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Abstract: The Software industry’s rapid growth contributes to the need for new technologies. PRICE software system uses 

Predictive Object Point (POP) as a size measure to estimate Effort and cost. A refined POP metric value for object-oriented 

software written in Java can be calculated using the Automated POP Analysis tool. This research used 25 open-source Java 

projects. The refined POP metric improves the drawbacks of the PRICE system and gives a more accurate size measure of 

software. This paper uses refined POP metrics with curve-fitting neural networks and multi-layer perceptron neural network-

based deep learning to estimate the software development effort. Results show that this approach gives an effort estimate closer 

to the actual Effort obtained through Constructive Cost Estimation Model (COCOMO) estimation models and thus validates 

refined POP as a better size measure of object-oriented software than POP. Therefore we consider the MLP approach to help 

construct the metric for the scale of the Object-Oriented (OO) model system. 
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1. Introduction  

Software size is critical to the process of the software 

development process. During the implementation of a 

software project, the estimated size of the software is 

used in various ways for effective project planning and 

control purposes. It is essential to calculate the 

development process’s efficiency after the project has 

ended. Software size is also a necessary factor for 

estimating software effort and cost.  

Estimating software size before the actual 

development is a very challenging task. Over the years, 

various approaches have been proposed to estimate the 

software size. However, no metrics seem to be the 

“silver bullet” that addresses all drawbacks and fits all 

commitments.  

Typically, software size metrics are utilized under a 

specific development environment and paradigm. A 

range of contending software size estimation 

approaches used for cost and effort estimation are 

available in the literature. 

This conception is contradictory to the Object-

Oriented (OO) model. OO methods distinguish data and 

processes, while OO designs associate them. Here are 

several extents to that an OO metric requires accurately 

calculating effort or efficiency monitoring. Calculating 

the amount of underdone methodology for software 

delivery is essential.  

Some methods like Function Point Analysis (FPA), 

original regression, and the Constructive Cost 

Estimation Model (COCOMO) model are unsuccessful 

because they are unsuitable for all software developed 

using different development paradigms. Thus, software 

size estimation models that give outstanding results for 

one type of software may not be appropriate for other 

software applications. For example, FPA Developed for 

traditional software and gave excellent results could not 

be extended for the OO software. 

Traditional software size, cost, and effort estimation 

techniques vigorously failed in the case of new software 

development paradigms. Metrics like Source Lines of 

Code (SLOC) and FPA were developed in a period that 

involved programming to divide the resolution space 

into data and processes.  

This concept contradicts the OO model, which 

distinguishes between the data and processes and 

associates them with OO designs, Minkiewicz [24]. 

Thus, good estimation models for OO software are 

required to provide accurate metrics for effort or 

efficiency monitoring. 

Wittig and Finnic [29] used the Artificial Neural 

Network (ANN) to estimate the Effort needed for 

traditional software and found that it produces 

consistent results. Khoshgoftaar et al. [22] presented the 

ANN procedure for calculating software quality. 
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Kanmani et al. [19] used ANN to predict the Effort for 

OO applications based on the class points.  

In this paper, we Estimate the Effort for OO software 

through the Refined POP metrics and compare it with 

actual Effort.  

We improved the Effort for OO software by applying 

Deep Learning. Two different types of Deep -learning 

methods are designed with training models. The 

estimation of Effort by CFNN and MLP shows very 

high accuracy. CFNN and MLP with Bayesian 

Regularisation (BR) demonstrated a correlation of 

98.95 % and 99.85 %, respectively. Figure 1 briefly 

details various metrics used to measure the software’s 

size. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Measuring the size of software. 

2. Literature Survey 

Enough research on the size, cost, and effort estimation 

for OO software has been done over the last two decades. 

There are two major research approaches related to 

predicting software development effort: developing the 

size metrics that can be utilized for predicting Effort and 

developing predictive techniques and models for effort 

estimation. Lines of Code (LOC) and feature points are 

the most commonly used size metrics for estimating 

software effort. Maybe LOC is one of the oldest, 

Albrecht and Gaffney [5]. Several LOC variants, 

including Non-Commented lines of code (NCLOC) or 

Non-Blank Lines Of code (NBLOC), Efficient Lines of 

code (ELOC), and the number of executable 

declarations, are introduced and used in industry Fenton 

and Bieman [10]. 

