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Abstract: Compared to traditional statistical models, Machine Learning (ML) algorithms provide the ability to interpret, 

understand and summarize patterns and regularities in observed data for making predictions in an advanced and more 

sophisticated way. The main reasons for the advantage of ML methods in making predictions are a small number of significant 

predictors of the statistical models, which means limited informative capability, and pseudo-correct regular statistical patterns, 

used without previous understanding of the used data causality. Also, some ML methods, like Artificial Neural Networks, use 

non-linear algorithms, considering links and associations between parameters. On the other hand, statistical models use one-

step-ahead linear processes to improve only short-term prediction accuracy by minimizing a cost function. Although designing 

an optimal ML model can be a very complex process, it can be used as a potential solution for making improved prediction 

models compared to statistical ones. However, ML models will not automatically improve prediction accuracy, so it is necessary 

to evaluate and analyze several statistical and ML methods, including some artificial neural networks, through accuracy 

measures for prediction purposes in various fields of applications. A couple of techniques for improving suggested ML methods 

and artificial neural networks are proposed to get better accuracy results. 
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1. Introduction 

Statistical models are basic tools that sum up patterns of 

the used data [50]. They are used for discovering 

causality, making predictions, and describing different 

events [41]. Statistical models are often recognized as 

tools for uncovering causality in different scientific 

areas, but achieving this goal is a serious challenge [35]. 

On the other hand, prediction and description are more 

practical reasons. Regardless of the statistical model's 

task, links and associations between variables in 

complex systems are ignored [6]. 

For prediction, researchers sometimes use statistical 

models that provide a regular pattern that seems to hold 

statistically without a previous understanding of causal 

mechanisms in the observed data [50]. Prediction models 

based on statistical methods like regression modeling 

only include a few essential predictors, so they have 

limited informative capability [15]. 

Traditional statistical models have a low scientific 

value in predicting the observed data. Gained prediction 

results are only an overview of statistical information in 

data of interest which should be only interpreted but not 

devalued. Descriptive statistical models are involved in 

all causal interpretations because they cannot conclude 

causality by themselves [50]. Descriptive results are 

observed information disguised in a mathematical form 

that cannot be wrong. However, descriptive 

interpretation is not the primary goal, but making 

predictions and understanding causality should be the 

ultimate one [39]. Achieving this with the usually 

available dataset takes much work. 

Artificial Intelligence (AI) systems are based on 

algorithms that provide learning by example and errors, 

improving their performance over time [32]. Machine 

Learning (ML), as a particular class of AI, allows data 

interpretation and understanding more sophisticatedly. 

ML methods have been becoming more important with 

rising interest in AI and can be exploited to develop 

prediction models based on experience and to improve 

existing time series predictions [31]. ML methods have 

become very important over the last years through many 

applications like autonomous traffic intelligent systems 

[42], power consumption prediction [49], credit-card 

fraud detection [3], behavior and facial expression 

recognition [16, 27, 28], image recognition systems for 

diagnosis [4, 7, 8, 36, 37], crop disease prediction [40], 

and sign language recognition [1, 17]. 

ML approach provides unbiased robust prediction 
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models and cooperation between parameters affecting 

the outcomes consequentially [6]. As the alternative to 

traditional statistics, ML algorithms propose new 

complex models, which also consider links and 

associations between parameters suggesting 

methodological advances and accuracy improvements 

[14, 44, 52]. For example, artificial Neural Networks 

(NN) are ML models that imitate the learning process in 

the brain. Namely, the neural cells have a hierarchical 

structure where each input node receives multiple inputs, 

giving each of them a weight, resulting in outputs in the 

shape of a decision determined by the weighted data 

gained sum.  

ML and statistical methods aim to improve prediction 

accuracy by minimizing cost functions like the root of 

medium square error [19]. The main difference is in the 

minimization methods: ML methods offer some 

solutions like NN that use non-linear algorithms, but on 

the other hand, statistical methods use linear processes. 

It makes ML methods computationally complex and 

more dependent on computer science for 

implementation. Also, statistical predictions use a single 

or few time series, making the results' importance and 

generalization unreliable. Statistical methods are 

estimated one step ahead for short-term predictions 

without considering medium and long-term predictions 

[32]. 

