataset and the probability value pj refers

to the frequency represented, that is, the probability of

class j samples. Therefore, for a characteristic Ai, the

Gini purity is as shown in Equation (3).

])|(1)[(])|(1)[()(
1

2

1

2 



J

j

iji

J

j

ijii ADPAPADPAPAGini

])(1)[1(])(1)[(2

1

2

1


 




J

j i

ijii
J

j i

iji

DD

DD

D

D

D

D

D

D

The decline rate of Gini impurity is expressed as

Equation (4).

)()()(ii AGiniDGiniAGini 

According to the results of Equation (4), select the

features with large decline rate of Gini impurity, that is

the features that have a great impact on the classification

results.

3.2. TF-IDF Algorithm and its Improvement

TF-IDF [5] is Composed of Term Frequency (TF) and

Inverse Document Frequency (IDF). If the frequency of

the entry in the sample is high and the entry appears less

in other sample files, the entry has a better classification

effect on the text than other entries. Expressed as the

product of word occurrence frequency and inverse

document frequency:

jj idftf *TFIDF 

The definition of term frequency tfj is as follows:





k

i

k

j
j

n

n
tf

1

There are k entries in each type of document, nj is the

number of entries j in each document. The denominator

is the sum of the number of entries in each document,

that is the total number of entries. Inverse document

frequency idfj is:

j

j

D

D
idf log

Here, D is the total number of documents, and Dj is the

number of inverse text documents, that is the number of

texts containing the entry in the corpus.

The TF indicates the importance of each term in the

text. With the decrease of Dj, it shows that the frequency

of this entry in the whole dataset decreases and the

inverse file frequency IDF increases. Therefore, TF-IDF

tends to retain entry features that are important to this

document and not important to other texts.

The traditional TF-IDF algorithm can effectively

judge whether the entry feature is representative for the

text. If the frequency of an entry in a kind of text is very

high, it can show that the entry occupies an important

position, and the better representativeness in this kind of

text. But there is also a problem, the increasement of the

number of an entry in the same type of text also

increases the number of documents Dj containing the

entry in the whole corpus, which reduces the IDF value.

Hence, it is necessary to further distinguish whether the

text with frequent occurrence of this entry is the same

type of text. If more entries appear in the same type of

text, the impact on TF-IDF value should be positive. On

the contrary, if they appear frequently in other types of

text, the impact on TF-IDF value should be negative.

Facing the above problems, in order to better

distinguish the category of word segmentation entries,

Zhang et al. [25] made some improvements to the

traditional TF-IDF algorithm to adapt to text

classification, the Equation is:

D
D

d
idf

j

j
j log

Here, dj is the number of documents containing entry j

(1)

(3)

(2)

(4)

(5)

(6)

(7)

(8)

422 The International Arab Journal of Information Technology, Vol. 20, No. 3, May 2023

in family A documents, Dj is the number of entry j in the

document set, and D is the total number of documents.

It can be seen that the formula takes into account the

distribution of features within and outside the family.

However, the improved algorithm only takes into

account the number of texts containing entry j in the

document of family A and the number of entry j in the

sample set, thus ignoring the number of entry j in other

families. This will increase the proportion of entries in

the texts of family A and others, which will lead to the

increase of Dj. If the number of entries j in the samples

of other families is too large, it will weaken the

influence of Dj on idfj. In addition, the large number of

documents containing entry j in other documents does

not mean that the proportion will be large. Therefore,

this paper made further improvements on this basis, and

calculated the frequency of an entry j in documents of

the family A and others respectively. Based on this, the

original IDF definition is modified as follows:

D

dD

dD

d

d
d

d

idf
jjj

j

j






 log'

Here dj is the number of documents containing entry j in

family A, d is the total number of documents contained

in family A, D is the total number of documents, and Dj

is the number of documents containing entry j in the

document set. Taking the proportion of documents

containing entry j in family A and other documents as

variables can avoid the situation of large sample size but

small proportion. In the family A documents where

entry j is located, the value of idfj' is positively

correlated with the proportion of the number of

documents containing entry j, and the stronger the

ability of this entry to distinguish family A. In the

documents of other families, the value of idf’ is

negatively correlated with the proportion of the number

of documents containing entry j, and the weaker the

ability of this entry to distinguish family A. Therefore,

the value of idf’ determines whether an entry has been

distinguishability.

