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Abstract: Object detection technology is one of the key technologies for indoor service robots. However, due to the various 

types of objects in the indoor environment, the mutual occlusion between the objects is serious, which increases the difficulty of 

object detection. In view of the difficult challenges of object detection in the indoor environment, we propose an indoor three-

dimensional object detection based on deep learning. Most existing 3D object detection techniques based on deep learning 

lack sufficient spatial and semantic information. To address this issue, the article presents an indoor 3D object detection 

method with enhanced spatial semantic information. This article proposes a new (Edge Convolution+) EdgeConv+, and based 

on it, a Shallow Spatial Information Enhancement module (SSIE) is added to Votenet. At the same time, a new attention 

mechanism, Convolutional Gated Non-Local+ (CGNL+), is designed to add Deep Semantic Information Enhancement module 

(DSIE) to Votenet. Experiments show that on the ScanNet dataset, the proposed method is 2.4% and 2.1% higher than Votenet 

at mAP@0.25 and mAP@0.5, respectively. Furthermore, it has strong robustness to deal with sparse point clouds. 
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1. Introduction 

Due to the intensification of the ageing population and 

the shortage of labour, more service robots have been c

reated to service people. The indoor environment is an 

important environment to consider when designing ser

vice robots. 

When people are in an indoor environment, they 

often use objects to describe the spatial environment 

and take corresponding actions based on them. 

Referring to the people’s environmental perception 

method, the article studies object detection technology, 

to improve the robot’s perception ability. Object 

detection technology for robots is of research 

importance in areas such as localization and navigation 

of indoor mobile robots, assisted navigation for 

visually impaired groups and security robots [9, 21]. 

Traditional object detection methods generally 

traverse the region to be detected through sliding 

windows of different scales and aspect ratios and then 

use an exhaustive strategy to frame all the positions of 

the area to be detected that may contain the detection 

object. Artificially designed feature extraction 

operators such as Scale-Invariant Feature Transform 

(SIFT) [15], Histogram of Oriented Gradients (HOG) 

[4], Local Binary Pattern (LBP) [16], etc., are used to 

extract features. Finally, classification is performed  

 

using classifiers Deformable Part Model (DPM) [7], 

Support Vector Machine (SVM) [2], etc.,) based on the 

extracted feature. However, artificially designed 

feature operators are very limited for indoor 

environments, and their performance is very poor in 

terms of detection accuracy and robustness. 

Recently, object detection methods based on deep 

learning have become the dominant approach in object 

detection tasks. Object detection methods based on 2D 

images by deep learning are mainly divided into two 

categories. One category is the two-stage approach 

based on region proposal, represented by the R-CNN 

series [8, 10, 23], etc., Instead of directly applying 

feature extraction and classification on the entire 

image, they first generate a set of region proposals 

through selective search or other techniques. These 

region proposals are then individually processed to 

extract features and classify the presence of objects. 

The other is a regression-based single-stage method 

represented by the YOLO series [13, 22, 26], Single 

Shot MultiBox Detector (SSD) [14], etc. These 

methods take a different approach by formulating the 

object detection problem as a regression task. They 

divide the input image into a grid or anchor boxes and 

directly predict the presence, class labels, and 

bounding box coordinates of objects within each grid 

or anchor box. However, the application of 2D object 
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detection in robotics is greatly limited by the fact that 

2D images themselves are projections of the 3D world 

onto a 2D plane, lacking some structural information, 

and that they are heavily influenced by various factors 

in the environment. Therefore, researchers have 

proposed a 3D object detection method based on deep 

learning. 3D point cloud data is widely used in 3D 

object detection. Compared to 2D images, 3D point 

cloud data has richer structural information and is less 

influenced by external factors in the environment. 

The input to a general neural network model is a 

fixed serialised data format, while 3D point cloud data 

are disordered, making it difficult to process the point 

cloud data. Early 3D object detection methods based 

on point cloud data are mostly indirect processing of 

point cloud data. For example, Complex-YOLO [24] 

and VeloFCN [12] convert 3D point clouds into 2D 

images by projection, then achieve object detection 

through the above 2D object detection network, and 

finally recover the geometric pose of the object in 3D 

space. Another common indirect processing method is 

to convert point cloud data into 3D voxels, such as 

Vote3Deep [6] and VoxelNet [32], which convert point 

cloud data into 3D voxels, and then realize object 

detection by 3D convolution. However, the indirect 

processing of point clouds, whether by conversion to 

2D images or 3D voxels, can lead to the loss of part of 

the 3D feature information during network training and 

even introduce errors. 