FPA is a tool for calculating the size and efficiency 

of the software. Metric role points assess projects from 

the end-user standpoint by calculating end-user 

characteristics, Albrecht [4]. Based on that, FPA 

represents the software viewpoint of the customers and 

managers, while LOC represents the view of the 

developers, Jørgensen [18]. The Java code reviewer tool 

JCQR was also proposed. It was developed as a free IDE, 

offering more dynamic options to developers. It is based 

on Java code standards and can check any piece of Java 

code saved as a text file. It uses five categories of code 

rules, Abdallah and Alrifaee [1].  

 Some of the optimization algorithms performed for 

software effort estimation, such as the firefly algorithm, 

Ghatasheh et al. [12], Regression fuzzy model, Nassif 

et al., [26], Machine Learning for software fault 

prediction for OO software metrics Singh et al., [28]. 

PRICE systems have developed POP, and the metric 

POP has been created to prevent efforts needed to build 

an OO software system, Minkiewicz [24]. It is based on 

the Feature Point (FP) system process counting. POPs 

are intended to boost their use in procedural systems 

over the FP by building well-recognized metrics in 

combination with OO systems, Haug et al. [15].  

POP is reflected to be a more reliable display of OO 

size than FP, Judge and Williams [20]; Jain et al. [17] 

and can also be used to measure the Effort that can be 

made to assess the program list and the expense of 

project software. POPs are a metric for approximating 

the dimensions of OO applications. The increasing class 

offers the system high-level inputs that determine the 

system’s organization based on behavior. Nonetheless, 

there is no reliable POP mapping with the software size. 

Various metrics are presented in the review section for 

assembling the superiority of OO software design, such 

as Aggarwal et al. [2] address specifications and present 

a new set of OO software metrics. Two proposed 

parameters are calculated, the amount of generosity 

contained in the project, and then systematically 

calculated alongside the set of 9 axioms by Weyuker. 

Chidamber and Kemerer [6, 7] address these 

Function 

Points 

Introduced by 
Albrecht 

(1979) 

Function Points Analysis (FPA) 
This method measures the relative size of 

software functions based on the no. of 

different data types processed by a software 

function and evolved into several variants 

of functional size measurement methods. 

Object Points 
Introduced by 

Banker et al., 

(1992) 

Object Points (OP) 

OP measure software size by counting visual 

widgets of the 4th generation languages. 

Widgets are 1. Logical system components, 2. 

Constructs of the 3rd generation language that 

is used to supplement 4th generation language 

code, 3. User interface screens, 4. User report 

and it is adjusted by complexity and reuse 

multipliers and summed to total OP count. 

Use-case Points 

Introduced by 

Karner (1993) 

Use-Case Points (UCP) 

UCP is inspired and based on FPA. Its 

instance is evaluated with respect to its 

complexity and assigned an appropriate 

weight. The UCP count is equal to the 

weighted sum of individual counts. The UCP 

can be modified using an adjustment factor, 

that depend on several technical complexity 

factors.  

Feature Points 

Introduced by 

Jones (1996) 

Feature Point Method (FPM) 

It extended FPA method by additionally 

counting algorithms and multiplying this 

count by the relative complexity of an 

algorithm. This method suffers from the 

imprecise descriptions and a lack of reference 

applications. 

Store Points 
Introduced 

by Cohn 

(2004, 2005) 

Store Points (SP) 

It used to estimate the size of agile software 

projects. SP is an abstract unit of software 

size that represents an intuitive mixture of 

development effort and complexity. SP is 

assigned according to a Fibbonacci number 

sequence, where each number is the sum of 

the previous two. 

Predictive Object Points (POP) 

POP is based on counts of classes and 

weighted methods per class, with adjustments 

for the average depth of the inheritance tree 

and the average no. of children per class. 

Methods are weighted by considering their 

type (constructors, destructors, modifiers, 

selector, iterator) and complexity (low, 

average and high), giving a no. of POPs in a 

way analogous to traditional FPs. 

