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Abstract: In this paper, we propose a new linear algorithm to tackle a specific class of unrelated machine scheduling 

problem, considered as an important real-life situation, which we called Batch Scheduling on Unrelated Machine (BSUM), 

where we have to schedule a batch of identical and non-preemptive jobs on unrelated parallel machines. The objective is to 

minimize the makespan (Cmax) of the whole schedule. For this, a mathematical formulation is made and a lower bound is 

computed based on the potential properties of the problem in order to reduce the search space size and thus accelerate the 

algorithm. Another property is also deducted to design our algorithm that solves this problem. The latter is considered as a 

particular case of RmCmax family problems known as strongly NP-hard, therefore, a polynomial reduction should realize a 

significant efficiency to treat them. As we will show, Batch BSUM is omnipresent in several kind of applications as 

manufacturing, transportation, logistic and routing. It is of major importance in several company activities. The problem 

complexity and the optimality of the algorithm are reported, proven and discussed. 
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1. Introduction  

In most cases, unrelated machine scheduling without 

preemption is considered among the hardest scheduling 

problems in the strong sense regarding their 

complicatedness and the astronomic number of 

candidate solutions especially when the number of jobs 

and machines are large enough. In the other hand, these 

kinds of problems are omnipresent in many company 

activities such as manufacturing, transportation, logistic 

and routing. Indeed, finding optimized machine 

schedules is an important and challenging task, as a 

large number of jobs need to be processed every day. 

They reveal a significant impact on the income of the 

company, especially when we need to minimize the last 

completion time known in scheduling field as 

makespan (Cmax). The problem treated in this work 

consists on a specific case of the class of problems 

denoted as Rm| |Cmax which is proved as strongly NP-

hard [5]. This case consists to schedule a batch of 

identical and non-preemptive jobs on unrelated 

machines which we have called Batch Scheduling on 

Unrelated Machine (BSUM) and we denoted as 

Rm|pij=pj|Cmax. Its resolution consists to find the 

optimal vector of job numbers to be assigned to the 

machines that minimize the makespan. A new linear 

algorithm is proposed, proven then implemented to 

tackle this problem. We aim to provide a tool that 

determine a polynomial reduction for the Rm||Cmax 

family problems to Rm|pij=pj|Cmax that is to contribute  

 

 
to tackle NP-complet scheduling problems under 

“divide and conquer” paradigm. Two potential 

properties of the problem will be stated then proven that 

allow to elaborate then prove our algorithm. The first 

property allows to find a lower bound of the optimal 

solution that is to reduce the search space size and thus 

the processing time of the algorithm. The second one 

leads to compute the optimal solution of the problem.  

In the rest of this paper, a related work is presented 

in section two, then we give a full description of the 

treated problem in section three. Section four is 

dedicated to expose the design, phases and complexity 

of our algorithm. Some comments and discussion are 

reported in section five. 

2. Related Work 

A significant amount of research on scheduling 

problems in general, and on those of unrelated 

machines has been studied extensively. Scheduling 

identical jobs on unrelated machines have been the 

subject of thorough research in the past, and two 

surveys by Allahverdi et al. [6] and Allahverdi [7] give 

an overview of the related literature. Relevant research 

in this type of problems includes approximation 

algorithms [4, 6, 8, 29] exact algorithms [16, 17, 20], 

mathematical programming techniques [14, 22, 25] 

optimization techniques [4, 8, 9, 23], and metaheuristic 

approaches [1, 18]. Mokotoff [21] and Pinedo [26] 

provides an extended survey for multiprocessor jobs 

problems in general. 
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The problems of scheduling on unrelated machines 

to minimize the makespan were also been well studied 

in the literature [5, 12, 19, 27]. Since this class of 

scheduling problems is known and proved as strongly 

NP-hard, all these works gave approximate algorithms 

[3] to solve them. in some work, just the case of two 

types of jobs is considered, Vakhania et al. [28] 

Hernandez presented a polynomial time algorithm. 

Ebenlendr et al. [10] elaborate a O(n2)-algorithm to 

tackle a special case of the class Rm||Cmax [2, 21]. 

Fanjul-Peyro and Ruiz [13]. Some research focus on the 

equal processing times of jobs [11, 15]. Munir et al. 