In 2017, PointNet [19], a point cloud neural network 

was proposed, opened up the direct processing of point 

cloud data. PointNet solves the rotation problem of the 

point cloud by learning a spatial transformation 

network, which generates a spatial transformation 

matrix to transform the point cloud to a direction that is 

more conducive to classification and segmentation. At 

the same time, a maximum pooling function is used to 

solve the disorder of point clouds. PointNet++ [20] is 

an extension of PointNet that introduces additional 

layers, including a Sampling Layer (SL), Grouping 

Layer (GL), and Feature Extraction Layer (FEL). 

These layers aim to improve the extraction of point 

cloud information compared to the original PointNet. 

SL selectively downsamples the point cloud. The GL 

combines neighboring points to form locally regions. 

FEL utilizes fully connected layers to extract feature 

representations from the point cloud, enhancing its 

representation capability. Neither Pointnet nor 

pointnet++ performs well in the extraction of point 

cloud information. Dynamic Graph Convolutional 

Neural Network (DGCNN) [28], proposed by Wang, is 

a neural network based on dynamic graph convolution. 

It computes edge features between each point and its 

neighboring points to capture local information 

between points. This network effectively captures local 

features of point clouds. Votenet [17], a 3D object 

detection network based on deep learning and Hough 

voting, using only point cloud information as network 

input. Xie proposed Multi-Level Context VoteNet 

(MLCVNet) [29], which successfully introduces multi-

level contextual information into Votenet. By 

considering contextual cues at multiple levels, 

MLCVNet improves the understanding and 

representation of the surrounding environment, leading 

to more accurate object detection results. Object 

DGCNN [27] proposes a 3D object detection 

architecture on point clouds. The method models 3D 

object detection as message passing on a dynamic 

graph, generalizing the DGCNN framework to predict 

a set of objects. We have studied them and found that 

there is more room for their improvement in terms of 

detection accuracy and robustness. 

The article proposes an indoor 3D object detection 

method with spatial semantic information 

enhancement. The main contributions of the method 

are summarized as follows: 

 A new edge convolution method, Edge Convolution+ 

(EdgeConv+), and a new attention mechanism, 

Convolutional Gated Non-Local+ (CGNL+), are 

proposed, which are more suitable for indoor object 

detection. 

 A Shallow Spatial Information Enhancement module 

(SSIE) and a Deep Semantic Information 

Enhancement module (DSIE) are added to Votenet. 

 The experimental results show that the EdgeConv+ 

and CGNL+ proposed have better performance than 

the original EdgeConv and CGNL. At the same time, 

SSIE and DSIE based on them improve Votenet's 

ability to extract spatial information and semantic 

information. On the ScanNet dataset, the proposed 

method is 2.4% and 2.1% higher than Votenet at 

mAP@0.25 and mAP@0.5, respectively. 

The article is structured as follows. Section 1 reviews 

the relevant methods for object detection. Section 2 

introduces the method presented in detail. Section 3 

presents the experimental results. And section 4 is the 

conclusion of the article. 

2. Method 

2.1. Votenet 

The proposed method uses the Votenet as the underlying 

framework, which is an end-to-end trainable 3D object 

detection network. Votenet consists of three main 

modules: feature extraction, vote, and object proposal 

and classification, as shown in Figure 1. 

 Feature Extraction: votenet utilizes PointNet++ as the 

backbone network for sampling and feature extraction 

of the input point cloud. PointNet++ is a deep neural 

network architecture designed for processing 

unordered point clouds. It hierarchically samples 

points using a set abstraction operation to capture 

local and global context information. 

 Vote: the voting module in Votenet simulates the 
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hough voting process. It takes the seed points from the 

feature extraction as input. These seed points are fed 

into Multi-Layer Perceptron (MLP) that regresses 

object centers, generating voting points. 

 Object Proposal and Classification: the voting points 

are then sampled and grouped to form voting clusters. 

These voting clusters are then fed into an MLP layer 

for final bounding box regression and classification. 
 

 
 

 

2.2. Improved Votenet 

In object detection, shallow features have stronger spatial 

information, more detailed features and clear contours, 

but their semantic information is lower. Deep features 

have stronger semantic information, but the resolution is 

low, losing the detailed features of the object and the 

perception of details is poor. Considering the advantages 

and disadvantages of the deep and shallow features, the 

proposed method adopts the idea of cross-region fusion. 