Predictive 

Object 

Points 
Introduced 

by 

Minkiewicz 
(1997) 
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requirements by designing and instigating a new set of 

OO interface steps.  

Few empirical research is presented on the impact of 

object-oriented metrics on software development 

quality, such as Chidamber et al. [8]. ML is a subfield 

of Artificial Intelligence (AI) that has been applied in 

the area Zhang and Tsai [32]; Regolin et al. [27]. 

Several metrics, including effort estimation, have been 

enhanced using deep learning. A rigorous survey of the 

software development effort based on Machine 

Learning (ML) has been done by Akinsanya et al. [3]. 

This work is intended to provide a point of entry for 

professionals looking to add machine learning to their 

toolkits for developing software. It classifies recent 

literature, detects trends, and points out its shortcomings. 

According to the survey, some writers admit that ML for 

SD industrial applications has not been as standard as 

the evidence showed. The ML approach automatically 

induces information from historical project data in 

forms such as models, functions, laws, and patterns. 

Regolin et al. [27] have shown how to predict lines of 

code from (FP) or several components (NOCs) using 

two ML with Genetic Programming (GP) and ANN, 

Verner and Tate [30]. The ML algorithms, such as GP 

and neural networks, are challenged to understand and 

implement, Idri et al. [16].  

3. Proposed Effort Estimation Approach 

LOC is the most common metric for size estimation, but 

it is not easy to estimate the size of software expressed 

in LOC before the actual software development. Also, 

LOC is a size measure that is dependent on the 

programming language in which the software is written. 

Here, we propose an effort estimation approach using 

refined POP and deep learning through Curve fitting 

Neural Network (CFNN) and MLP. Here is a list of 

some popular software estimation methods and their 

tool in Table 1. 

Table 1. Estimation methods with tools comparisons. 

METHODOLOGIES TOOLS 

Predictive Object Points (POPs) – measured by  

metrics: 1) TLC:- top-level classes; 2) DIT:- 

average depth in inheritance tree; 3) WMC:- 

weighted methods per class; and 4) NOC – an 

average of children 

PRICE Systems’ 

True S 

Object Metric – projects scope as defined in 

Unified Modeling Language (UML): classes, 

sub-model components, use cases, and 

interfaces, capable by size complexity, 

genericity, as well as reuse 

TASSC: Estimator 

Use Case Points – According to the use of case 

diagrams and actors; 

Duvessa’s Estimate 
Easy Use Case 

(EEUC) 

Application Points (COCOMO II Level 1) - 

Used OP that counts reports, screens, and 3GL 

modules, according to weights complexity 

Duvessa’s Estimate 

Easy Use Case 
(EEUC) 

Model-Based Sizing – Arrangement of OO 

metrics:  

Use cases number and complexity, classes and 

objects 

QSM’s SLIM 

Estimate 

3.1. Predictive Object Points (POP) Metric 

POP introduced by PRICE, Minkiewicz [24], 

Minkiewicz and Fad [25], has established the POP 

metric and incorporates several standard measures in the 

review work to determine the appropriate for predicting 

metric the Effort required to create an OO software 

system. According to the logic, it’s associated with the 

following 4 OO metrics to describe the metric POPs by 

Equation (1) Minkiewicz, and Fad [25]; Haug et al. [15]; 

Jain et al. [17]: 

POPs = AvgWMC × TLC ×
{1+[(1+AvgNOC)×AvgDIT]1.01+(|AvgNOC−AvgDIT|)0.01}

7.8
  

The above equation combines the AvgWMC, TLC, 

AvgNOC, and AvgDIT. These parameters have their 

own identity. The role of the settings is explained below, 

Littlefair [23]. 

1. TLC: It is the total number of classes rooted in a class 

diagram. These classes are connected at the top level 

without any parents. All other classes are called the 

derived class. 

2. AvgDIT: It indicates the average number of Depth of 

Inheritance tree (DIT) values for every class presented 

in the class diagram. The DIT is a length of 

inheritance hierarchy trail for a class in which the 

class originated from the root.  

3. AvgNOC: It indicates the average number of NOC 

values for every class in a class diagram. NOC is the 

number of classes which is straight inherited from the 

class.  