[24] propose novel approaches for Scheduling task 

graphs in heterogeneous distributed computing 

environment that tackle a similar problem. 

3. Problem Definition and Overview 

3.1. Problem Statement 

A batch of n identical and non-preemptive jobs to be 

scheduled on m unrelated parallel machines. The 

processing time of one job of the batch on the machine j 

is pj (assuming that pj is integer and pj>0); pj is the time 

spent by the machine j to proceed one job of the batch 

without preemption. That show that the speed of the 

machine j is inversely proportional to the processing 

time pj. We aim to find the schedule of these n jobs 

with minimum last completion time (makespan) Cmax. 

This scheduling problem can be denoted as 

Rm|pij=pj|Cmax. 

Below (Table 1) an instance of BSUM problem: 

Table 1. An instance of BSUM. 

n = 5 jobs ; m = 3 machines 

Machine j 1 2 3 

Processing time pj 5 10 8 

Since, in unrelated machine scheduling, each 

machine has its own speed vj=pij/pi, but in our case all 

jobs are identical, so the processing time pj determine 

the speed of the machine j. 

 Problem Formulation 

The resolution of this problem consists to dispatch the n 

jobs on the m machines such that Cmax is minimal. 

Therefore, the biggest task to do is to determine the 

number xj of jobs to be assigned to the machine j for 

j=1, m; thus, the solution of this problem can be 

represented as an integer vector x=(xj)j=1,m that describe 

this assignment. Hence the problem can be formulated 

as below: 

{
 
 

 
 
min𝑥∈𝑁𝑚 𝐶𝑚𝑎𝑥 = max(𝐶𝑗) =  max(𝑥𝑗𝑝𝑗) ;

𝑥 = (𝑥𝑗) ;  𝑗 = 1,𝑚

𝑠. 𝑡. 𝑥𝑗𝑝𝑗 ≤ 𝐶𝑚𝑎𝑥 ; 𝑥𝑗 𝑁 ;  𝑗 = 1,𝑚

∑ 𝑥𝑗 = 𝑛
𝑚
𝑗=1

 

Exhaustive research of the optimal solution amounts to 

seek all ways to partition the integer n as an 

arrangement of m integers whose sum is n.  

For the instance above, there are 21 different 

manners to dispatch the 5 jobs between 3 machines 

shown with their respective makespan (Table 2): 

Table 2. Exhaustive list of solutions. 

(5,0,0) 25 (1,4,0) 40 (4,1,0) 20 

(0,5,0) 50 (1,0,4) 32 (4,0,1) 20 

(0,0,5) 40 (0,1,4) 32 (0,4,1) 40 

(2,3,0) 30 (3,2,0) 20 (1,1,3) 24 

(2,0,3) 24 (3,0,2) 16 (1,3,1) 30 

(0,2,3) 24 (0,3,2) 30 (3,1,1) 15 

(2,1,2) 16 (2,2,1) 20 (1,2,2) 20 

The optimal solution is (3, 1, 1) with the makespan 

Cmax=15 represented in the diagram below (Figure 1): 

 
Machine 1 5 5 5 

Machine 2 10  
Machine 3 8  

Figure 1. Schedule diagram. 

Construct a solution to this problem consists to 

dispatch n jobs one by one between m machines, that 

leads to separate a sequence of n “1”s with (m-1) “,”s to 

form m subsequences then add the “1”s of each 

subsequence. 

Example: for n=5 and m=3 the sequence 111, 11 

define the solution (3,0,2); that means we assign 3 jobs 

to the first machine, any job to the second machine and 

2 jobs to the third machine and so on. 

Thus, the number of ways to dispatch n jobs between 

m machines equals to the number of ways to separate n 

“1”s by (m-1) “,”s ; therefore, the number of candidate 

solutions is: 𝐶𝑛+𝑚−1
𝑚−1 = 

(𝑛+𝑚−1)!

𝑛!×(𝑚−1)!
 , that explodes when 

n is big enough. 