As shown in Figure 1, SSIE, DSIE and a feature fusion 

module are added to Votenet. 

 
Figure 1. The overall flow of the network based on Votenet, SSIE, and DSIE module are added, and spatial semantic information is 

efficiently fused. 

SSIE closely follows the feature extraction block 

pointnet++, which first constructs the local point graph G 

of the seed points processed by pointnet++ shown in 

Figure 1, and then learns the spatial information by 

EdgeConv+, a new edge convolution the article 

designed. In this way, SSIE introduces rich spatial 

information to the network while solving the problem 

that PointNet++ ignores the local geometric spatial 

relationships between points during the processing of 

point clouds. DSIE consists of CGNL+, a new attention 

mechanism the article designed, which models the 

semantic correlation between each seed point and other 

seed points. The DSIE greatly optimizes the voting 

module of Votenet, and improves the network's ability to 

extract semantic information from point cloud. 

To achieve an efficient fusion of shallow spatial 

information and deep semantic information, the proposed 

method designs a feature fusion module. The fusion 

module in Figure 1, in which the spatial information 

extracted by SSIE is fused with the semantic information 

extracted by DSIE through a skip branch. The output of 

the fusion module is Ffusion 

Ffusion=MLP(max(G) + max(S)) 

Where G is the spatial information, and S is the semantic 

information. By using maximum pooling, G and S are 

added to obtain a new global feature vector. Finally, the 

MLP layer is applied to further aggregate the global 

feature.  

Subsequently, Ffusion is combined with the original 

output of Votenet. Therefore, the feature information 

entered into the object proposal and classification 

module contains fusion information of spatial and 

semantic information, as well as fusion information of 

global and local information. In this way, the accuracy 

and robustness of the network are improved. 

2.3. Shallow Spatial Information Enhancement 

Module 

The shallow spatial information enhancement module 

consists of an edge convolution EdgeConv+. Traditional 

network models deal with each point in the point cloud 

individually, ignoring the local geometric spatial 

relationships between the points. To address this 

problem, DGCNN proposes an edge convolution 

EdgeConv. Wang and Solomon [28] of DGCNN 

construct a local point graph G of the point cloud, as 

shown in Figure 2. 𝑥𝑖 is a point in the point cloud, 𝑥𝑖𝑗 is 

the K neighbours of 𝑥𝑖 calculated by K-Nearest 

Neighbors (KNN) [1], and 𝑒𝑖𝑗(𝑒𝑖𝑗 =𝑥𝑖𝑗-𝑥𝑖)is the edge 

feature from 𝑥𝑖𝑗 to its central node 𝑥𝑖. The DGCNN 

considers both 𝑥𝑖 and 𝑒𝑖𝑗 through EdgeConv (𝑥𝑖 considers 

the global information of the point itself, and 𝑒𝑖𝑗 

considers the local geometric spatial information 

between points). The fusion of global and local 

information, which improves the accuracy of point cloud 

classification and segmentation. 

 (1) 
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Although EdgeConv has excellent performance in 

point cloud classification and segmentation tasks, 

EdgeConv does not show high performance in point 

cloud object detection. It is found that in addition to 𝑒𝑖𝑗 

information and 𝑥𝑖 information, 𝑥𝑖𝑗 information is 

valuable in object detection. To improve the performance 

of EdgeConv in object detection, the article proposes a 

new edge convolution EdgeConv+ based on EdgeConv. 

Similar to DGCNN, a local directed graph G is 

constructed. The difference is that EdgeConv+ learns a 

more complete shape representation of the local point 

cloud than EdgeConv, as shown in Figure 3. For a local 

directed graph G in point cloud, EdgeConv only 

considers the blue parts 𝑥𝑖 and 𝑒𝑖𝑗 in feature extraction, 

while EdgeConv+ considers 𝑥𝑖, 𝑒𝑖𝑗 and 𝑥𝑖𝑗 

simultaneously. By the way, the geometric position 

relationship between neighborhood points is used to 

describe the shape characteristics of the object, which 

can effectively gather the spatial information in the local 

point graph to achieve the effect of spatial information 

enhancement. 

 

Figure 2. Local point graph G. 

 

Figure 3. Shape modelling of local point clouds. 