4. AvgWMC: It indicates the average number of a 

weighted method for every class, where every type of 

arrangement is weighted based on complexity. 

The weight of a method calculates the AvgWMC metric 

by its category and complexity. The plans are listed as 

five method types: 

1. Constructor 

2. Destructor  

3. Modifiers 

4. Selector, And an Iterator.  

The constructors and destructors are collected into one 

form because their complexity is similar, Minkiewicz 

[24]. The methods complications in the class are further 

divided into low, medium, and high. The types of 

method weightings with complexity and complexity 

rules are set by inspecting the amount of actual Effort 

connected with 100 C++ /Java project methods. Expert 

information is also extended during this cycle. 

In general, however, AvgWMC is unavailable at the 

design stage from the UML class diagram, Minkiewicz, 

and Fad [25]; Haug et al. [15]. In this respect, we cannot 

use POPs in the early development process to develop a 

SLOC prediction model. To tackle this problem, 

Minkiewicz proposes that AvgWMC should be 

(1) 
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determined based on the standard percentage 

distributions of methods and complex forms.  

AvgWMC is generally unavailable at the design 

stage from the UML class diagram, Minkiewicz, and 

Fad [25]; Haug et al. [15]. For more details.” Therefore, 

POP cannot be used in the early development process to 

develop a SLOC prediction model. In particular, the 

following steps can be used for calculating AvgWMC 

in Figure 2. 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. AvgWMC calculation steps. 

3.2. Refined Predictive Object Points (POP) Metric 

In the true OO environment, as in java projects, the level 

of reusability through inheritance is always considered 

to be high, and hence (|AvgNOC − AvgDIT|)0.01  of 

Equations (1) can be omitted while estimating Java 

projects, Jain et al., [17]. Thus, the resultant simplified 

formula for the refined POP is given in Equation (2). 

REFINED_POPs = AvgWMC × TLC ×
{1+[(1+AvgNOC)×AvgDIT]1.01}

7.8
  

The APA automation tool can measure the refined POP 

count by fragmenting the complete project into each 

java file and aggregating values as per Equation (2). 

Besides, simplification was suggested and validated in 

the POP count formula by implementing a modified 

object-oriented metric Average Weighted Method 

Count (AWC) that can be utilized to replace the WMC 

metric Yadav et al. [31], as shown in Equation (3). 

WMC = AMC x 10.478 

The authors also recognized the relationship between 

the original and refined POP counts. This refinement 

and relationship are valid only for Java-based software 

and may not be applicable in any other development 

environment. 

3.3. Software Actual Effort Estimation 

When the latest technologies grow and the size of the 

software is immense, the Judgment calculation does not 

accurately foresee. The need for formula-based 

evaluation approaches is therefore illustrated. The 

Constructive Cost Model (COCOMO-I) is a 

mathematics-based estimation model. In COCOMO-I, 

the most straightforward calculation is used for Effort in 

Equation (4) to estimate the number of Person-Months 

needed for project growth. The measurement effort 

sequence is described in Figure 3. 

Effort = A ∗ (Size)B  

Here A is constant in proportionality, and B is the 

economy. Table 2 applies to the values of A and B, 

depending on the project category. A project is divided 

into three kinds:  

1. Organic-projects, including small teams with good 

knowledge 

2. Semi-detached projects that have medium-sized 

organizations with diverse expertise 

3. Embedded projects that are built under a set of 

restrictions.  

Table 2. Shows the A and B values for the COCOMO model. 

Software/Project A B 

Organic 2.4 1.05 

Semi-detached 3.0 1.12 

Embedded 3.6 1.20 

 

 

Figure 3. The procedure of effort estimation. 

At this point, we summarise the size in terms of actual 

Effort, KLOC, and estimation through refined POP 

metric. Since the size of both the projects considered for 

the study is 2-50 KLOC, we felt them as the organic type 

and used the formula below for actual effort calculation 

in Equation (5): 

Actual Effort = 2.4 ∗ (KLOC)1.05 

4. Effort Estimation using Refined POP Metric 

and Deep Learning 

ANN is a computer processing method inspired by an 

indigenous neuron network. The Feed-Forward Neural 

Network (FFNN) architecture can be divided into two 

types: a single layer with adjustable weight and bias and 

a multi-layer network that includes input layers, a 

hidden neuron layer, and a neural output layer. The 

input layer includes self-determining variables 

interconnected to the hidden layer. The hidden layer 

Step-1 
Compute 

the 

AvgMeth 

per Class. 

