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Abstract: By studying the biological behavior of cockroaches, a bionic algorithm, Cooperative Learning Cockroach Colony 

Optimization (CLCCO), is presented in this paper. The aim of CLCCO is to provide an efficient method to solve Robot Path 

Planning (RPP) problems. The CLCCO algorithm is based on the idea of synergy behavior of cockroach colony and machine 

learning. With pheromone, the cockroach colony achieves population synergy, which includes the follow and diversion 

behaviors. The strategy of Fibonacci transformation is used for the cockroach individual to choose the next feasible cell. The 

technologies of λ-geometry and multi-objective search make the paths searched smoother and greatly improve the algorithm 

search efficiency. In particular, the CLCCO algorithm requires only two parameters to be set. When CLCCO is applied to real 

robots, a path compression technique is designed. The simulation results show that the CLCCO algorithm demonstrates high 

efficiency in mostly tests. 
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1. Introduction  

Synergy exists widely in the natural world. The 

cooperation and competition are important factors for 

survival of populations, such as ant colonies, beehives, 

termite mounts, flocks of birds, schools of fish etc., The 

individual is smarter when working in teams, the sum 

much greater than the parts. Synergy based on the 

cooperation provides the inspiration for intelligent 

computation. The Swarm Intelligence (SI) algorithm 

has implemented synergy by bionic approach, such as 

Genetic Algorithm (GA) [5, 18, 21], Particle Swarm 

Optimization (PSO) [8, 10, 11, 17], Ant Colony 

Optimization (ACO) [6, 16, 22] etc. In recent years, the 

cockroach-inspired algorithms are proposed and 

developed. In 2008, literature [9] firstly presented the 

Cockroach Swarm Optimization (CSO) algorithm for 

the Travelling Salesman Problem (TSP). Later, 

ZhaoHui and HaiYan [20] applied the CSO to global 

optimization problems. And then, some new cockroach-

inspired algorithms are proposed and applied to some 

practical problems [4, 12, 19]. In recent five years, the 

cockroach-inspired algorithms more and more attracted 

the attention of scholars, which is mainly developed in 

the field of numerical optimization and Robot Path 

Planning (RPP). For example, by improving Roach 

Infestation Optimization (RIO) [4], Tsai proposed a 

Center RIO (CRIO) algorithm [14]. In CRIO, each 

roach agent moves toward its friendship center rather 

than oscillate around the swarm center. Based on the 

literature [13], Obagbuwa proposes an Adaptive 

Cockroach Swarm algorithm (ACSO) for global 

optimization, which executes an adaptive search. Cheng 

presents the Cockroach Colony Optimization (CCO) 

algorithm [3]. The logistic multi-peak map and the 

margin control strategies are introduced in CCO. 

Literature [2] presents the CCO algorithm for RPP 

problem. The improved grid map and non-probabilistic 

search strategy are used for the CCO algorithm. 

However, the CCO algorithm needs too many 

controlling parameters. This problem increases the 

complexity of CCO.  

In this paper, a novel cockroach-inspired algorithms, 

Cooperative Learning CCO (CLCCO), is proposed for 

solving the RPP problems. Our aim is to provide a path 

planning method with fewer control parameters and 

higher efficiency. In CLCCO, the gird method is used 

for environment modeling. The strategy of cooperative 

learning is proposed and applied to the motion of 

https://doi.org/10.34028/iajit/20/5/4


718                                                   The International Arab Journal of Information Technology, Vol. 20, No. 5, September 2023 

cockroach individual. The follow and diversion 

behaviors of cockroach are simulated. The pheromone 

value is dynamically updated and computed according 

to the length of feasible path. By the pheromone value, 

the individual cockroaches learn from each other and 

decide whether to follow or diversion. Especially, the 

CLCCO requires only two controlling parameters to be 

set.  

The remainder of this paper is organize as follow. In 

section 2, the background of the CLCCO algorithm is 

introduced, including the relevant biological theory and 

the basis of the algorithm. Section 3 gives some 

definitions on CLCCO. The details of CLCCO are 

introduced in section 4. The simulation experiments 

and compression path technique are given in section 5. 

Section 6 concludes this paper. 

2. Background 

2.1. Cooperative Behaviour of Cockroach 

Colony 

Most cockroaches have poor vision but a good sense of 

smell. Cockroach colony can communicate by the 

pheromones to organize and make decisions. 

Cockroach society is democratic and has no absolute 

leadership [15]. In recent years, a number of biologists 

have been studying on the cockroach's distinctive social 

lifestyle [1, 7, 15]. A series of experiments is designed, 

which showed that cockroaches have evolved smart 

behavior of cooperation to survive.  

 
a) Cockroaches gather in area A. 

 
b) Some cockroaches choose separation. 

 
c) Some cockroaches choose diversion. 