EdgeConv+ largely improves EdgeConv's shape 

perception. It can improve the ability of the object 

detection network to learn the spatial information of the 

point cloud. Table 4 demonstrates the effectiveness of 

EdgeConv+. 

Algorithm (1) describes in detail the pseudocode of 

the EdgeConv+, Where RBC represents a combination 

of layers with specific functions: Rectified Linear Unit 

(ReLU) activation function (R) for introducing non-

linearity and enhancing feature expression, BatchNorm 

(B) for normalizing and stabilizing the intermediate 

outputs, and Convolutional (C) layers for extracting local 

patterns and capturing spatial dependencies. The 

Maximum Pooling Function (MAX) is a symmetric 

aggregation function, a maximum pooling function, 

which can extract the most important features in all 

feature vectors. 

Algorithm 1: A new edge convolution: EdgeConv+ 

Input: local directed graph G 

Output: Point cloud feature information Xi 

1: Concatenate 𝑥𝑖  and eij: cat(xi,eij) 

2: Calculate the fused point cloud feature information Xi=RBC

(cat(xi，eij)) 

3: Calculate the sum of 𝑋𝑖  and xij:Xi+xij 

4: Calculate the fused point cloud feature information Xi=RBC

(Xi+xij) 

5: Aggregate point cloud information Xi=MAX{RBC(Xi+xij)} 

6: return 𝑋𝑖  

2.4. Deep Semantic Information Enhancement 

Module 

Figure 4 shows the structure of CGNL+, which makes up 

the deep semantic information enhancement module.The 

excellent performance of Laplace matrice is well 

demonstrated by graph convolutional networks [3]. The 

proposed method extends Laplace matrices to the 

attention mechanism CGNL [31] to enhance the 

expressiveness of CGNL and enable it to achieve better 

performance. Following the rules of CGNL, all the space 

(width W and length H), and time (video length T) are 

stacked into one dimension, i.e., N=H×W or 

N=T×H×W. So, the input feature X∈N×C, C is the 

number of channels of X.  

{

θ=vec(XWθ)∈RNC

∅=vec(XW∅)∈RNC

g=vec(XWg)∈RNC

(W
θ
、W∅、Wg∈RCC) 

Where θ, ∅ and g are obtained by linear transformation 

of the input features X through 1×1 or 1×1×1 

convolution layers whose kernel size and stride both 

equal 1 (k=1, s=1) respectively. 

To improve the reusability of the model, CGNL 

applies the idea of channel grouping, dividing the 

linearly transformed features into G groups along the 

channel dimension, so that the number of channels in 

each group becomes C/G. To capture dependencies 

across the whole feature map, the original nonlocal 

operation computes the response Y∈RNC as the weighted 

sum of the features at all positions, as shown in Equation 

(3), CGNL assumes that f is a general kernel function 

(e.g., RBF, bilinear, etc.,) that computes a NC×NC 

matrix. Then, vec(Y) is approximated by a Taylor series. 

The article calculates the semantic similarity between 

objects by CGNL.  

vec(Y)=f(vec(XWθ),vec(XW∅))vec(XWg)≈θ∅Tg 

Based on CGNL, CGNL+ introduces the Laplacian 

matrix. It expresses the Laplacian matrix L=D-E by 

adding the offset (X-Y) between the input feature and the 

feature Y calculated by CGNL, as shown by the red line 

in Figure 4, which enriches the expressive ability of 

CGNL. 

 (2) 

 (3) 
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Z=concat(BN((X—Y)Wz))+concat(BN(YWz))+X 

Where Wz∈RCC, is a 1×1 or 1×1×1 convolution layer, 

and BN (batch normalization) layer is applied to each 

group. Finally, the output feature Z is obtained by 

summing all the grouping information. Table 5 

demonstrates the effectiveness of the CGNL+. 

 

Figure 4. The architecture of the CGNL+. The black line indicates 

the CGNL. The red line indicates the addition of the Laplace matrix 

to the CGNL. 

3. Experiments 

Table 1 shows the experimental parameters. The article 

conducts experiments on the ScanNet [5] dataset. N is 

the number of random samples for each input data, and 

K is the number of nearest neighbours queried by the 

KNN when constructing a local point graph G in the 

SSIE. The network was trained for a total of 200 epochs 

with an Adam optimizer, batch size 4 and an initial 

learning rate of 0.001. The learning rate decay steps are 

set to {80, 120, 160}, and the decay rates are {0.1, 0.1, 

0.1}. 