Step-2 

Compute 

the 

AvgMeth 

in each 

method 

type. 

 

Step-3 

Compute 

the no. of 

methods of 

each 

complexity 

type for 

each 

method 

type. 

Step-4 

Apply 

Method 

Weighting 

rules. 

AvgMeth 

per 

Class=Total 

No. of 

Methods/Tot

al No. of 

Classes 

Avg.Constru

ctor/Destruct

or Method 

Count=20% 

× AvgMeth 

per Class. 

Low 

Complexity 

Method 

Count=22% × 

AvgMeth 

Count. 

Compute 

AvgWMC 

Avg. Selector Method 

Count=30%×AvgMeth 

per Class. 

 

Avg. Modifier Method 

Count=45%×AvgMeth 

per Class. 

 

Avg. Iterator Method 

Count=5%×AvgMeth 

per Class. 

 

Avg. Complexity Method 

Count = 45%×AvgMeth 

Count. 

 

High Complexity Method 

Count = 33% × AvgMeth 

Count. 

 

(2) 

(3) 

(5) 

(4) 
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includes activation functions and measures the weights 

of the variables to investigate the effects of predictors 

on the (dependent) target variables, Haykin [13]. An 

ANN consists of three layers: input, hidden layer, and 

output layers, which means that a network of three 

layers is shown in Figure 4.  

 

Figure 4. The architectures of Neural Networks. 

An MLP-based neural network contains neuron 

layers with one input/output layer and more than one 

hidden layer that are optionally accessible. The MLP is 

created on neurons that calculate the non-linear input 

vector function and weights of the scalar variables. 

Neurons in the same layer interpret a signal concurrently 

and pass it from the input to the output layer. In CFNN, 

the input and weight vector determine the activation of 

a hidden neuron. CFNN with enough hidden neurons 

can arbitrarily implement any finite input-output 

function. The neural networks for OO application 

development effort estimation using MLP are generally 

multi-layered FFNN. The input value in the CFNN is 

the POP ratio, and the network output is the optimized 

value of POP. 

This research uses CFNN and MLP to estimate Effort 

using POP and advanced POP metrics. The network 

input is 1xN, with a 1-dimensional array. The hidden 

layer size is 25, and two different training algorithms 

employ a back-propagation training feature. Software 

development effort is a function of one variable, i.e., 

software size expressed in POP and refined POP. The 

enhanced Levenberg-Marquardt (LM), Finschi [11], 

Heiat [14], and Bayesian regularisation (BR) algorithms 

have been used to train the network and achieve lower 

mean squared errors. De Barcelos Tronto et al. [9]; 

Heiat [14]. The LM algorithm is quicker than the BR 

back-propagation algorithm. Along with the LM and 

BR back propagation training techniques, we use Mean 

Square Error (MSE) and determination coefficient to 

produce results suited for calculating software size, 

Khalid et al., [21]. The complete implementation has 

been done using MATLAB inbuilt function library and 

code. 

5. Result Analysis 

This research used 25 open-source Java projects taken 

from http://sourceforge.net/, https://projectsgeek.com/, 

and http://www.enggroom.com/Project.aspx. Projects 

cover various applications, including core software 

development, internet gaming or entertainment, science 

or engineering, communications, network, and database.  

Java projects containing the project version, the total 

Number of Java Files (NJF), and size in SLOC. We used 

the Automated POP Analyser (APA) Tool for software 

engineering for software metrics and size estimation for 

each Java system. The JAVA-language APA platform 

and framework function for JAVA-based projects. This 

method understands the java files to evaluate their 

source code for the details extracted. The POP value is 

determined based on every project file. The project 

sources used for analysis are summarised in Table 3. 

Table 3. Java projects used in a case study. 