In Addition, the original TF algorithm only

represents the weight of entries in a single sample,

which makes the frequency of entries in a family

complex, resulting in large fluctuation of TF-IDF value.

Not only it can’t represent the weight of entries in the

family, but also lead to the possibility of erroneously

screening important features in feature screening.

Therefore, in order to more intuitively represent the

weight of entries in the family, this paper further

modifies the TF algorithm.





k

i

k

j
j

N

N
tf

1

'

Here, Nj is the number of entries in family A where entry

j belongs, and the denominator represents the total

number of all entries in family A. In this way, the

frequency corresponding to the entry changes from the

frequency of the entry in the document to the frequency

in the whole family, so that each entry in the same

family corresponds to a unique TF-IDF value. It can’t

only better reflect the degree of distinction between

entries and families, but also simplify the screening

process of entries.

To sum up, this paper gets the final improved TF-IDF

algorithm, defined as:

D

dD

dD

d

d
d

d

N

N
idftf

jjj

j

k

i

k

j
jj











log*''*IDF-ITF

1

ITF-IDF algorithm avoids the influence of category on

the weight calculation of malicious code, and can screen

out the characteristic terms that highlight the

characteristics of this category, and can also filter out

the redundant term features that have little impact on the

classification.

4. Feature Extraction

4.1. Preprocessing of Assembly Instructions

Firstly, this paper preprocesses the malicious samples,

which can be transformed into code in the form of

assembly language through reverse tools. This

experiment uses IDA-Pro to disassemble these samples

and convert it into assembly codes. And it uses the pefile

in Conda to parse and generate assembly text.

Because the assembly instructions of malicious code

are messy, rich in meaning and different in length, there

are many redundant interference information. In order

to solve the above problems, we first need to consider

the normalization of the length of the operation code,

and standardize the operands of the assembly code such

as register, memory, immediate number, calling

instruction, and the number of operations after the jump

instruction. The specific methods are as follows:

1. Opcode length normalization.

The length range of opcodes in assembly instructions is

about 2-6 characters, about 48% of opcodes are within

3 characters, 29% of opcodes are 4 characters, 18% of

opcodes are 5 characters, and 5% of opcodes are 6

characters. However, more than 90% of the characters

of the called opcode are less than three. Therefore, this

paper uniformly selects the first three characters of the

opcode, such as, call → cal, push → pus. If the character

length is less than 3, the insufficient character bits shall

be filled with spaces, such as, js→js(“_”represents

space).

2. Operand standardization and normalization

a) Register. There are three kinds of registers

commonly used, 8b, 16b and 32B. This paper

standardizes three different types of registers as

follows, al→rg8, ax→r16, eax, ebx, ecx, edx, edi,

esi, ebp, esp.etc.,→r32(Since all 32B registers

(9)

(10)

(11)

A Method of Extracting Malware Features Based on Gini Impurity Increment ... 423

described in R32 is too rough, R32 standardization

is not adopted in this paper).

b) Memory. [eax+3Ch], [edi+4]. etc., operating

instructions representing memory are

standardized into mem.

c) Immediate. 5A4Dh, 70h. etc., operation

instructions representing immediate numbers are

standardized into val.

d) Call instruction. Only the operands that call the

internal instruction are processed. For example,

the internal function “call sub_101C02D” after

normalization is “call sub”.

e) The operand after the jump instruction.

Normalize “jnz short loc_1018887” to “jnz loc”.