 Example 

With n=5 jobs and m=3 machines, we have 𝐶7
2 =

21 different ways to dispatch 5 jobs on 3 machines as 

given above. For 100 jobs and 20 machines, the search 

space size becomes astronomic: 491037×1016 candidate 

solutions. Result: since 𝐶𝑛+𝑚−1
𝑚−1 ≈ 𝑂(2𝑛) , exhaustive 

algorithm still inefficient. It is why we have to look for 

a polynomial algorithm based on potential properties of 

the problem BSUM to solve it. 

3.2. Problem Properties 

 Property 1 

𝐿𝐵 = ⌈
𝑛

∑
1

𝑝𝑗

𝑚
𝑗=1

⌉ is a lower bound of Cmax for BSUM. 

 Proof 

From the constraints in the BSUM formulation, we 

have: 𝑥𝑗 ≤
𝐶𝑚𝑎𝑥

𝑝𝑗
. Hence: ∑ 𝑥𝑗

𝑚
𝑗=1 ≤ ∑

𝐶𝑚𝑎𝑥

𝑝𝑗

𝑚
𝑗=1  
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Thus: 𝑛 ≤ 𝐶𝑚𝑎𝑥 × ∑
1

𝑝𝑗

𝑚
𝑗=1  

Therefore: 𝐶𝑚𝑎𝑥 ≥
𝑛

∑
1

𝑝𝑗

𝑚
𝑗=1

  

Since Cmax is integer: Cmax≥LB  

That means: 

𝐿𝐵 =

{
 
 
 
 
 

 
 
 
 
  

𝑛

∑
1
𝑝𝑗

𝑚
𝑗=1

; 𝑖𝑓𝑛 𝑚𝑜𝑑𝑢𝑙𝑜 ∑
1

𝑝𝑗

𝑚

𝑗=1

= 0 

(𝑖. 𝑒.  𝑖𝑓 
𝑛

∑
1
𝑝𝑗

𝑚
𝑗=1

∈ 𝑁) ;

𝑛

∑
1
𝑝𝑗

𝑚
𝑗=1

+ 1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   ;

 

For the instance above: 𝐿𝐵 = ⌈
5

1

5
+
1

10
+
1

8

⌉ = 12. 

 Property 2 

The minimal value of Cmax for BSUM is the smallest 

multiple  of one of the integers pj that satisfy: 

∑ ⌊


𝑝𝑗
⌋ ≥ 𝑛𝑚

𝑗=1 . 

 Proof 

First, we have to prove that  exists. So, for a given 

instance (n;m;pj,j=1,m), there exists at least the 

makespan: n ×minj=1,m(pj) which is a multiple of one of 

the pj integers and satisfy ∑ ⌊


𝑝𝑗
⌋ ≥ 𝑛𝑚

𝑗=1  , that is when 

we assign all jobs to the fastest machine where the 

solution is in the form (0,….,0,n,0,..,0), therefore,  

exists. Assume that xj is the number of jobs to be 

proceeded by the machine j, the completion time Cj of 

the machine j is then Cj =xj ×pj. Since the makespan of 

the schedule is defined as Cmax=maxj=1,m(Cj); Thus: 

∃ 𝑖 ∈ [1,𝑚] ∶  = 𝑥 × 𝑝𝑖 ; 𝑥 ∈ 𝑁
∗.  

( is one among the Cj, 𝑗 = 1,𝑚). 

So,  is a multiple of one of the integers pj.  

Since  is a makespan of the schedule then: 

∀𝑗 ∈ [1,𝑚]: ≥ 𝑥𝑗 × 𝑝𝑗, Hence: ∀𝑗 ∈ [1,𝑚]: 


𝑝𝑗
≥ 𝑥𝑗 

By adding: ∑ ⌊


𝑝𝑗
⌋ ≥ ∑ 𝑥𝑗

𝑚
𝑗=1

𝑚
𝑗=1  ; ∑ ⌊



𝑝𝑗
⌋ ≥ 𝑛𝑚

𝑗=1  

In the other hand =minj=1,m(Cmax), so  is the 

smallest multiple of one the integers pj that satisfy: 

∑ ⌊


𝑝𝑗
⌋ ≥ 𝑛𝑚

𝑗=1 . 

From these two properties, we deduct the following 

corollary: 

 Corollary 

The minimal value of Cmax for BSUM is the smallest 

multiple  of one the integers pj that satisfy: 

∑ ⌊


𝑝𝑗
⌋ ≥ 𝑛𝑚

𝑗=1  and  ≥
𝑛

∑
1

𝑝𝑗

𝑚
𝑗=1

. 