Figure 1. Experimental process on cockroach's social lifestyle. 

Figure 1-a) to (c) show one of the experimental 

process [7]. In Figure 1-a), three dark areas are set in a 

closed container. Notice that area A is darker than area 

B and area B is darker than area C. When some 

cockroaches were put into the container, they all 

gathered in area A. The reason is that cockroaches like 

darker areas. As more cockroaches are placed in area A, 

some of them will move from area A to B (see Figure 

1-b)). With one cockroach moving, other cockroaches 

may choose follow (the probability is about 60%) [7]. 

This process is called as separation. When cockroaches 

crawl from A to B, some pheromone will be left on the 

route. When the level of pheromone is too high, the 

cockroaches may choose to diversion. The diversion 

means that some of them may move to area C (see Fi 

Figure 1-c)). This experiment show that pheromones 

play an important role in cockroach behavior. By 

pheromones, cockroaches communicate and learn from 

each other. When the pheromone level is too high, the 

cockroach will also choose to separation or diversion in 

order to increase the survival probability.  

2.2. Grid Map  

The workspace is modeled as an X×Y grid and stored by 

the set Map. Set Map is compose of the cell cθ, where 

Map={cθ | θ=1, 2,…, X×Y }.  

In rectangular coordinates, the coordinate (x, y) of 

the point on the lower-right corner of cell cθ is regarded 

as the cell coordinate, where x=1…X and y=1…Y. The 

process of generated grid map is presented in Figure 2. 

In Figure 2, S is the start cell and D is the destination 

cell. “0” represents the obstacle cells and “1” means the 

free cells. 
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a) Workspace modeling. 
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b) Grid map. 

Figure 2. The process of generated grid map. 
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2.3. λ-Geometry and Multi-Objective Search 

λ-geometry and multi-object search are efficient path 

planning techniques, which come from our previous 

research (See literature [2]). 

λ-geometry is the directions in which an cockroach 

individual might move. In our algorithm, λ is defined as 

16 (See Figure 3), that is, 16- geometry. With this 

strategy, planned routes are smoother and store less 

information. 

 

Figure 3. 16- geometry. 

Multi-objective search technology can greatly 

improve the efficiency of the algorithm to find the path. 

32-geometry is used to generate some search targets 

near the destination cell. Notice that these search targets 

can reach destination cell in a straight line. When 

moving, a cockroach may encounter some search 

targets. It means the cockroach finds some paths. 

Figure 4 shows that the cockroach finds three search 

targets at one point. That is, the cockroach find three 

paths. During a single crawl from the start cell to the 

destination cell, multi-target search allows the 

cockroach to find multiple paths.  

D

 

Figure 4. Multi-object searching. 

3. Definitions for CLCSO  

 Definition 1: the moving path of cockroach 

individual is recorded by set Pi={ pi,
1, pi

2, …, pi
t }. pi

t 

means the cell which the i-th cockroach reaches at 

time t. Notice that there is no the same cells in Pi. 

Note that duplicate cells cannot appear in Pi in order 

to avoid circular paths. 

 Definition 2: each cockroach has the set E called 

search field. Ei
t denotes the search field of the i-th 

cockroach at t time. With 16- geometry, search field 

E is compose of the 24 adjacent cells of pi
t. Figure 5 

illustrates the structure of Ei
t. Thus, cockroaches can 

move 1,2, 2 , 2 2  or 5  distances in a single step. 
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Figure 5. Search field. 

 Definition 3: set F, called reachable fields, is 

compose of the reachable cells of search field Ei
t. Fi

t 

means the reachable field of the i-th cockroach at t 

time. Fi
t is described as follow:  

 i| 1 , 22, P  and Et t

i j j j iF f j J J f f      

In order to avoid the same path being walked 

repeatedly, the reachable field does not include the 

cells that the individual cockroach has walked, 

therefore, J<22.  

 Definition 4: pheromone value is symbolized as ph. 

phθ is pheromone value of the θ-th cell in grid map. 

At the initialization stage of algorithm, all cells have 

the same pheromone value, which is computed as 

follow: 

1/ ( ),    1( ,2, , )XX Yph Y      

After initialization, the cooperative learning search will 

be executed. In this stage, pheromone value is 

computed according to the shortest path. Supposing the 

ω is the length value of the shortest path passing the 

cell cθ, we can compute the phθ as follow: 

1/    ( 1,2, , )p X Yh     

4. Cooperative Learning Cockroach Colony 

Optimization  

In the remainder of this article, for a clear description, 

the cells are denoted with different symbols at different 

computing stage. As an example, cell in Fi
t and Pi are 

symbolized as fj and pi
t, respectively, where pi

t∈Map, fj

∈Map, Fi
t⊂ Map and Pi⊂ Map.  