However, designing an ML model, especially a NN, 

can be complex. Determining parameters like the 

number of hidden layers and nodes in them is complex 

and requires much time. Sometimes, artificial neural 

networks must improve the interpretability of variable 

weights obtained in the model-developing process. 

Conversely, statistical models allow the interpretation of 

individual coefficients (parametric assumptions), which 

is crucial for making conclusions in prediction problems 

[38]. 

It is also necessary to emphasize that ML methods 

will not automatically improve prediction accuracy 

because they can generate implausible solutions. Before 

claiming that ML, and especially NN, bring 

improvement in terms of making predictions compared 

to traditional statistics, it is necessary to compare several 

methods, using different performance measures, on a 

couple of datasets. In other words, it is necessary to 

answer whether ML methods can be trained to make 

more efficient and accurate predictions, as opposed to 

statistical ones, by using more information about the 

future rather than past events. 

2. Datasets 

For this paper, three different datasets are used. The first 

is from PREDISE, a web-based study investigating how 

different factors are associated with healthy eating habits 

like Vegetable and Fruit (VF) intake among adults [9]. 

There are two possible outcomes (classes) of VF intake: 

adequate VF consumption, corresponding to 5 or more 

servings per day, and inadequate VF consumption, 

corresponding to less than five servings per day. The 

study is based on data about 1147 male and female 

participants between 18 and 65, containing information 

regarding individual, social, and environmental factors, 

three 24 h dietary recalls and food intake frequency, 

anthropometric measurements, and blood sampling. Of 

all the participants, 1083 completed all three, 34 

completed two, and 30 completed only one recall [29]. 

VF intake in servings per day was calculated by 

averaging intakes from all recalls available. 

Anthropometric measurements and blood sampling data 

from the clinical assessment include serum cholesterol, 

triglycerides, HDL-cholesterol, fasting blood glucose 

and insulin concentrations, systolic and diastolic blood 

pressures, measured height, measured weight, body 

mass index, body fat percentage, and waist 

circumference. 

The second dataset used is based on one of the studies 

assisting clinicians when offering couples personalized 

treatment options for undergoing In Vitro Fertilization 

(IVF). It contains fertilization data about a population of 

1136 participating couples/patients, including several 

fertilization outcomes leaning on factors such as clinical 

features, age, and Body Mass Index (BMI): number of 

oocytes retrieved, number of mature oocytes, number of 

fertilized oocytes, number of top-quality embryos, 

positive beta-hCG, clinical pregnancies, and live births 

[12, 43, 45]. 

The third dataset includes 1045 out of 3003 time 

series from the M3 Competition forecast study [2]. The 

original dataset includes various types of time series data 

(micro, industry, macro, finance, demographic, and 

other) and different time intervals between successive 

observations (yearly, quarterly, monthly, and other). A 

minimum number of observations is set for each data 

type to enable the development of an adequate 

forecasting model. All the time series data have positive 

values because, in the case of a negative, it was 

substituted by zero to avoid any problem with the 

advanced performance measures. 

Before analyzing forecast prediction accuracy 

measures, it is recommended to perform data 

preprocessing to provide stable processes and optimal 

results. In this case, the forecast data preprocessing 

includes three steps: Seasonal adjustments, power 

transformations, and trend removal. Firstly, the 

multiplicative decomposition removes seasonal 

determinants from the data [33]. After that, obtained 

forecasts are reversed to seasonal form to make the final 

predictions. Exceptions are cases when methods include 

seasonal models and their complexity, defined through 

the information criteria and comparative tests. The Box-

Cox power transformation is applied to the original 

forecast dataset to accomplish variance stationarity. 

Eliminating the trend in data series is essential in cases 

of bouncing activation function, making it more stable 

[10]. Determining the most suitable trend elimination 
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method in forecast data and achieving mean stationarity 

requires more empirical methods like the Cox-Stuart 

test. It is executed to establish if a deterministic linear 

trend or first differencing should be used [32]. 

Combining described preprocessing techniques is 

recommended for getting even better results. 

