
618 The International Arab Journal of Information Technology, Vol. 20, No. 4, July 2023

Exact Algorithm for Batch Scheduling on

Unrelated Machine

Hemmak Allaoua

Department of Computer Science, Mohamed Boudiaf University,

Laboratory of Informatics and its Applications of M'sila, Algeria

allaoua.hemmak@univ-msila.dz

Abstract: In this paper, we propose a new linear algorithm to tackle a specific class of unrelated machine scheduling

problem, considered as an important real-life situation, which we called Batch Scheduling on Unrelated Machine (BSUM),

where we have to schedule a batch of identical and non-preemptive jobs on unrelated parallel machines. The objective is to

minimize the makespan (Cmax) of the whole schedule. For this, a mathematical formulation is made and a lower bound is

computed based on the potential properties of the problem in order to reduce the search space size and thus accelerate the

algorithm. Another property is also deducted to design our algorithm that solves this problem. The latter is considered as a

particular case of RmCmax family problems known as strongly NP-hard, therefore, a polynomial reduction should realize a

significant efficiency to treat them. As we will show, Batch BSUM is omnipresent in several kind of applications as

manufacturing, transportation, logistic and routing. It is of major importance in several company activities. The problem

complexity and the optimality of the algorithm are reported, proven and discussed.

Keywords: Scheduling, unrelated machine, exact method, parallel machine, batch scheduling.

Received September 9, 2022; accepted May 4, 2023

https://doi.org/10.34028/iajit/20/4/8

1. Introduction

In most cases, unrelated machine scheduling without

preemption is considered among the hardest scheduling

problems in the strong sense regarding their

complicatedness and the astronomic number of

candidate solutions especially when the number of jobs

and machines are large enough. In the other hand, these

kinds of problems are omnipresent in many company

activities such as manufacturing, transportation, logistic

and routing. Indeed, finding optimized machine

schedules is an important and challenging task, as a

large number of jobs need to be processed every day.

They reveal a significant impact on the income of the

company, especially when we need to minimize the last

completion time known in scheduling field as

makespan (Cmax). The problem treated in this work

consists on a specific case of the class of problems

denoted as Rm| |Cmax which is proved as strongly NP-

hard [5]. This case consists to schedule a batch of

identical and non-preemptive jobs on unrelated

machines which we have called Batch Scheduling on

Unrelated Machine (BSUM) and we denoted as

Rm|pij=pj|Cmax. Its resolution consists to find the

optimal vector of job numbers to be assigned to the

machines that minimize the makespan. A new linear

algorithm is proposed, proven then implemented to

tackle this problem. We aim to provide a tool that

determine a polynomial reduction for the Rm||Cmax

family problems to Rm|pij=pj|Cmax that is to contribute

to tackle NP-complet scheduling problems under

“divide and conquer” paradigm. Two potential

properties of the problem will be stated then proven that

allow to elaborate then prove our algorithm. The first

property allows to find a lower bound of the optimal

solution that is to reduce the search space size and thus

the processing time of the algorithm. The second one

leads to compute the optimal solution of the problem.

In the rest of this paper, a related work is presented

in section two, then we give a full description of the

treated problem in section three. Section four is

dedicated to expose the design, phases and complexity

of our algorithm. Some comments and discussion are

reported in section five.

2. Related Work

A significant amount of research on scheduling

problems in general, and on those of unrelated

machines has been studied extensively. Scheduling

identical jobs on unrelated machines have been the

subject of thorough research in the past, and two

surveys by Allahverdi et al. [6] and Allahverdi [7] give

an overview of the related literature. Relevant research

in this type of problems includes approximation

algorithms [4, 6, 8, 29] exact algorithms [16, 17, 20],

mathematical programming techniques [14, 22, 25]

optimization techniques [4, 8, 9, 23], and metaheuristic

approaches [1, 18]. Mokotoff [21] and Pinedo [26]

provides an extended survey for multiprocessor jobs

problems in general.

mailto:allaoua.hemmak@univ-msila.dz
https://doi.org/10.34028/iajit/20/4/8

Exact Algorithm for Batch Scheduling on Unrelated Machine 619

The problems of scheduling on unrelated machines

to minimize the makespan were also been well studied

in the literature [5, 12, 19, 27]. Since this class of

scheduling problems is known and proved as strongly

NP-hard, all these works gave approximate algorithms

[3] to solve them. in some work, just the case of two

types of jobs is considered, Vakhania et al. [28]

Hernandez presented a polynomial time algorithm.