These two properties allow to find the makespan and 

the optimal solution in polynomial time. The property 

(1) implies that the search start from LB, the property 

(2) implies that we have to look for the smallest 

multiple of one the processing time pj that is the last 

completion time in the schedule.  

4. Algorithm Description 

In this section we will describe and discuss all phases 

of our proposed linear algorithm for solving BSUM. 

This approach consists of three phases: 

The first phase is computing lower bound of the 

makespan. Based on the property (1) above we 

elaborate the Algorithm (1) below:  

Algorithm 1:  Int LB(int n ; int m ; int[] p) 

 # Computing the lower bound LB. 

# Input: number of jobs n, number of machines m and the 

respective processing time table p[]. 

# Output : LB. 

     { 

sum = 1 / p[0] 

for ( j = 1 to m-1) 

     sum = sum+ 1 / p[j]  

If ( n mod s = 0 )  

     Return (n / sum) 

else 

     return LB=((int)(n / sum) + 1) 

     }  

It is clear that this algorithm is linear, in O(m). 

The second step consists to compute the makespan 

based on the property (2) of BSUM. The main idea is as 

follow: starting from the LB computed in the Algorithm 

(1) above, we seek progressively for the multiple of the 

integers pj that satisfy the property (2), whence the 

Algorithm (2) below: 

Algorithm 2: Int MinCmax(Int n ; Int m ; Int[] p) 

# Computing the makespan min Cmax. 

# Input: number of jobs n, number of machines m and the 

respective processing time table p[]. 

# Output: min Cmax. 

{  

     Cmax = LB( n , m , p[]) ; # call LB function 

     SumQ = 0 # Sum of Quotients 

     while (True) 

    { 

         for (j = 0 to m-1) 

            if (Cmax Mod p[j]) = 0) break # exit for 

         if (j <= m)  

        { 

           SumQ = Cmax / p[0] 

           for ( j = 1 to m-1)  

                     SumQ = SumQ  + Cmax / p[j]  

           if (SumQuotients >= n)  

                      Return MinCmax = Cmax  # exit while 

         } 

    Cmax = Cmax +1  

 } 
     } 
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Once the LB is computed, we can assign 𝑥𝑗
0 = ⌊

𝐿𝐵

𝑝𝑗
⌋ 

jobs to the machine j to construct the initial solution 

𝑥0=(𝑥𝑗
0) where ∑ 𝑥𝑗

0 ≤ 𝑛.𝑚
𝑗=1   

If ( ∑ 𝑥𝑗
0 = 𝑛𝑚

𝑗=1 )  then 𝑥0  is the optimal solution 

and LB =min Cmax.  

If ( ∑ 𝑥𝑗
0 < 𝑛𝑚

𝑗=1 )  then 𝑥0  is not feasible solution 

and LB < min Cmax, we will have to assign the 

remaining jobs not yet assigned whose the number is: =

 𝑛 − ∑ ⌊
𝐿𝐵

𝑝𝑗
⌋𝑚

𝑗=1  . As upper bound, we can assign them 

to the fastest machine (i.e., the machine with min(pj)), 

so there exists a feasible solution x with: 

Cmax=LB+r×min(pi). (x may be not optimal). 

Therefore, this algorithm terminates and converges 

because  exists as proven in property (2). 

The while loop makes at most r iterations as much as 

the two inner successive loops are in O(m). Therefore, 

In the worst case, the Algorithm (2) is in O(rm) (that is 

when Cmax= Cmax=LB+r×minj=1,m(pi)). 

By replacing LB by its value in the expression of r, 

we find r≈ 𝑚. Since, in practice m<<n, say m ≈ c. 𝑛 

(c<1) this algorithm is at least in O( n). 

The third step consists to find the optimal solution 

using the second part of the property (2), the optimal 

solution is a vector x=(xj)j=1,m that describe the 

assignment of the n jobs to the m machines; that is done 

by dividing Cmax respectively by the processing times 

pj, that means assigning the n jobs to the m machines 

one by one. The number of jobs assigned to the 

machine j is 𝑥𝑗 = 
𝐶𝑚𝑎𝑥

𝑝𝑗
 (the quotient of Cmax by pj), as 

shown in the Algorithm (3) below: 

Algorithm 3: Int[] Solution (Int n; Int m; Int[] p; Int Cmax ;) 

#Finding an optimal solution. 