3. Methods and models 

Traditional statistical models for prediction in 

classification tasks on the first dataset are Logistic 

Regression (LR) and penalized regression (Lasso). The 

LR model calculates the probability of belonging to one 

of two classes by computing the logit function of 

weighted input features, which are estimated using 

maximum-likelihood estimation [23]. Lasso model uses 

feature selection and shrinkage to reduce the number of 

features for classification purposes [48]. Also, four 

commonly known supervised ML classification 

algorithms were applied: Decision Tree (DT), Random 

Forest (RF), Support Vector Machines (SVM) with 

linear and polynomial kernels, and K-Nearest Neighbors 

(KNN). DT algorithm has a flowchart-like structure that 

makes predictions by learning decision rules where each 

node represents an input feature which is compared 

through each branch (decision rule) until a leaf node 

(prediction) is reached [46]. RF algorithm generates a 

large ensemble of decision trees where the predicted 

class is determined by averaging the estimated outcome 

variable of each decision tree [51]. The SVM algorithm 

attempts to sort the data between two classes with a 

hyperplane which can either be a linear or a polynomial 

function determined using only the points closest to the 

hyperplane [24]. KNN algorithm assumes that close data 

points are similar, so the class of a new data point is 

determined according to the shared characteristics of a 

pre-determined number of closest points [11]. In the 

second dataset, the NN model is applied instead of the 

suggested ML methods to get improved results [21]. 

Research work in forecasting, like the M3 

Competition study, is based on utilizing ML, especially 

NN methods, on making time-series predictions. The 

idea is to compare the performances of NN and statistical 

methods to determine if NN methods can improve the 

accuracy of Statistical Methods (SM) and issues of 

improving forecast accuracy in general [32]. Several 

advanced NN and SM are used for more precise and 

reliable analysis. Method Simple Exponential 

Smoothing (SES) aims to predict trendless series, while 

Holt and Damped Exponential Smoothing are adequate 

for trend time series [18]. The next model, Theta, 

achieves very good overall sMAPE [5], and finally, for 

Exponential Smoothing (ETS) model, which provides 

substantial accuracy [25].  

On the other hand, NN methods used are Multi-Layer 

Perceptron (MLP), Bayesian Neural Networks (BNN), 

Generalized Regression Neural Networks (GRNN), 

Recurrent Neural Networks (RNN), and Long Short 

Term Memory neural networks (LSTM). Multi-Layer 

Perceptron (MLP) consists of constructing a single 

hidden NN layer, defining the optimal number of input 

nodes N and hidden nodes to 2N+1, using a k-fold 

validation process [30]. Defining optimal weights using 

the Scaled Conjugate Gradient instead of Standard 

Backpropagation is recommended because it performs 

better in weight optimization tasks [34]. It is 

recommended to use a hidden layers' logistic activation 

function and an output nodes' linear function to 

maximize the method's flexibility [32]. The main reason 

is that a logistic output activation function is bounded for 

optimizing time series with trends and can easily flop. In 

the case of nonlinear activation functions, it is 

recommended to scale the data values within the interval 

from 0 to 1. The main reasons for data scaling are: 

keeping away from problems in performing 

computations, providing quicker network learning, and 

meeting the algorithm's requirements. Bayesian Neural 

Network (BNN) has many similarities with the MLP 

method. The only difference is that process of optimizing 

network parameters is based on the Bayesian concept, 

where the weights are evaluated with distributions of 

errors suspected in advance. It is designed and built 

through: the Nguyen and Widrow algorithm for 

assigning initial weights, the Gauss-Newton algorithm 

for the optimization, the k-fold validation process for 

determining the optimal number of input nodes N and 

the hidden nodes, which is defined with 2N+1, while an 

overall number of considered iterations is linearly scaled 

[13]. Generalized Regression Neural Networks (GRNN) 

is a nonparametric method where predictions are 

obtained by calculating a mean value for all differences 

between each training data point's target output and the 

respective observed values. For this purpose, it is also 

necessary to calculate the parameter sigma, which 

represents the fit smoothness. Finally, the number of 

inputs N in the k-fold validation should be determined 

[47]. Recurrent Neural Network (RNN) is similar to the 

MLP. However, the main difference is that for each 

output, RNN provides feedback connections for 

checking earlier states, which are utilized together with 

each contemporary input. Feedback connections are 

created by copying previous values in the recurrent 

nodes layer. RNN usually consists of a hidden layer with 

recurrent nodes and an output layer with linear node(s). 

Besides using k-fold validation, in terms of defining the 

optimal NN structure, it is possible to use a couple of 

input and recurrent nodes within the hidden layer for all 

available time series. Several input nodes and recurrent 

units are selected using results from a random time series 

sample with the best parameterization performance [32]. 