Ebenlendr et al. [10] elaborate a O(n2)-algorithm to

tackle a special case of the class Rm||Cmax [2, 21].

Fanjul-Peyro and Ruiz [13]. Some research focus on the

equal processing times of jobs [11, 15]. Munir et al.

[24] propose novel approaches for Scheduling task

graphs in heterogeneous distributed computing

environment that tackle a similar problem.

3. Problem Definition and Overview

3.1. Problem Statement

A batch of n identical and non-preemptive jobs to be

scheduled on m unrelated parallel machines. The

processing time of one job of the batch on the machine j

is pj (assuming that pj is integer and pj>0); pj is the time

spent by the machine j to proceed one job of the batch

without preemption. That show that the speed of the

machine j is inversely proportional to the processing

time pj. We aim to find the schedule of these n jobs

with minimum last completion time (makespan) Cmax.

This scheduling problem can be denoted as

Rm|pij=pj|Cmax.

Below (Table 1) an instance of BSUM problem:

Table 1. An instance of BSUM.

n = 5 jobs ; m = 3 machines

Machine j 1 2 3

Processing time pj 5 10 8

Since, in unrelated machine scheduling, each

machine has its own speed vj=pij/pi, but in our case all

jobs are identical, so the processing time pj determine

the speed of the machine j.

 Problem Formulation

The resolution of this problem consists to dispatch the n

jobs on the m machines such that Cmax is minimal.

Therefore, the biggest task to do is to determine the

number xj of jobs to be assigned to the machine j for

j=1, m; thus, the solution of this problem can be

represented as an integer vector x=(xj)j=1,m that describe

this assignment. Hence the problem can be formulated

as below:

{

min𝑥∈𝑁𝑚 𝐶𝑚𝑎𝑥 = max(𝐶𝑗) = max(𝑥𝑗𝑝𝑗) ;

𝑥 = (𝑥𝑗) ; 𝑗 = 1,𝑚

𝑠. 𝑡. 𝑥𝑗𝑝𝑗 ≤ 𝐶𝑚𝑎𝑥 ; 𝑥𝑗 𝑁 ; 𝑗 = 1,𝑚

∑ 𝑥𝑗 = 𝑛
𝑚
𝑗=1

Exhaustive research of the optimal solution amounts to

seek all ways to partition the integer n as an

arrangement of m integers whose sum is n.

For the instance above, there are 21 different

manners to dispatch the 5 jobs between 3 machines

shown with their respective makespan (Table 2):

Table 2. Exhaustive list of solutions.

(5,0,0) 25 (1,4,0) 40 (4,1,0) 20

(0,5,0) 50 (1,0,4) 32 (4,0,1) 20

(0,0,5) 40 (0,1,4) 32 (0,4,1) 40

(2,3,0) 30 (3,2,0) 20 (1,1,3) 24

(2,0,3) 24 (3,0,2) 16 (1,3,1) 30

(0,2,3) 24 (0,3,2) 30 (3,1,1) 15

(2,1,2) 16 (2,2,1) 20 (1,2,2) 20

The optimal solution is (3, 1, 1) with the makespan

Cmax=15 represented in the diagram below (Figure 1):

Machine 1 5 5 5

Machine 2 10
Machine 3 8

Figure 1. Schedule diagram.

Construct a solution to this problem consists to

dispatch n jobs one by one between m machines, that

leads to separate a sequence of n “1”s with (m-1) “,”s to

form m subsequences then add the “1”s of each

subsequence.

Example: for n=5 and m=3 the sequence 111, 11

define the solution (3,0,2); that means we assign 3 jobs

to the first machine, any job to the second machine and

2 jobs to the third machine and so on.