Figure 1. Examples of word segmentation results of some malicious

samples.

The processed opcodes and operands show the

corresponding types more intuitively, reduce the feature

dimension and sample complexity, reduce the

interference of complex features on the follow-up work.

Figure 1 shows part of the vocabulary content extracted

by the sample “0a152188e52dafab247c7c9120aeef0cF

e092db7” after the assembly instruction is normalized.

4.2. ΔGini-ITFIDF Feature Extraction Method

After the malicious code sample is standardized in the

section 4.1. Method to obtain the parsed text, the

opcodes of each assembly instruction are taken as a

feature entry. Then, a malicious sample feature

extraction algorithm based on Gini impure increment

and ITF-IDF fusion is constructed (ΔGini-ITFIDF).

1. Screening phase of Gini impurity increment.

Calculate the Gini impure increment for the entries in

various samples in the dataset, and sort the filtered

Gini impure increment values, observe the

proportion of Gini indicators in different ranges, and

reasonably set the threshold according to the

proportion to filter out the entries with low Gini

impure increment. Get the optimized feature subset

to construct a new feature set.

2. Screening phase of ITF-IDF. Calculate the ITF-IDF

weight X of each feature in this class over the filtered

feature subset, set the threshold according to the

situation of different file sets, filter out the features

with the weight in the last a% in various samples, and

form a new feature subset of each type of samples,

Ui={x1, x2, ..., xki}.

 Here, i refers to the number of sample categories, i=1,

2,..., n, and k refers to the number of sample features,

k=1,2,...,m. Because the important features of

different categories of samples are different, it is

necessary to obtain the union set of these new feature

subsets to construct a new feature set

n 21 U ∪ ... ∪U ∪U=U .

3. Classifier construction. Take the filtered entries as

features, put the new feature subset into the classifier

model and adjust the classification parameters. The

training set and test set are divided by 10 cross-

validation, the classification performance of our

model is evaluated by accuracy. Feature extraction

process of ΔGini-ITFIDF is shown in Figure 2.

Figure 2. Process of feature selection algorithm.

5. Experimental Evaluation and Result

In the experiment, our dataset and Microsoft Kaggle

BIG2015 dataset [15] are used in this paper. Our dataset

consists of 10 families and 15000 samples and the

detailed distribution of samples in each family is shown

in Table 2. BIG2015 dataset consists of 9 families and

10868 samples and the detailed distribution of samples

in each family is shown in Table 3. According to the

method in section 4.1., our dataset obtains the

standardized analytical text containing 345 feature

terms. The BIG2015 dataset obtains the standardized

analytical text containing 334 characteristic terms. The

following is the first example ΔGini-ITFIDF feature

extraction and analysis process on our dataset, then

gives the comparison of experimental results on

BIG2015 dataset.

5.1. Gini Impurity Increment Experiment

Calculate the Gini impurity increment of the entry in our

dataset, conduct further correlation analysis on the entry,

and arrange the Gini impurity increment of each feature

in the original feature set in descending order, and its

distribution is shown in Figure 3.

It can be seen from Figure3 that the Gini impurity

increment of about 60 features is close to 0, while the

features whose Gini impurity increment lower than

0.005 have almost no impact on the classification effect,

which can be regarded as redundant features. Therefore,

this paper sets the threshold as 0.05 to filter out features

that have little impact on the classification effect. The

experiment shows that the Gini impurity increment

value of 57 features is lower than 0.005.

The 57 features are filtered out to obtain the

optimized feature subset, named S1.

424 The International Arab Journal of Information Technology, Vol. 20, No. 3, May 2023

Table 2. Sample distribution of our dataset.

Family name Number of samples

Agent 1500

SoftPulse 1500

Allaple 1500

Mentiger 1500

AdLoad 1500

Nimnul 1500

LMN 1500

Virut 1500

WBNA 1500

AGeneric 1500

Table 3. Sample distribution of BIG2015 dataset.