LSTM neural network is sequential and contains hidden 

and output layers like RNN, but with the additional task 

which includes avoiding the dependency on the long-

term scale. Because of the complex architecture, another 

advantage is the ability to keep information longer [22]. 
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4. Performance Measures  

In the first example, it is necessary to compare the used 

statistical and ML models' performance in making 

predictions, using predictive metrics based on simple 

rates of accurate and inaccurate predictions like 

accuracy, precision, recall, and F1 score. Accuracy 

measures the rate of accurate predictions on the entire 

population. The F1 score represents the balance between 

precision and recall and is measured like their harmonic 

mean, which assigns more weight to lower, compared to 

the regular mean that treats all values equally. Precision 

represents the ratio of true positive to the sum of true 

positive and false positive predictions (accuracy of 

positive predictions). At the same time, recall is the ratio 

of true positives to the sum of true positive and false 

negative predictions (rate of correctly detected 

instances) [19]. For the second dataset, it is sufficient to 

compare the accuracy and F1 scores of the suggested 

methods. 

Considering that many forecast tasks are about 

predicting numerical values, sometimes it is more 

suitable to evaluate predictive methods by calculating 

the difference between observed and predicted values, as 

in the third example. One example is Root Mean Square 

Error (RMSE), which represents system predictions 

error. It does not treat all errors equally but gives higher 

weight to large ones. Also, in some contexts, it is 

preferred to use the Mean Absolute Error (MAE), also 

called Average Absolute Deviation [19]. However, for 

this paper, it is suitable to use more precise measures. 

One of them is the symmetric Mean Absolute Percentage 

Error (sMAPE), which is defined with the following 

equation [20]: 

        𝑠𝑀𝐴𝑃𝐸 =
2

𝑘
∑

|𝑌𝑖−�̂�𝑖|

|𝑌𝑖|+|�̂�𝑖|

𝑘
𝑖=1                     (1) 

Where 𝑘 counts instances in the observed data, 𝑌𝑖 is the 

vector of actual observations, for instance 𝑖, and �̂�𝑖 is the 

model’s prediction vector, for instance 𝑖. As the opposite 

of sMAPE, which does not consider positive and 

negative errors equally but favors large positive ones, the 

Mean Absolute Scaled Error (MASE) is introduced to 

complement the former [25]: 

 𝑀𝐴𝑆𝐸 =
1

𝑘

∑ |𝑌𝑖−�̂�𝑖|
𝑘
𝑖=1

1

𝑛−𝑚
∑ |𝑌𝑖−𝑌𝑖−𝑚|𝑛
𝑖=𝑚+1

 (2)

Where 𝑛 counts available observations and 𝑚 measures 

time series incidence. Also, it is worth mentioning that 

MASE is data scale independent. For representative 

prediction accuracy estimation, �̂�𝑖  should be computed 

at least ten times. Additionally, the produced errors 

average should be utilized to avoid issues induced by 

choosing specific initial values for ML methods 

parameters. It is also important to measure the precision 

of Model Fitting (MF) into the observed data: 

 𝑀𝐹 =
𝑛∑ (𝑌𝑖−�̂�𝑖)

𝑛
𝑖=1

(∑ 𝑌𝑖
𝑛
𝑖=1 )

2

2

 (3) 

MF represents the Mean Squared Error of 𝑛 − 𝑘 

model fit forecasts, normalized by the examined time 

series mean [32]. 

5. Results and Discussion 

ML methods do not necessarily perform better in 

predistion tasks, compared to traditional statistics. For 

example, comparing accuracy measures of these two 

groups of prediction methods give similar results in 

PREDISE study. As the proposed ML methods do not 

give better results than the statistical ones, the idea is to 

implement more advanced models like neural networks 

and try them on a data set of a similar size but with more 

labels. 

In the second example, considering couples' 

personalized treatment options for undergoing In Vitro 

Fertilization, NN methods show a clear advantage 

compared to traditional statistics. Table 2 displays 

accuracy rates and F1 scores of NN and LR methods for 

In Vitro Fertilization (IVF) outcomes on the previously 

described population. Figure 2 graphically represents 

data from Table 2 and clearly shows the superiority of 

NN methods: Their accuracy outcomes are between 0.69 

and 0.90, while LR accuracies are between 0.34 and 

0.74. NN F1 scores are also higher than LR, ranging 

between 0.69-0.89 and 0.35-0.74 for NN and LR, 

respectively. 