Thus, the number of ways to dispatch n jobs between

m machines equals to the number of ways to separate n

“1”s by (m-1) “,”s ; therefore, the number of candidate

solutions is: 𝐶𝑛+𝑚−1
𝑚−1 =

(𝑛+𝑚−1)!

𝑛!×(𝑚−1)!
 , that explodes when

n is big enough.

 Example

With n=5 jobs and m=3 machines, we have 𝐶7
2 =

21 different ways to dispatch 5 jobs on 3 machines as

given above. For 100 jobs and 20 machines, the search

space size becomes astronomic: 491037×1016 candidate

solutions. Result: since 𝐶𝑛+𝑚−1
𝑚−1 ≈ 𝑂(2𝑛) , exhaustive

algorithm still inefficient. It is why we have to look for

a polynomial algorithm based on potential properties of

the problem BSUM to solve it.

3.2. Problem Properties

 Property 1

𝐿𝐵 = ⌈
𝑛

∑
1

𝑝𝑗

𝑚
𝑗=1

⌉ is a lower bound of Cmax for BSUM.

 Proof

From the constraints in the BSUM formulation, we

have: 𝑥𝑗 ≤
𝐶𝑚𝑎𝑥

𝑝𝑗
. Hence: ∑ 𝑥𝑗

𝑚
𝑗=1 ≤ ∑

𝐶𝑚𝑎𝑥

𝑝𝑗

𝑚
𝑗=1

620 The International Arab Journal of Information Technology, Vol. 20, No. 4, July 2023

Thus: 𝑛 ≤ 𝐶𝑚𝑎𝑥 × ∑
1

𝑝𝑗

𝑚
𝑗=1

Therefore: 𝐶𝑚𝑎𝑥 ≥
𝑛

∑
1

𝑝𝑗

𝑚
𝑗=1

Since Cmax is integer: Cmax≥LB

That means:

𝐿𝐵 =

{

𝑛

∑
1
𝑝𝑗

𝑚
𝑗=1

; 𝑖𝑓𝑛 𝑚𝑜𝑑𝑢𝑙𝑜 ∑
1

𝑝𝑗

𝑚

𝑗=1

= 0

(𝑖. 𝑒. 𝑖𝑓
𝑛

∑
1
𝑝𝑗

𝑚
𝑗=1

∈ 𝑁) ;

𝑛

∑
1
𝑝𝑗

𝑚
𝑗=1

+ 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ;

For the instance above: 𝐿𝐵 = ⌈
5

1

5
+
1

10
+
1

8

⌉ = 12.

 Property 2

The minimal value of Cmax for BSUM is the smallest

multiple  of one of the integers pj that satisfy:

∑ ⌊


𝑝𝑗
⌋ ≥ 𝑛𝑚

𝑗=1 .

 Proof

First, we have to prove that  exists. So, for a given

instance (n;m;pj,j=1,m), there exists at least the

makespan: n ×minj=1,m(pj) which is a multiple of one of

the pj integers and satisfy ∑ ⌊


𝑝𝑗
⌋ ≥ 𝑛𝑚

𝑗=1 , that is when

we assign all jobs to the fastest machine where the

solution is in the form (0,….,0,n,0,..,0), therefore, 

exists. Assume that xj is the number of jobs to be

proceeded by the machine j, the completion time Cj of

the machine j is then Cj =xj ×pj. Since the makespan of

the schedule is defined as Cmax=maxj=1,m(Cj); Thus:

∃ 𝑖 ∈ [1,𝑚] ∶  = 𝑥 × 𝑝𝑖 ; 𝑥 ∈ 𝑁
∗.

( is one among the Cj, 𝑗 = 1,𝑚).

So,  is a multiple of one of the integers pj.

Since  is a makespan of the schedule then:

∀𝑗 ∈ [1,𝑚]: ≥ 𝑥𝑗 × 𝑝𝑗, Hence: ∀𝑗 ∈ [1,𝑚]:


𝑝𝑗
≥ 𝑥𝑗

By adding: ∑ ⌊


𝑝𝑗
⌋ ≥ ∑ 𝑥𝑗

𝑚
𝑗=1

𝑚
𝑗=1 ; ∑ ⌊



𝑝𝑗
⌋ ≥ 𝑛𝑚

𝑗=1

In the other hand =minj=1,m(Cmax), so  is the

smallest multiple of one the integers pj that satisfy:

∑ ⌊


𝑝𝑗
⌋ ≥ 𝑛𝑚

𝑗=1 .