No. Project Name Project Sources NJF SLOC 

1 Civilization Game 

Project 

https://projectsgeek.com/2016

/01/civilisation-game-project-

in-java.html 

17 2559 

2. MESP 1.0 https://sourceforge.net/project

s/expression-tree/ 

50 1189 

3. Jmol https://sourceforge.net/project

s/jmol/ 

156 22686 

4. JDMP https://jdmp.org/ 92 2684 

5. Geometry library (gpcj-

2.1.0) 

https://sourceforge.net/project

s/gpcj/ 

12 2893 

6. Geometry library (gpcj-

2.1.2) 

https://sourceforge.net/project

s/gpcj/ 

14 1995 

7. Intranet https://projectsgeek.com/2014

/07/intranet-mailing-system-

project-java.html 

9 1977 

8. JavaCallTracer  https://sourceforge.net/proj

ects/javacalltracer/ 

5 102 

9. Java AIMBot -1.4 https://sourceforge.net/project

s/jaimbot/ 

30 4413 

10. javaGeom-0.11.0 https://sourceforge.net/project

s/geom-java/ 

124 4098 

11. javaGeom-0.11.1 https://sourceforge.net/project

s/geom-java/ 

123 4059 

12. Java MP4Box Gui -1.6 https://sourceforge.net/project

s/javamp4boxgui/ 

10 255 

13. Java MP4Box Gui -1.7 https://sourceforge.net/project

s/javamp4boxgui/ 

15 404 

14. Java MP4Box Gui -1.8 https://sourceforge.net/project

s/javamp4boxgui/ 

16 486 

15. JDistlib-0.0.7 http://jdistlib.sourceforge.net/ 44 4578 

16. Simplified encryption 

(jasypt-1.9.1) 

https://sourceforge.net/project

s/jasypt/ 

115 7264 

17. iText® (iText5.4.0) https://sourceforge.net/project

s/itext/ 

96 3651 

18. iText® (iText5.4.3) https://sourceforge.net/project

s/itext/ 

100 3582 

19. JGraphT-0.8.2 https://sourceforge.net/project

s/jgrapht 

178 644 

20. JGraphT-0.8.3 https://sourceforge.net/proj

ects/jgrapht 

180 644 

21. HBX Binaural 

Player(HBX-1.16) 

https://sourceforge.net/project

s/hbxplayer/ 

11 2837 

22. HBX Binaural 

Player(HBX-1.16.1) 

https://sourceforge.net/project

s/hbxplayer/ 

11 2837 

23. iText® (iText5.3.0) https://sourceforge.net/project

s/jgrapht 

37 1276 

24. Jaimlib-0.5 https://sourceforge.net/project

s/jaimlib 

45 1539 

25. HBX Binaural Player 

(HBX-1.15) 

https://sourceforge.net/project

s/hbxplayer/ 

9 2308 

5.1. Results of POP, Refined POP, and Effort 

Assessment 

We used the Automated POP Analyser (APA) Tool and 

Metric Investigation Tool CCCC by Littlefair [23]. for 

the assessment of various metrics and POP values for 

every individual java file of each Java project by 

following the procedure discussed in section 3.1 and 3.2 

and then taking an average of the values for determining 

AvgDIT, AvgNOC, and AvgWMC values. The 

software effort estimation is done according to the 

COCOMO-I model of organic type. Various values, 

including that of POP, refined POP, and Effort 

calculated, are given in Table 4. 

https://projectsgeek.com/2016/01/civilisation-game-project-in-java.html
https://projectsgeek.com/2016/01/civilisation-game-project-in-java.html
https://projectsgeek.com/2016/01/civilisation-game-project-in-java.html
https://sourceforge.net/projects/expression-tree/
https://sourceforge.net/projects/expression-tree/
https://sourceforge.net/projects/jmol/
https://sourceforge.net/projects/jmol/
https://jdmp.org/
https://sourceforge.net/projects/gpcj/
https://sourceforge.net/projects/gpcj/
https://sourceforge.net/projects/gpcj/
https://sourceforge.net/projects/gpcj/
https://projectsgeek.com/2014/07/intranet-mailing-system-project-java.html
https://projectsgeek.com/2014/07/intranet-mailing-system-project-java.html
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https://sourceforge.net/projects/javamp4boxgui/
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http://jdistlib.sourceforge.net/
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https://sourceforge.net/projects/jasypt/
https://sourceforge.net/projects/itext/
https://sourceforge.net/projects/itext/
https://sourceforge.net/projects/itext/
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https://sourceforge.net/projects/jgrapht
https://sourceforge.net/projects/jgrapht
https://sourceforge.net/projects/hbxplayer/
https://sourceforge.net/projects/hbxplayer/
https://sourceforge.net/projects/hbxplayer/
https://sourceforge.net/projects/hbxplayer/
https://sourceforge.net/projects/jgrapht
https://sourceforge.net/projects/jgrapht
https://sourceforge.net/projects/jaimlib
https://sourceforge.net/projects/jaimlib
https://sourceforge.net/projects/hbxplayer/
https://sourceforge.net/projects/hbxplayer/
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Table 4. The Value of POP metric estimation. 