Table 1. ML and statistical accuracy measures for VF intake 

habits. 

Accuracy 

measures 

Statistical 

methods 
Machine Learning 

LR LASSO DT RF 
SVM 

KNN 
Linear Polyn. 

Accuracy 0.64 0.64 0.62 0.64 0.55 0.64 0.58 

Precision 0.65 0.65 0.63 0.63 0.57 0.64 0.58 

Recall 0.68 0.68 0.66 0.73 0.58 0.72 0.69 

F1 Score 0.66 0.66 0.64 0.68 0.58 0.67 0.63 

 

Figure 1. Performance measures of ML and statistical methods for 

VF intake habits. 

One of the main reasons for the apparent superiority 

of NN as an ML algorithm over LR as a classic statistical 

method is taking complex and non-linear links among 

various parameters into consideration and their better 

utilization, involving parameters that are not connected 

with the outcomes opposed to classical statistical 
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models. Also, the IVF outcomes study has several 

strengths, which are crucial for excellent performances 

achieved by NN: It emphasizes the importance of 

modifiable variables, the dataset is collected from a 

homogeneous population undergoing the same IVF 

protocol is used, subjective factors which might affect 

IVF outcomes are excluded, enabling noise reduction 

and developing high-performing robust models [6]. 

Based on this, an approach where models are developed 

based on the training set and tested on various sample 

sets provides reliable results. It also considers the 

models’ performances and is known as the training-test 

approach. 

Regardless of mentioned strengths, the IVF outcomes 

study has several limitations, including a relatively 

limited sample of participants and a need for more 

external testing and validation data. In addition, much 

better rates of prediction accuracy for NN compared to 

LR could indicate that NN methods offer improved 

performances for making predictions or that LR is far 

from good in this task. Also, in many studies, the validity 

of assumptions in traditional statistical methods, which 

is fundamental for the quality and performance of 

predictions for used datasets, is only confirmed after 

application [38]. Before claiming that ML, especially 

NN, can overcome the shortcomings of traditional 

statistics, it is necessary to compare several NN 

algorithms with advanced statistical methods using 

sophisticated performance measures. 
 
Table 2. NN and LR accuracy measures for IVF outcomes. 

IVF outcome 
Accuracy measures 

Accuracy F1 Score 

NN LR NN LR 

Retrieved oocytes 0.69 0.34 0.69 0.35 

Mature oocytes 0.88 0.74 0.87 0.74 

Fertilized oocytes 0.78 0.55 0.77 0.56 

Top-quality embryos 0.86 0.61 0.85 0.60 

Positive beta-hCG 0.85 0.53 0.84 0.43 

Clinical pregnancy 0.90 0.58 0.89 0.46 

Live birth 0.87 0.55 0.86 0.36 

 

Figure 2. Accuracy rate and F1 scores of NN and LR for IVF 

outcomes. 

sMAPE, MASE, and MF forecast prediction accuracy 

measures, calculated on the M3 Competition dataset for 

NN and statistical methods, are shown in Table 3 and 4, 

respectively. Gained results, represented by the scatter 

diagram in Figure 3, are not encouraging for NN 

methods: in two (sMAPE and MASE) out of three 

categories, excluding only Model Fitting, SM gives 

better results, as the goal is to minimize all three cost 

functions. It is necessary to determine the causes for poor 

NN performance and improve their accuracy side by side 

with introducing new NN methods [2]. 

Identifying the cause of NN methods 

underperforming in forecast tasks includes comparing 

their accuracy with SM, one series at a time, and 

explaining the observed. An even more important issue 

is to answer the question if NN methods can be adjusted 

to learn more efficiently using additional information 

about the future, including unknown errors. In this 

context, learning means finding a solution to an 

optimization problem. The goal is to choose a set of 

parameters to minimize a cost function, which is usually 

based on the sum of square errors. It requires an 

approach to future information in order to minimize 

future errors. One way to achieve this is dividing the data 

set into two parts: one containing the 1/3 of the data set 

used for developing a much simpler model and the 

second one with the remaining 2/3 for training to learn 

predicting remaining observations with expanding each 

set for one observation in every iteration until all 

available observations are used. Another way is to 

provide alternative forecasts and instruct NN methods to 

learn to select the most accurate one for each data series 

by minimizing errors. Sometimes, it is required to divide 

the data into different categories or types of series and 

deploy adequate models for each category [32]. 
 