From these two properties, we deduct the following

corollary:

 Corollary

The minimal value of Cmax for BSUM is the smallest

multiple  of one the integers pj that satisfy:

∑ ⌊


𝑝𝑗
⌋ ≥ 𝑛𝑚

𝑗=1 and  ≥
𝑛

∑
1

𝑝𝑗

𝑚
𝑗=1

.

These two properties allow to find the makespan and

the optimal solution in polynomial time. The property

(1) implies that the search start from LB, the property

(2) implies that we have to look for the smallest

multiple of one the processing time pj that is the last

completion time in the schedule.

4. Algorithm Description

In this section we will describe and discuss all phases

of our proposed linear algorithm for solving BSUM.

This approach consists of three phases:

The first phase is computing lower bound of the

makespan. Based on the property (1) above we

elaborate the Algorithm (1) below:

Algorithm 1: Int LB(int n ; int m ; int[] p)

 # Computing the lower bound LB.

Input: number of jobs n, number of machines m and the

respective processing time table p[].

Output : LB.

 {

sum = 1 / p[0]

for (j = 1 to m-1)

 sum = sum+ 1 / p[j]

If (n mod s = 0)

 Return (n / sum)

else

 return LB=((int)(n / sum) + 1)

 }

It is clear that this algorithm is linear, in O(m).

The second step consists to compute the makespan

based on the property (2) of BSUM. The main idea is as

follow: starting from the LB computed in the Algorithm

(1) above, we seek progressively for the multiple of the

integers pj that satisfy the property (2), whence the

Algorithm (2) below:

Algorithm 2: Int MinCmax(Int n ; Int m ; Int[] p)

Computing the makespan min Cmax.

Input: number of jobs n, number of machines m and the

respective processing time table p[].

Output: min Cmax.

{

 Cmax = LB(n , m , p[]) ; # call LB function

 SumQ = 0 # Sum of Quotients

 while (True)

 {

 for (j = 0 to m-1)

 if (Cmax Mod p[j]) = 0) break # exit for

 if (j <= m)

 {

 SumQ = Cmax / p[0]

 for (j = 1 to m-1)

 SumQ = SumQ + Cmax / p[j]

 if (SumQuotients >= n)

 Return MinCmax = Cmax # exit while

 }

 Cmax = Cmax +1

 }
 }

Exact Algorithm for Batch Scheduling on Unrelated Machine 621

Once the LB is computed, we can assign 𝑥𝑗
0 = ⌊

𝐿𝐵

𝑝𝑗
⌋

jobs to the machine j to construct the initial solution

𝑥0=(𝑥𝑗
0) where ∑ 𝑥𝑗

0 ≤ 𝑛.𝑚
𝑗=1

If (∑ 𝑥𝑗
0 = 𝑛𝑚

𝑗=1) then 𝑥0 is the optimal solution

and LB =min Cmax.

If (∑ 𝑥𝑗
0 < 𝑛𝑚

𝑗=1) then 𝑥0 is not feasible solution

and LB < min Cmax, we will have to assign the

remaining jobs not yet assigned whose the number is: =

 𝑛 − ∑ ⌊
𝐿𝐵

𝑝𝑗
⌋𝑚

𝑗=1 . As upper bound, we can assign them

to the fastest machine (i.e., the machine with min(pj)),

so there exists a feasible solution x with:

Cmax=LB+r×min(pi). (x may be not optimal).

Therefore, this algorithm terminates and converges

because  exists as proven in property (2).

The while loop makes at most r iterations as much as

the two inner successive loops are in O(m). Therefore,

In the worst case, the Algorithm (2) is in O(rm) (that is

when Cmax= Cmax=LB+r×minj=1,m(pi)).

By replacing LB by its value in the expression of r,

we find r≈ 𝑚. Since, in practice m<<n, say m ≈ c. 𝑛

(c<1) this algorithm is at least in O(n).