Family name Number of samples

Ramnit 1547

Lollipop 2478

Kelihos_ver3 2942

Vundo 475

Simda 42

Tracur 751

Kelihos_ver1 398

Obfuscator.ACY 1228

Gatak 1013

Gatak 1013

5.2. ITF- Agorithm Experiment

After the feature subset S1 is obtained through the

feature screening of Gini impure increment, in order to

select a reasonable threshold for ITF-IDF, 100 samples

are randomly selected in each family of the feature

subset to filter out the features with the ITF-IDF value

of the last 5%, 10%, 15%, 20% and 25% in each family

and sample. At the same time, in order to verify the

improvement effect of TF-IDF algorithm in this paper.

The ITF-IDF algorithm in this paper is compared with

the improved algorithm in [25], and the feature subsets

extracted by merging are put into the RF model for

classification. The results are shown in Figure 4.

It can be seen from Figure 4 that the classification

accuracy of feature subset extracted by ITF-IDF

significantly improved compared with reference [25],

which also shows that the improvement of TF-IDF

algorithm in this paper highlights the weight of entries

in the family, so that the ITF-IDF value can better

represent the importance of entries in the family, which

is also an advantage that the algorithm in [25] does not

have. In addition, it can be seen from the figure that

when 20% of the features are filtered out, the

classification accuracy reaches the maximum value, and

as the number of filtered features increases, the

classification accuracy decreases. This is due to the fact

that too few features lead to a reduction in the

complexity of the tree in RF, resulting in a reduction in

the strength of the tree, which affects the accuracy.

Figure 3. Gini impurity increments with different characteristics.

Figure 4. The classification results of different ITF-IDF methods

after screening different ratio features.

5.3. Feature Extaction Algorithm Effective-Ness

Experiment

In the experiment, each feature set is tested by 10 fold

cross-validation. The classification results (est=20) in

three different feature sets are shown in Figure 5. It is

customary to use the horizontal axis to represent the

number of cross-validation, the vertical axis to represent

the classification accuracy, and three different dashed

lines represent the classification results of different

feature sets.

Figure 5. Classification results of each feature subset of our dataset

(est=20).

As can be seen in Figure 5, the RF model has

significantly improved the classification accuracy after

A Method of Extracting Malware Features Based on Gini Impurity Increment ... 425

the fusion of Gini impure increment and ITF-IDF

feature extraction algorithm. It is preliminarily verified

that the feature extraction algorithm proposed in this

paper has the significance of improving the

classification performance.

5.4. Compaison and Analysis of Microsoft BIG

20015 Experimental

Because the sample distribution of our dataset is

relatively balanced, in order to verify the applicability

of the algorithm in other unbalanced datasets, this paper

further uses Microsoft Kaggle BIG2015 dataset for

comparison. The feature extraction method of BIG2015

is the same as our dataset.

Compared with our dataset, BIG2015 dataset is

unevenly distributed in each category, which makes the

classification of samples more difficult. This paper also

standardizes the assembly instructions of BIG2015

dataset, filters the features of the dataset through the

fused feature extraction algorithm, and generates two

feature subsets S1 and S2. The classification results of

the three datasets under the random forest algorithm are

shown in Figure 6.

Figure 6. Classification results of each feature subset of BIG2015

(est=20).

As can be seen from Figure 6, under the BIG2015

dataset, the accuracy of the filtered feature subset in the

random forest classifier is significantly improved

compared with the original feature set. Then, this paper

calculates the average value of the classification

accuracy under the RF classifier with different

parameters for each feature subset of our dataset and

BIG2015 dataset respectively. The parameters of RF are

selected as 10, 15, 20, and 25 respecti-vely. The

classification results are shown in Table 4.
The results in Table 4 show the classification

performance of our and BIG2015 datasets on RF model.