No. TLC AvgNOC AvgDIT AvgWMC 
Total 

POP 

Total 

Refined POP 

Effort 

Calculated 

1 18.0 12.0 5.166 70.88 510.99 318.34 6.02 

2. 44.0 44.0 22.0 44.21 707.64 472.85 2.43 

3. 165 100.99 46.99 67.08 3611.53 2374.25 50.87 

4. 107.0 74.0 33.03 55.04 1870.85 1183.60 5.67 

5. 12 8.3 4.0 96.74 449.87 336.18 6.76 

6. 10.0 7.5 3.5 66.91 129.97 87.55 4.66 

7. 21.0 10.28 3.81 36.09 350.46 231.17 4.56 

8. 2.0 2.0 1.0 41.91 20.10 13.43 0.20 

9. 33.0 26.5 12.03 81.54 1000.87 674.17 9.78 

10. 145.0 84.0 34.25 76.76 4306.95 2645.90 8.61 

11. 153.0 87.0 36.37 76.02 4676.44 2850.37 8.70 

12. 4.0 3.0 1.33 41.91 44.22 29.55 0.51 

13. 8.0 7.0 3.33 48.19 48.24 33.24 0.83 

14. 8.0 7.0 3.33 40.16 44.22 29.55 1.01 

15. 4.0 2.0 0.75 63.11 265.31 160.86 14.69 

16. 86.0 75.0 35.66 68.60 2627.54 1713.99 15.71 

17. 75.0 62.0 29.31 60.63 1195.90 791.48 7.72 

18. 78.0 64.0 30.28 58.21 1191.87 788.80 7.55 

19. 15.0 11.0 4.83 32.08 226.01 143.10 1.33 

20. 15.0 11.0 4.83 32.08 226.01 143.10 1.33 

21. 12.0 8.0 3.73 94.14 528.20 348.83 6.51 

22. 12.0 8.0 3.73 94.14 528.20 348.83 6.51 

23. 24.0 23.0 11.33 73.80 385.98 257.92 2.69 

24. 44.0 35.0 16.0 48.89 910.79 586.05 3.17 

25. 11.0 7.0 3.23 89.64 462.13 304.13 5.30 

 

In the current case study, 25 Java projects used for 

the validation process have been maintained in two 

different lists based on even and odd projects, as 

depicted in Equations (5) and (6), respectively, and 

effort assessment through POP and refined POP are 

calculated by taking ratios of the respective projects in 

the two lists. A comparison of efforts assessment 

through POP and Refined POP with the actual Effort is 

shown in Table 5. 

A = (E1 E2 … … … … … … … … … En) 

𝐵 = (O1 O2 … … … … … … … … … On) 

Table 5. The Effort estimation measure through POP, Refined POP 
comparison with actual. 

No. Total POP 

Ratio 

Total Refined POP 

Ratio 

Effort Calculated 

Ratio 

1 1.3848 1.4853 0.4036 

2. 0.5180 0.4985 0.1114 

3. 0.2889 0.2904 0.6893 

4. 0.0573 0.0560 0.0438 

5. 4.3032 3.9246 0.8803 

6. 0.0094 0.0103 0.0586 

7. 0.9166 0.9889 1.2168 

8. 9.9036 9.6551 1.0694 

9. 0.9968 0.9976 0.9779 

10. 1 1 1 

11. 1 1 1 

12. 2.3596 2.272 1.1784 

 

5.2. Comparison of Results of POP Metrics 

The performance evaluation has been designed based on 

four different types of POP metric values. POP metric 

calculation based on the PRICE system, Minkiewicz 

[24], the overall project, each Java file of the project, 

and refined POP values. For the POP metric 

comparison, two different projects with the smallest and 

highest number of Java files depicted in bold in Table 3 

have been considered. As per Figure 5, the refined POP 

is better than the other POP metrics.  