The third step consists to find the optimal solution

using the second part of the property (2), the optimal

solution is a vector x=(xj)j=1,m that describe the

assignment of the n jobs to the m machines; that is done

by dividing Cmax respectively by the processing times

pj, that means assigning the n jobs to the m machines

one by one. The number of jobs assigned to the

machine j is 𝑥𝑗 =
𝐶𝑚𝑎𝑥

𝑝𝑗
 (the quotient of Cmax by pj), as

shown in the Algorithm (3) below:

Algorithm 3: Int[] Solution (Int n; Int m; Int[] p; Int Cmax ;)

#Finding an optimal solution.

#Input: number of jobs n, number of machines m, the

respective processing time table p[].

#Output: schedule of jobs (x m-vector of jobs number

assigned to the m machines) and Cmax.

{

 Int Sol (m)

 Int AllJobs = 0

 for (machine = 0 to m-1)

 {

 Sol [machine]=0

 for (Jobs=1 to Cmax / p[machine])

 {

 Sol[machine]++

 AllJobs = AllJobs+1

 if (AllJobs = n) return Solution = Sol

 }

 }

 }

In order to show the algorithm efficiency, we have

implemented it with the interface shown in the figure

bellow (Figure 2). The data instances are generated

randomly, that allow us to introduce instances with big

size (large number of jobs and/or machines). For each

case of these two dimensions, ten instances are

generated. The algorithm has been implemented in the

C programming language and compiled with gcc

version 4.8.2. The computational experiments have

been performed on one core of a system with Intel Core

i5-4210U processor at 1.7 GHz and 10 GB of RAM

under a Linux OS.

Figure 2. Implementation interface.

In order to show the efficiency and the robustness of

our algorithm a set of random input data is generated

using our own random generator that is to run the

algorithms with same input. The following

experimental settings is used:

of jobs n {50,100,500,1000,10000,100000};

of machines m {n/20 , n/10 , n/5};

instance k  [1,10] .

Processing time pj: random integer in the range [1,

20]. Following an example of results fo 10 instances for

the set n=1000 and m=100 (Table 3).

Table 3. results for n=1000 and m=100.

instance Time (ms) Cmax

1 76 70

2 65 72

3 73 52

4 74 72

5 75 60

6 76 52

7 86 57

8 71 60

9 71 54

10 72 72

Average 73.9

The algorithm was run for all the data set, then we

have constructed the curve representing the CPU time

average in terms of n for each case of m values (Figure

3).

Figure 3. Average CPU time in terms of n.

This curve shows clearly the linearity of the

622 The International Arab Journal of Information Technology, Vol. 20, No. 4, July 2023

algorithm complexity whatever the choice of m.

 Comparison with other Exact Approaches

As we are about to discuss exact approaches, where the
optimality must be formally proven, we have compared
our algorithm to the exact ones elaborated for the same
problem found in the literature. the results are
summarized in the Table 3 below. All these cases are
reported in several papers and formally proven. Some
of them was served to measure and justify the
efficiency of heuristics [5, 7].

Table 3. Comparison with other algorithms.

Approach Complexity

Linear Assignment O(mn2)

Dynamic Programming O(mn2m + 1)

Integer Linear Programming O(n log m)

Linear programming relaxation O(n +mlogm)

Note that, the least expensive metaheuristic as

simulated annealing will make not less than O(n2) time

to give just a good approximate solution (the number of

iteration must at least be linear in n and the

computation of a solution neighbour costs O(n) .

5. Conclusions

In this paper, a new algorithm was proposed then

implemented for solving a specific class of unrelated

machine scheduling problem where we have to

schedule a batch of same jobs on unrelated machines

which we have called BSUM. The algorithm is

designed based on the potential properties of the

problem. We showed that this algorithm is quadratic

complexity in worse case. For this, a mathematical

formulation is made and a lower bound is computed

based on the potential properties of the problem in

order to reduce the search space size and thus accelerate

the algorithm. Another property is also deducted to

design our algorithm that solves this problem. The latter

is considered as a particular case of Rm| |Cmax family

problems known as strongly NP-hard, therefore, a

polynomial reduction should realize a significant

efficiency to treat these problems. As we will show,

BSUM is omnipresent in several kind of applications as

manufacturing, transportation, logistic and routing. it is

of major importance in many company activities. The

problem complexity and the optimality of the algorithm

are reported, proven and discussed.