It shows that the classification accuracy has been

improved by 3%-5% respectively after twice feature

extraction through Gini impurity increment and fusion

ITF-IDF feature extraction algorithm.

In section 5.3., the effectiveness of the feature

extraction algorithm proposed in this paper has been

verified.

In order to further verify the improvement of the

classification performance of them, this paper also uses

the other classification algorithm for experiment.

Compared with Support Vector Machine (SVM),

Adaboost and Naïve Bayes, KNN has the advantages of

no parameter estimation, insensitivity to outliers, and

has higher accuracy on multi-classification problems.
Therefore, it is widely used in text feature classification

[3]. Considering above factor, this paper uses KNN

algorithm for comparison experiment.

The number of nearest neighbors k is 1-10

respectively. For each number of nearest neighbors and

each feature subset, 10 times of cross validation and

average value are adopted. The classification results are

shown in Table 5.

The results in Table 5 show that KNN classifier can

obtain the highest accuracy of 98.16% on our dataset

(k=6) and 93.32% on BIG2015 dataset (k=2).

Compared with the original features, after filtering the

features by the fusion feature extraction algorithm, the

classification accuracy is improved by 5%-7%.

Comparing the results in Tables 4 and 5, we can see

that whether RF or KNN model is adopted, the accuracy

of the features extracted by ΔGini-ITFIDF method has

been significantly improved, which shows the

effectiveness of our method. In addition, for datasets

with unbalanced sample distribution such as BIG2015,

our method can still improve its classification accuracy,

which shows that our method has more robustness.

Table 4. Classification accuracy of different datasets in the RF model.

 Our dataset BIG2015

Original S1 S2 Original S1 S2

est=10 95.5% 96.96% 98.45% 90.24% 92.75% 95.54%

est=15 95.63% 97.2% 98.69% 90.59% 92.72% 95.86%

est=20 95.64% 97.38% 98.74% 90.12% 93.38% 96.1%

est=25 95.84% 97.36% 98.77% 90.33% 93.23% 95.81%

Table 5. Classification accuracy of different datasets in the KNN

model.

 Our dataset BIG2015

Original S1 S2 Original S1 S2

k

1 93.73% 96.04% 98.14% 86.4% 90.5% 92.96%

2 93.78% 95.99% 97.98% 86.64% 90.27% 93.32%

3 93.8% 96.16% 98.32% 86.7% 90.08% 92.23%

4 93.25% 95.92% 98.23% 86.52% 89.19% 91.34%

5 93.23% 95.87% 98.09% 85.83% 89.22% 91.69%

6 93.14% 95.94% 98.16% 85.66% 88.83% 91.24%

7 93.02% 95.7% 98.02% 86.13% 88.71% 91.1%

8 93.22% 95.51% 97.93% 84.76% 87.32% 90.79%

9 93.01% 95.62% 97.96% 85.17% 88.56% 90.58%

10 92.78% 95.43% 97.91% 84.73% 87.33% 90.41%

The above experiments show that the enhanced data

sets obtained after feature selection by the ΔGini-

ITFIDF algorithm for two different data sets have

significantly improved the classification accuracy of

classification frameworks such as RF and KNN. It not

only reflects the positive effect of ΔGini-ITFIDF on

improving the classification of malicious codes, but

highlighting the research significance of improving the

feature selection algorithm in this paper.

426 The International Arab Journal of Information Technology, Vol. 20, No. 3, May 2023

At the end of this paper, the results obtained by other

feature extraction methods on our dataset are compared

with the method in this paper, and the results are shown

in Table 6. The comparative experiments are: the

experiment of converting the frequency of malicious

code opcodes [21], the experiment of executing

sequence by binary extraction of opcodes [11], the

experiment of feature extraction of grayscale images by

frequency conversion of adjacent bytes [16]. It can be

seen from Table 6 that our method has a better

classification effect than other malicious code feature

extraction methods.