The Graphics Processing Unit (GPU) model 

configured is GeForce Ray Tracing Technology (RTX) 

2070 Super, and the experimental software environment 

is Ubuntu system 18.04, python 3.7, Compute Unified 

Device Architecture (CUDA) 10.0. The network is 

implemented through the PyTorch framework under the 

Python platform. 

Table 1. Experimental parameters. 

Datasets N K Optimizer Batch Size Epoch 

ScanNet 40000 20 Adam 4 200 

3.1. Dataset Preparation 

ScanNet is a large indoor environment dataset containing 

1513 3D scans of different indoor scenes. The dataset 

itself also provides ground-truth 3D bounding boxes for 

indoor objects. The object detection categories are 18 

(the remaining categories after removing unlabeled 

categories, floors, and walls from the 21 categories). 

To augment the training data, the article randomly 

flips the point cloud in two horizontal directions and 

rotates the point cloud in the vertical coordinate system 

(rotation angle is controlled between -5° and 5°), scales 

point cloud (scaling factor is controlled between 0.9 and 

1.1).  

3.2. Comparative Experiments 

Table 2 compares the performance of the proposed 

method with other methods on the ScanNet dataset. The 

evaluation is based on mean Average Precision (mAP) at 

two Intersection over Union (IoU) thresholds, 

specifically 0.25 and 0.5. 

mAP is one of the metrics used to evaluate the 

accuracy of object detection algorithms. It is based on 

the concepts of Precision and Recall. Precision measures 

the ratio of correctly detected positive samples to the 

total number of detected positive samples, while Recall 

measures the ratio of correctly detected positive samples 

to the total number of true positive samples. mAP 

calculates the Precision-Recall (PR) curve at different 

confidence thresholds and computes the area under the 

curve as the final evaluation metric. A higher mAP value 

indicates higher accuracy in detecting objects. IoU is a 

metric used to measure the degree of overlap between 

the predicted bounding box and the ground truth 

bounding box. It calculates the ratio of the intersection 

area between the two boxes to the union area of the two 

boxes. If the IoU value between a predicted box and a 

ground truth box exceeds a threshold (0.25 or 0.5), it is 

considered a match. 

Table 2 compares the proposed method with other 

methods on the ScanNet dataset. The article shows mAP 

when IoU is 0.25 and 0.5, respectively. The mAP@0.25 

of the proposed method reaches 61.0%, which is higher 

than others, and mAP@0.5 is also higher than others. 

Table 2. 3D object detection results on the ScanNet dataset. 

Method Input mAP@0.25 mAP@0.5 

DSS [25] Geo + RGB 15.2 6.8 

MRCNN 2D-3D 

[10] 
Geo + RGB 17.3 10.5 

F-PointNet [18] Geo + RGB 19.8 10.8 

GSPN [30] Geo + RGB 30.6 17.7 

3D-SIS [11] Geo + 1 view 35.1 18.7 

3D-SIS  Geo + 3 views 36.6 19.0 

3D-SIS  Geo + 5 views 40.2 22.5 

3D-SIS  Geo only 25.4 14.6 

VoteNet [17] Geo only 58.6 36.1 

MLCVNet [29] Geo only 59.0 36.4 

Ours Geo only 61.0 38.2 

 

 (4) 
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Table 3. 3D object detection results on 10 common objects of the ScanNet dataset. 

Method bed table sofa chair toilet sink desk door bookshelf bathtub 

3DSIS-Geo [11] 63.1 51.3 46.3 66.0 74.5 22.9 33.3 8.0 2.3 58.7 

3DSIS-5views 69.8 36.1 71.8 66.2 87.6 43.0 46.9 30.6 27.3 84.3 

VoteNet [17] 86.7 59.4 87.7 88.0 90.9 49.5 62.7 47.1 51.0 89.8 

MLCVNet [29] 87.2 59.9 84.8 88.7 96.5 49.5 71.0 49.0 48.8 88.5 

Ours 89.3 61.8 90.9 88.2 99.7 59.1 71.1 49.3 49.8 91.2 

The article selects 10 common objects from the 

ScanNet dataset for comparison, as shown in Table 3, the 

evaluation metric is mAP@0.25. Our method performs 

better than the previous methods on 8/10 objects, and the 

mAP@0.25 reaches more than 90% among the sofa, 

toilet and bathtub. 