References

[1] Adan J., Adan I., Akcay A., Van den

Dobbelsteen R., and Stokkermans J., “A Hybrid

Genetic Algorithm for Parallel Machine

Scheduling At Semiconductor Back-End

Production,” in Proceedings of the International

Conference on Automated Planning and

Scheduling,, vol. 28, pp. 298-302, 2018.

DOI: https://doi.org/10.1609/icaps.v28i1.13913

[2] Afzalirad M. and Rezaeian J., “A Realistic

Variant of Bi-Objective Unrelated Parallel

Machine Scheduling Problem: NSGA-II and

MOACO Approaches,” Applied Soft Computing,

vol. 50, pp. 109-123, 2017.

https://doi.org/10.1016/j.asoc.2016.10.039

[3] Afzalirad M. and Shafipour M., “Design of An

Efficient Genetic Algorithm for Resource-

Constrained Unrelated Parallel Machine

Scheduling Problem with Machine Eligibility

Restrictions,” Journal of Intelligent

Manufacturing, vol. 29, no. 2, pp. 423-437, 2018.

DOI:10.1007/s10845-015-1117-6

[4] Afzalirad M. and Rezaeian J., “Resource-

Constrained Unrelated Parallel Machine

Scheduling Problem With Sequence Dependent

Setup Times, Precedence Constraints and

Machine Eligibility Restrictions,” Computers and

Industrial Engineering, vol. 98, pp. 40-52, 2016.

https://doi.org/10.1016/j.cie.2016.05.020

[5] Allahverdi A., “The Third Comprehensive

Survey on Scheduling Problems with Setup

Times/Costs,” European Journal of Operational

Research, vol. 246, no. 2, pp. 345-378, 2015.

https://doi.org/10.1016/j.ejor.2015.04.004

[6] Allahverdi A., Ng C., Cheng T., Kovalyov M.,

“A Survey of Scheduling Problems with Setup

Times or Costs,” European Journal of

Operational Research, vol. 187, no. 3, pp. 985-

1032, 2008.

https://doi.org/10.1016/j.ejor.2006.06.060

[7] Allahverdi A., “The Third Comprehensive

Survey on Scheduling Problems with Setup

Times/Costs,” European Journal of Operational

Research, vol. 246, no. 2, pp. 345-378, 2015.

https://doi.org/10.1016/j.ejor.2015.04.004

[8] Chen Z., “Parallel Machine Scheduling with

Time Dependent Processing Times,” Discrete

Applied Mathematics, vol. 70, no. 1, pp. 81-93,

1996. https://doi.org/10.1016/0166-

218X(96)00102-3

[9] Cheng T., Ding Q., and Lin B., “A Concise

Survey of Scheduling with Time-Dependent

Processing Times,” Discrete Applied

Mathematics, vol. 152, no. 1, pp. 1-13, 2004.

https://doi.org/10.1016/0166-218X(96)00102-3

[10] Ebenlendr T., Kral M., and Sgall J., “Graph

Balancing: A Special Case of Scheduling

Unrelated Parallel Machines,” in Proceedings of

the nineteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, San Francisco, pp. 483-490,