Table 6. Comparison of different references methods.

Method Accuracy

Santos et al. [21] 93.8%

Jeon and Moon [11] 95.91%

Mohammed et al. [16] 98.3%

Our Method 98.74%（est=20）

6. Conclusions

According to Gini impurity increment and TF-IDF, this

paper presents a feature extraction algorithm, ΔGini-

ITFIDF, which combines Gini impure increment and

ITF-IDF, and applied to malware classification. ΔGini-

ITFIDF can extract more representative features and

improve the classification accuracy of many traditional

classification models. At the same time, the

applicability of the feature selection model in

unbalanced dataset is verified. Compared with other

methods, ΔGini-ITFIDF uses Gini impurity increment

and feature distribution weight inside and outside the

family as feature selection indicators for the first time.

Experimental results show that our method has more

practical significance in improving classification

accuracy.

Although ΔGini-ITFIDF can improve classification

accuracy of unbalanced datasets. However, compared

with balanced datasets, there is still room for further

improvement. How to improve the fluctuation of

classification performance caused by dataset balance is

the main research direction in the future.

References

[1] Abou-Assaleh T., Cercone N., Keselj V., and
Sweidan R., “N-gram-based Detection of New

Malicious Code,” in Proceedings of the 28th

Annual International Computer Software and

Applications Conference, Hong Kong, pp. 41-42,

2004.

[2] Al-Hashmi A., Ghaleb F., Al-Marghilani A.,

Yahya A., Ebad S., Saqib M., and Darem A.,

“Deep-Ensemble and Multifaceted Behavioral

Malware Variant Detection Model,” IEEE Access,

vol. 10, pp. 42762-42777, 2022.

[3] Alhutaish R. and Omar N., “Arabic Text

Classification Using K-Nearest Neighbour

Algorithm,” The International Arab Journal of

Information Technology, vol. 12, no. 2, pp. 190-

195, 2015.

[4] Amer E., Zelinka I., and El-Sappagh S., “A Multi-

perspective Malware Detection Approach through

Behavioral Fusion of API Call Sequence,”

Computers and Security, vol. 110, pp. 102449,

2021.

[5] Arivarasan A. and Karthikeyan M., “Data Mining

K-Means Document Clustering Using TFIDF and

Word Frequency Count,” International Journal of

Recent Technology and Engineering, vol. 8, no. 2,

pp. 2542-2549, 2019.

[6] CNCERT., “CNCERT Internet Security Threat

Report - March 2022,” Retrieved from: https://

www.cert.org.cn/, Last Visited, 2022.

[7] Dai Y., Li H., Qian Y., and Lu X., “A Malware

Classification Method Based on Memory Dump

Grayscale Image,” Digital Investigation, vol. 27,

pp. 30-37, 2018.

[8] El-Hajj W. and Hajj H., “An Optimal Approach

for Text Feature Selection,” Computer Speech and

Language, vol. 74, pp. 103164, 2022.

[9] Genuer R., Poggi J., Tuleau-Malot C., and Villa-

Vialaneix N., “Random Forests for Big Data,” Big

Data Research, vol. 9, pp. 28-46, 2017.

[10] Hsiao S., Kao D., Liu Z., and Tso R., “Malware

Image Classification Using One-shot Learning

with Siamese Networks,” Procedia Computer

Science, vol. 159, pp. 1863-1871, 2019.

[11] Jeon S. and Moon J., “Malware-Detection Method

with a Convolutional Recurrent Neural Network

Using Opcode Sequences,” Information Sciences,

vol. 535, pp. 1-15, 2020.

[12] Kang J., Jang S., Li S., Jeong Y., and Sung Y.,

“Long Short-term Memory-based Malware

Classification Method for Information Security,”

Computers and Electrical Engineering, vol. 77, pp.

366-375, 2019.