 

Figure 5. POP Count values based on two different projects. 

The actual Effort calculated through COCOMO-I has 

a value of 0.1514 for the projects with NJF=5/NJF=180. 

The estimated effort values were assessed using 

different POP metrics like POP defined by Minkiewicz 

[24], POP (Overall), POP (Each Java Files), and POP 

(Refined) are 0.3548, 0.1911, 0.088, and 0.0938 

respectively. The POP (Refined) value is much closer to 

the actual effort, as shown in Figure 6. 
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Figure 6. Efforts comparison based on two java projects. 

5.3. Analysis and Comparison of Results of Deep 

Learning 

In the Regression analysis, the R-value calculates the 

interplay of outputs and goals. An R-value of 1 implies 

a close connection, and 0 is a random relation. The 

standard output feature for training feedback neural 

networks is the average number of network error 

squares. Regression plots for CFNN and MLP-based 

Effort comparison using LM and BR training algorithms 

have been shown in Figures 7 and 8, respectively. 

 

 

Figure 7. Regression plot for CFNN generated for Efforts 

comparison based on LM and BR, respectively. 

The correlation between the actual and predicted 

value in both the training and testing phase is depicted 

with the correlation coefficient (R2) as 0.90071 (CFNN 

with LM), 0.9893 (CFNN with BR), 0.9370 (MLP with 

LM), and 0.9985 (MLP with BR) respectively in the 

Figures 7 and 8. These figures clearly show that the 

Effort estimated based on the refined POP metric is very 

close to the actual Effort. The R-value for MLP with BR 

has the highest value as 0.9985, indicating that it is 

almost 99.85 % closer to real Effort and has only a 

0.0015% error in prediction. 

The MSE represents the average square difference 

between the actual output and the goal. The lowest value 

of MSE indicates no error. Figures 9 and 10 display the 

average MSE in the prediction of the OO Metric, which 

is very low. The deep learning for enhanced OO 

software metrics has given outstanding performance 

with 99.85% accuracy. Figure 11 gives the performance 

comparison of MLP & CFNN based on LM and BR 

 

Figure 8. Regression plot for MLP generated for Efforts comparison 

based on LM and BR, respectively. 
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Figure 9. MSE for CFNN-based Effort comparison using LM and 

BR. 

 
 

 

Figure 10. MSE for MLP-based Effort comparison based on LM and 

BR, respectively. 

 
Figure 11. Performance comparison of MLP & CFNN based on LM 

(in blue) and BR (in Yellow). 

6. Conclusions and Future Directions  

For the 25 open-source Java projects, the original and 

refined POP metrics are calculated using the APA tool. 

The final result analysis was done based on various 

POP-based size metrics and calculating the efforts with 

these metrics. The POP metric is a good size measure of 

software which can be easily seen from the results.  

We used the POP metrics to estimate the 

development efforts through deep learning methods 

with different training models. The Effort estimated 

through the refined POP metric and various other forms 

of the POP metrics using deep learning methods was 

analysed and compared with the actual Effort calculated 

through the COCOMO model. 

The highest correlation coefficient value between the 

actual Effort and the Effort predicted through refined 

POP using MLP with BR, and the minimum MSE value 

establishes the deep learning-based approach of effort 

estimation through refined POP using MLP with BR 

algorithm is the best. 

This research used Java programming language-

based projects to calculate POP and refined POP metrics 

for effort estimation.  

The Refined POP metric was validated by comparing 

the effort values estimated through this metric and the 

SLOC metric using the COCOMO-I model. The work 

can be extended for the object-oriented-based software 

written in some other programming language. Also, in 

place of the static regression model used by us, the 

dynamic Machine learning-based models can be used. 
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