2008. DOI:10.1145/1347082.1347135

[11] Fanjul-Peyro L. and Ruiz R., “Iterated Greedy

Local Search Methods for Unrelated Parallel

Machine Scheduling,” European Journal of

Operational Research, vol. 207, no. 1, pp. 55-69,

2010. https://doi.org/10.1016/j.ejor.2010.03.030

[12] Fanjul-Peyro L. and Ruiz R., “Scheduling

https://doi.org/10.1609/icaps.v28i1.13913
https://doi.org/10.1016/j.asoc.2016.10.039
http://dx.doi.org/10.1007/s10845-015-1117-6
https://doi.org/10.1016/j.cie.2016.05.020
https://doi.org/10.1016/j.ejor.2015.04.004
https://doi.org/10.1016/j.ejor.2006.06.060
https://doi.org/10.1016/j.ejor.2015.04.004
https://doi.org/10.1016/0166-218X(96)00102-3
https://doi.org/10.1016/0166-218X(96)00102-3
https://www.sciencedirect.com/journal/discrete-applied-mathematics
https://www.sciencedirect.com/journal/discrete-applied-mathematics
https://doi.org/10.1016/0166-218X(96)00102-3
http://dx.doi.org/10.1145/1347082.1347135
https://www.sciencedirect.com/journal/european-journal-of-operational-research
https://www.sciencedirect.com/journal/european-journal-of-operational-research
https://doi.org/10.1016/j.ejor.2010.03.030

Exact Algorithm for Batch Scheduling on Unrelated Machine 623

Unrelated Parallel Machines with Optional

Machines and Jobs Selection,” Computers and

Operations Research, vol. 39, no. 7, pp. 1745-

1753, 2012.

https://doi.org/10.1016/j.cor.2011.10.012

[13] Fanjul-Peyro L. and Ruiz R., “Size-Reduction

Heuristics for the Unrelated Parallel Machines

Scheduling Problem,” Computers and

Operations Research, vol. 38, no. 1, pp. 301-309,

2011. https://doi.org/10.1016/j.cor.2010.05.005

[14] Gawiejnowicz S., Time-Dependent Scheduling,

Springer, 2008.

[15] Goldwasser M. and Pedigo M., “Online, Non-

Preemptive Scheduling of Equal-Length Jobs on

Two Identical Machines,” in Proceedings of the

10th Scandinavian Workshop on Algorithm

Theory (SWAT), Riga, pp. 113-123, 2006.

[16] Ji M. and Cheng T., “Parallel-Machine

Scheduling of Simple Linear Deteriorating Jobs,”

Theoretical Computer Science, vol. 410, no. 38,

pp. 3761-3768, 2009.

https://doi.org/10.1016/j.tcs.2009.04.018

[17] Kononov A. and Gawiejnowicz S., “Np-Hard

Cases in Scheduling Deteriorating Jobs on

Dedicated Machines,” The Journal of the

Operational Research Society, vol. 52, no. 6, pp.

708-717, 2001.

https://www.jstor.org/stable/254283

[18] Kravchenko S. and Werner F., “Parallel Machine

Problems with Equal Processing Times: A

Survey,” Journal of Scheduling, vol. 14, pp. 435-

444, 2011. DOI:10.1007/s10951-011-0231-3

[19] Lenstra J., Shmoys D., and Tardos E.,

“Approximation Algorithms for Scheduling

Unrelated Parallel Machines,” Mathematical

Programming, vol. 46, pp. 259-271, 1990.

[20] Li S. and Yuan J., “Parallel-Machine Scheduling

with Deteriorating Jobs and Rejection,”

Theoretical Computer Science, vol. 411, no. 40,

pp. 3642-3650, 2010.

https://doi.org/10.1016/j.tcs.2010.06.008

[21] Mokotoff E., “Parallel Machine Scheduling

Problems: A Survey,” Asia-Pacific Journal of

Operational Research, vol. 18, no. 2, pp. 193-

202, 2001.

[22] Moser M., Musliu N., Schaerf A., and Winter F.,

“Exact and Metaheuristic Approaches for

Unrelated Parallel Machine Scheduling,” Journal

of Scheduling, vol. 25, no. 5, pp. 507-534, 2022.

https://doi.org/10.1007/s10951-021-00714-6

[23] Mosheiov G., “Multi-Machine Scheduling with

Linear Deterioration,” Information Systems and

Operational Research, vol. 36, no. 4, pp. 205-

214, 1998.

https://doi.org/10.1080/03155986.1998.11732359

[24] Munir E., Ijaz S., Anjum S., Khan A., Anwar W.,

and Nisar W., “Novel Approaches for Scheduling

Task Graphs in Heterogeneous Distributed

Computing Environment,” The International

Arab Journal of Information Technology, vol. 12,

no. 3, pp. 270-277, 2015.