[13] Laber E. and Murtinho L., “Minimization of Gini

Impurity: NP-completeness and Approximation

Algorithm via Connections with the k-Means

Problem,” Electronic Notes in Theoretical

Computer Science, vol. 346, pp. 567-576, 2019.

[14] Li L., Ding Y., Li B., Qiao M., and Ye B.,

“Malware Classification Based on Double Byte

Feature Encoding,” Alexandria Engineering

Journal, vol. 61, no. 1, pp. 91-99, 2022.

[15] Microsoft., “Microsoft. Kaggle Dataset,”

retrieved from,

https://www.kaggle.com/c/malware-classifi

cation. Last Visited, 2022.

[16] Mohammed T., Nataraj L., Chikkagoudar S.,

Chandrasekaran S., and Manjunath B., “Malware

Detection Using Frequency Domain-based Image

Visualization and Deep Learningm,” in

Proceedings of the 54th Hawaii International

Conference on System Sciences, Hawaii, pp. 7132,

2021.

https://ieeexplore.ieee.org/author/37282887200
https://ieeexplore.ieee.org/author/37330036800
https://ieeexplore.ieee.org/author/37087916913
https://arxiv.org/search/cs?searchtype=author&query=Chandrasekaran%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Manjunath%2C+B

A Method of Extracting Malware Features Based on Gini Impurity Increment ... 427

[17] Nataraj L., Karthikeyan S., Jacob G., and

Manjunath B., “Malware Images: Visualization

and Automatic Classification,” in Proceedings of

the 8th International Symposium on Visualization

for Cyber Security, Pittsburgh Pennsylvania, pp.

1-7, 2011.

[18] O’Shaughnessy S. and Breitinger F., “Malware

Family Classification via Efficient Huffman

Features,” Forensic Science International: Digital

Investigation, vol. 37, pp. 301192, 2021.

[19] Pektaş A. and Acarman T., “Learning to Detect

Android Malware via Opcode Sequences,”

Neurocomputing, vol. 396, pp. 599-608, 2020.

[20] Şahin D., Kural O., Akleylek S., Kılıç E.,

“Permission-based Android Malware Analysis by

Using Dimension Reduction with PCA and LDA,”

Journal of Information Security and Applications,

vol. 63, pp. 102995, 2021.

[21] Santos I., Brezo F., Ugarte-Pedrero X., and

Bringas P., “Opcode Sequences as Representation

of Executables for Data-mining-based Unknown

Malware Detection,” Information Sciences, vol.

231, pp. 64-82, 2013.

[22] Singh A., Wadhwa G., Ahuja M., Soni K., and

Sharma K., “Android Malware Detection Using

LSI-based Reduced Opcode Feature Vector,”

Procedia Computer Science, vol. 173, pp. 291-

298, 2020.

[23] Tang J., Li R., Jiang Y., Gu X., and Li Y.,

“Android Malware Obfuscation Variants

Detection Method Based on Multi-granularity

Opcode Features,” Future Generation Computer

Systems, vol. 129, pp. 141-151, 2022.

[24] Trabelsi A., Elouedi Z., and Lefevre E., “Decision

Tree Classifiers for Evidential Attribute Values

and Class Labels,” Fuzzy Sets and Systems, vol.

366, pp. 46-62, 2019.

[25] Yufang Z., Shiming P., and Jia L., “Improvement

and Application of TFIDF Method Based on Text

Classification,” Computer Engineering, vol. 32,

no. 19, pp. 76-78, 2006.

Shimiao Sun is currently pursuing

the master’s degree with the School

of Electrical and Information

Engineering, Beijing University of

Civil Engineering and Architecture.

His research interests mainly include

data mining, malware detecting and

information security.

Yashu Liu received the Ph.D degrees

in Beijing Jiaotong University, China.

She is currently an assistant professor

at Beijing University of Civil

Engineering and Architecture. Her

research interests include data mining

and network security. Now, she

majors in detection and classification of malware.