Figure 5 shows a qualitative demonstration of the 

results of 3D bounding box prediction using the 

proposed method. The method can detect objects well in 

both complex indoor environments and simple indoor 

environments. 

From the qualitative results, it can be observed that 

there is a certain lack of performance in the orientation 

angle of the 3D bounding box in the predicted results. 

Specifically, for objects with a poor sense of depth, such 

as the murals or windows shown in Figure 5, there is a 

displacement of the bounding boxes. 

  

  

  

  
a) The actual scenes. b) The predicted results. 

 

Figure 5. Qualitative results of our approach on the ScanNet 

dataset. 

3.3. Validity Experiments 

The key to the proposed method is the design of a new 

EdgeConv+ and a new attention mechanism CGNL+.  

 

Tables 4 and 5 show the superiority of EdgeConv+ 

and CGNL+ compared to the original EdgeConv and 

CGNL models, respectively. 

Table 4 shows the experimental results of adding the 

SSIE with EdgeConv and EdgeConv+ as the main 

components respectively on Votenet. The proposed 

method endows EdgeConv with a more complete point 

cloud representation to improve its perception of shape, 

which is effective for improving the performance of 

object detection. 

Table 5 shows the experimental results of adding the 

DSIE with CGNL and CGNL+ as the main components 

respectively on Votenet. It is not difficult to find that the 

Laplace matrix is useful for improving CGNL. 

Table 4. EdgeConv+ validity experiments. 

Method mAP@0.25 mAP@0.5 

VoteNet 58.6 36.1 

EdgeConv 58.6 37.7 

EdgeConv+ 59.6 37.7 

Table 5. CGNL+ validity experiments. 

Method mAP@0.25 mAP@0.5 

VoteNet 58.6 36.1 

CGNL 59.8 37.4 

CGNL+ 60.2 38.1 

3.4. Ablation Experiments 

To quantitatively evaluate the effectiveness of the 

proposed modules, the article conducts experiments on 

different combinations of these modules, as shown in 

Table 6. At mAP@0.25 and mAP@0.5, when SSIE is 

only used, it is 1.0% and 1.6% higher than Votenet, 

respectively; when DSIE is only used, it is 1.6% and 

2.0% higher than the original Votenet, respectively; 

when using SSIE and DSIE at the same time, it is 2.4% 

and 2.1% higher than Votenet, respectively. Therefore, 

the two modules designed are effective. 

Table 6. Module ablation experiments. 

 SSIE DSIE mAP@0.25 mAP@0.5 

VoteNet   58.6 36.1 

VoteNet √  59.6 37.7 

VoteNet  √ 60.2 38.1 

VoteNet √ √ 61.0 38.2 

3.5. Robustness Testing 

Considering that indoor service robots will cause the 

number of scene point clouds to decrease due to jittering 

or being obscured during movement. 

To test the robustness of the problem of the sparse 

point cloud, the article tests the proposed method on the 

ScanNet dataset, using the same experimental parameters 
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as before, selecting 40,000 and 20,000 points as input, 

respectively. As shown in Figure 6, even when the 

number of points decreases by one-half, the proposed 

method is higher than Votenet at mAP@0.25. The 

experimental results fully prove the feasibility of the dual 

fusion idea of spatial information and semantic 

information fusion, global information and local 

information fusion proposed by the feature fusion 

module in this article to improve the robustness of the 

network. 

 

Figure 6. Robustness experiments when sparse point clouds are 

used as input. When the number of points drops from 40000 to 

20000, the mAP@0.25 of our method decreases from 61.0% to 

60.0%, and the mAP@0.25 of Votenet decreases from 58.6% to 

57.4%. 

4. Conclusions 

In this article, we propose a 3D object detection method 

with enhanced spatial semantic information. A new edge 

convolution EdgeConv+ and a new attention mechanism 

CGNL+ are proposed. SSIE captures the spatial 

information of the point cloud through EdgeConv+, and 

DSIE acquires the semantic information of the point 

cloud under the guidance of CGNL+. The proposed 

method effectively improves the performance of 

Votenet, realizing object detection in indoor scenes. 

Experiments show that on the ScanNet, the proposed 

method is 2.4% and 2.1% higher than Votenet at 

mAP@0.25 and mAP@0.5, respectively. As future 

work, we need to verify the effectiveness of our method 

on more datasets. This is essential for the development of 

indoor service robots. 
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