Table 3. Performances of selected NN models. 

Method ID 
Performance measure 

sMAPE MASE MF 

MLP 1 8.39 0.55 2.11 

BNN 2 8.17 0.53 2.11 

GRNN 3 9.49 0.67 1.80 

RNN 4 9.48 0.54 1.98 

LSTM 5 11.67 0.72 1.84 

 

Table 4. Performances of selected statistical models. 

Method ID 
Performance measure 

sMAPE MASE MF 

SES 1 7.36 0.49 2.37 

HES 2 7.41 0.48 2.35 

DES 3 7.30 0.48 2.34 

Theta 4 7.31 0.48 2.34 

ETS 5 7.19 0.47 2.28 
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Figure 3. Performance measures for M3 Competition time series. 

Proposed techniques for obtaining better future 

information and minimizing future errors can lead the 

NN model to excessive fitting into observed data. In 

addition to the fact that NN methods have nonlinear 

nature and dynamical training, randomness extent in 

time series and the capability to differentiate the useful 

patterns from the noise can also cause model overfitting. 

In opposition, the overfitting of linear statistical methods 

can be controlled by setting the number of parameters 

utilized or information criteria. 

6. Conclusions 

One of the essential ML features, including NN, is the 

ability to estimate different types of non-linear functions. 

It is valuable in cases of unknown or complex 

relationships between variables. On the other hand, 

traditional statistical prediction models do not include 

enough significant predictors, so they have limited 

informative capability.  

However, it is necessary to remember that designing 

an optimal ML model, especially an artificial neural 

network, is a very complex process when it comes to 

defining the number of hidden layers and nodes in each 

of them. Compared to traditional statistical methods, 

which allow the interpretation of individual coefficients, 

ML methods need help interpreting variable weights 

gained through the model development. 

Putting aside that designing an optimal ML model, 

and especially an artificial neural network is a very 

complex process and that they lack in interpretability of 

variables weights, their use is justified in examples 

where rates of accuracy measures are much better in 

favor of NN methods, like in IVF predictions analysis. 

Although NN methods offer improved performance for 

making IVF predictions, it is necessary to consider that 

LR, as the traditional statistical method, could be better 

in this task. That study has a relatively limited sample of 

training and validation data.  

Before claiming that NN methods can overcome 

shortcomings and improve traditional statistical 

methods' prediction accuracy, it is necessary to compare 

several NN algorithms with more advanced statistical 

methods. For this purpose, several NN and statistical 

methods are evaluated and analyzed for prediction 

purposes in making forecasts. Comparisons of accuracy 

measures for several NN and statistical methods used in 

forecasting indicate that this can easily be the case. 

Statistical methods give better results for data 

preprocessed using seasonal adjustments, power 

transformations, and detrending in two out of three 

categories. 

Discovering the causes for weak NN performance 

includes comparing their accuracy with those of 

statistical methods, one series at a time, and describing 

the observed distinctions. Improving their accuracy 

means finding ways to improve learning efficiency with 

additional future information, including unknown errors. 

One is to iteratively divide the data set into parts to 

develop a simpler model (1/3). The second is for training 

to learn predicting remaining observations (2/3) until all 

available observations are used. Another way is to 

provide alternative forecasts and learn to select the most 

accurate one for each data series by minimizing errors, 

clustering the data into different categories or time series 

types, and building different models for each. The 

proposed techniques can lead to overfitting because of 

the time-series random nature, the capability of 

differentiating the valuable data patterns and the noise, 

and the fact that NN has non-linear nature and dynamic 

training.  

The summative conclusion is that ML and especially 

NN methods can be seriously considered a potential 

improvement for traditional statistical methods, despite 

their high design complexity. However, instead of their 

uncritical use, it is necessary to ensure that the used 

dataset is optimal in terms of size and availability of 

external data to validate the results and to carry out a 

detailed analysis of several ML and statistical methods 

using adequate performance measures. 
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