https://www.iajit.org/PDF/vol.12%2Cno.3/6131.

pdf

[25] Ouazene Y. and Yalaoui F., “Identical Parallel

Machine Scheduling with Time-Dependent

Processing Time,” Theoretical Computer

Science, vol. 721, pp. 70-77, 2018.

https://doi.org/10.1016/j.tcs.2017.12.001

[26] Pinedo M., Scheduling, Theory, Algorithms, and

Systems, Springer Science+Business Media,

2012. DOI 10.1007/978-3-319-26580-3

[27] Shchepin E. and Vakhania N., “An Optimal

Rounding Gives A Better Approximation for

Scheduling Unrelated Machines,” Operations

Research Letters, vol. 33, no. 2, pp. 127-133,

2005. https://doi.org/10.1016/j.orl.2004.05.004

[28] Vakhania N., Werner F., and Alberto J.,

“Scheduling Unrelated Machines with Two

Types of Jobs,” International Journal of

Production Research, vol. 52, no. 13, pp. 3793-

3801, 2014.

DOI:10.1080/00207543.2014.888789

[29] Yin N., Kang L., Sun T., Yue C., and Wang R.,

“Unrelated Parallel Machines Scheduling with

Deteriorating Jobs and Resource Dependent

Processing Times” Applied Mathematical

Modelling, vol. 38, no. 19, pp. 4747-4755, 2014.

https://doi.org/10.1016/j.apm.2014.03.022

 Hemmak Allaoua associate

professor at department of computer

science, faculty of mathematics and

informatics since, Mohamed

Boudiaf University of M’sila,

Algeria since 2007. Having taught

several syllabuses such as

combinatorial optimization, metaheuristics, network,

language theory. Director of laboratory of informatics

and its application of M’sila (LIAM) and head of the

team of optimization and artificial intelligence. Having

several publications, talks, activities in these research

fields. Chair of ISIA’20 (International Symposium of

Informatics and its Application). Actually, TPC

member of several conferences and reviewer for

several journals in the field.

https://www.sciencedirect.com/journal/computers-and-operations-research
https://www.sciencedirect.com/journal/computers-and-operations-research
https://doi.org/10.1016/j.cor.2011.10.012
https://www.sciencedirect.com/journal/computers-and-operations-research
https://www.sciencedirect.com/journal/computers-and-operations-research
https://doi.org/10.1016/j.cor.2010.05.005
https://www.sciencedirect.com/journal/theoretical-computer-science
https://doi.org/10.1016/j.tcs.2009.04.018
https://link.springer.com/journal/10951
http://dx.doi.org/10.1007/s10951-011-0231-3
https://link.springer.com/article/10.1007/BF01585745#auth-David_B_-Shmoys
https://link.springer.com/article/10.1007/BF01585745#auth-_va-Tardos
https://www.sciencedirect.com/journal/theoretical-computer-science
https://doi.org/10.1016/j.tcs.2010.06.008
https://link.springer.com/article/10.1007/s10951-021-00714-6#auth-Nysret-Musliu
https://link.springer.com/article/10.1007/s10951-021-00714-6#auth-Andrea-Schaerf
https://link.springer.com/article/10.1007/s10951-021-00714-6#auth-Felix-Winter
https://www.tandfonline.com/tinf20
https://www.tandfonline.com/tinf20
https://doi.org/10.1080/03155986.1998.11732359
https://www.sciencedirect.com/journal/theoretical-computer-science
https://www.sciencedirect.com/journal/theoretical-computer-science
https://doi.org/10.1016/j.tcs.2017.12.001
https://www.sciencedirect.com/journal/operations-research-letters
https://www.sciencedirect.com/journal/operations-research-letters
https://doi.org/10.1016/j.orl.2004.05.004
https://www.researchgate.net/profile/Frank-Werner-9
http://dx.doi.org/10.1080/00207543.2014.888789
https://www.sciencedirect.com/journal/applied-mathematical-modelling
https://www.sciencedirect.com/journal/applied-mathematical-modelling
https://doi.org/10.1016/j.apm.2014.03.022