#Input: number of jobs n, number of machines m, the 

respective processing time table p[].  

#Output: schedule of jobs (x m-vector of jobs number 

assigned to the m machines) and Cmax. 

{ 

    Int Sol (m) 

    Int AllJobs = 0  

    for (machine = 0 to m-1) 

    { 

         Sol [machine]=0 

         for (Jobs=1 to Cmax / p[machine])  

 { 

  Sol[machine]++ 

  AllJobs = AllJobs+1 

  if (AllJobs = n) return Solution = Sol 

 } 

      } 

  } 

In order to show the algorithm efficiency, we have 

implemented it with the interface shown in the figure 

bellow (Figure 2). The data instances are generated 

randomly, that allow us to introduce instances with big 

size (large number of jobs and/or machines). For each 

case of these two dimensions, ten instances are 

generated. The algorithm has been implemented in the 

C programming language and compiled with gcc 

version 4.8.2. The computational experiments have 

been performed on one core of a system with Intel Core 

i5-4210U processor at 1.7 GHz and 10 GB of RAM 

under a Linux OS.  

 

Figure 2. Implementation interface. 

In order to show the efficiency and the robustness of 

our algorithm a set of random input data is generated 

using our own random generator that is to run the 

algorithms with same input. The following 

experimental settings is used: 

# of jobs n {50,100,500,1000,10000,100000}; 

# of machines m {n/20 , n/10 , n/5}; 

instance k  [1,10] . 

Processing time pj: random integer in the range [1, 

20]. Following an example of results fo 10 instances for 

the set n=1000 and m=100 (Table 3). 

Table 3. results for n=1000 and m=100. 

instance Time (ms) Cmax 

1 76  70 

2 65  72 

3 73  52 

4 74  72 

5 75  60 

6 76  52 

7 86  57 

8 71  60 

9 71  54 

10 72  72 

Average  73.9  

The algorithm was run for all the data set, then we 

have constructed the curve representing the CPU time 

average in terms of n for each case of m values (Figure 

3). 

 

 

Figure 3. Average CPU time in terms of n.  

This curve shows clearly the linearity of the 
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algorithm complexity whatever the choice of m.  

 Comparison with other Exact Approaches 

As we are about to discuss exact approaches, where the 
optimality must be formally proven, we have compared 
our algorithm to the exact ones elaborated for the same 
problem found in the literature. the results are 
summarized in the Table 3 below. All these cases are 
reported in several papers and formally proven. Some 
of them was served to measure and justify the 
efficiency of heuristics [5, 7].  

Table 3. Comparison with other algorithms. 

Approach Complexity 

Linear Assignment O(mn2) 

Dynamic Programming O(mn2m + 1) 

Integer Linear Programming O(n log m) 

Linear programming relaxation O(n +mlogm) 

Note that, the least expensive metaheuristic as 

simulated annealing will make not less than O(n2) time 

to give just a good approximate solution (the number of 

iteration must at least be linear in n and the 

computation of a solution neighbour costs O(n) . 

5. Conclusions 

In this paper, a new algorithm was proposed then 

implemented for solving a specific class of unrelated 

machine scheduling problem where we have to 

schedule a batch of same jobs on unrelated machines 

which we have called BSUM. The algorithm is 

designed based on the potential properties of the 

problem. We showed that this algorithm is quadratic 

complexity in worse case. For this, a mathematical 

formulation is made and a lower bound is computed 

based on the potential properties of the problem in 

order to reduce the search space size and thus accelerate 

the algorithm. Another property is also deducted to 

design our algorithm that solves this problem. The latter 

is considered as a particular case of Rm| |Cmax family 

problems known as strongly NP-hard, therefore, a 

polynomial reduction should realize a significant 

efficiency to treat these problems. As we will show, 

BSUM is omnipresent in several kind of applications as 

manufacturing, transportation, logistic and routing. it is 

of major importance in many company activities. The 

problem complexity and the optimality of the algorithm 

are reported, proven and discussed.  
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