4.1. Initializing Search 

The process of initial search is a simulation on the 

experimental stage of Figure 1-a). In this process, the 

colony of cockroaches searches for a nest. This 

(1) 

(2) 

(3) 
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searching is somewhat random. 

The population size of CLCCO is symbolled as I. At 

t time, pi
t means the i-th cockroach individual has 

passed t cells. The path is recorded by set Pi. Thus, the 

pi
t+1 is computed as follow： 

    (

0+1

0

{ | F }      0.5
=

{ | F }    0.5

1,2 )w ,  ( 1here ,2 ):

t

it

i t

j j

j ij

Min r
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f f

f f
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J I
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Where, Fi
t is reachable field of the i-th cockroach at t 

time. r0 is a random number and r0~U(0,1). For the i-th 

cockroach, r0 is regenerated at every step. Min{cθ| cθ∈

Fi
t} is the greedy search. By Min{cθ| cθ∈Fi

t}, the i-th 

cockroach at pi
t chooses one cell from Fi

t as pi
t+1, which 

has the smallest heuristic information. The heuristic 

information refers to that the Euclidean distance from 

the reachable cells in reachable field Fi
t to the 

destination cell D. Rand{cθ| cθ∈Fi
t} denotes the i-th 

cockroach randomly chooses a cell from Fi
t as pi

t+1. 

When D is included in Fi
t, cockroach individuals end up 

crawling once. Moreover, when fining Q paths, the 

CLCCO finishes the initialization stage.  

After the initial search, the pheromones for the grid 

map will be updated. Supposing that the ω is the length 

value of the shortest path passing the cell cθ, phθ is 

updated as follow: 

    (

1/     1/  

 

1, 2, ,

    1/     

wher
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4.2. Cooperative Learning Search 

Cooperative learning is essentially machine learning, 

which is a simulation on the experimental stage 

showed in Figure 1-b) and (c). This process includes 

the diversion and follow behaviors. 

The optimal path of the whole colony is recorded by 

Pbest. Pathi is the optimal path that found by the i-th 

colony. Pbest is described as follow: 

P {Path | 1, , }best iOpt i I     

Cooperative learning search is described as follow: 

    (+1= 1,2 ),  { | 1, 2 )} (t t

i ij jf f jp Coo F i Ip J     

Coop{fj| fj ∈ Fi
t } denotes the cooperative learning 

search. The computing process of Coop{fj| fj∈Fi
t } is 

showed in Figure 6. 

 

Figure 6. Cooperative learning search. 

Firstly, the cells in the set Fi
t are sorted from small to 

large according to the pheromone value. And then 

perform the Fibonacci transformation. In detail, the 

weight value of the first cell is set as δ1=10, the second 

one is set as δ2=20. The n-th (n≥3) one is computed by 

Fibonacci sequence, that is, δn=δn-1+δn-2. Thus, the 

weight space of the first cell is s1=[1, δ1], the n-th one is 

sn=[δn-1+1, δn] and the last one is sJ=[δJ-1+1, δJ]. The 

Fibonacci transformation makes cells with larger 

pheromones have larger weight spaces. In Figure 6, r2 

(r2∈N*) is a random positive integer, and r2~U (1, δJ). 

If r2∈sn (δn-1+1≤r2≤δn), then the n-th cell is as pi
t+1.  

For example, suppose there are six cells in the set Fi
t, 

Figure 7 shows the calculation result of weight value 

and weight space. From Figure 7, we can find that δ1, δ2 

and δ3 have the same weight space. On the other hand, 

there is more and more weight space from δ4 to δ6. This 

situation means that the first three cells have the same 

probability of being selected as pi
t+1. Starting with the 

fourth cell, the higher the pheromone value, the more 

likely the cell is to be selected as a pi
t+1. 

 

s1=[1,10]δ1=10

s2=[11,20]δ2=20

s3=[21,30]δ3=30

s4=[31,50]δ4=50

s5=[51,80]δ5=80

s6=[81,130]δ6=130

 

Figure 7. Weight value and weight space. 

Figure 8 shows the probability that four and ten cells 

in Fi
t are selected as pi

t+1 based on the weight space. 

(4) 

(5) 

(6) 

(7) 
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a) 4 cells. 

 
b) 10 cells. 

Figure 8. Probability of weight spaces. 

Based on the above conclusions, the relationship 

between cooperative learning and bionic cockroach 

behavior is as follows: 

1. When the environment is simple, that is, there are 

fewer feasible cells in Fi
t, cooperative learning tends 

to choose randomly. The reason is that the weight 

space of each cell is similar. This process is the 

bionics of diversion behavior. 

2. If Fi
t has more feasible cells. That means that 

cockroach individual faces a complex environment. 

Cooperative learning tends to choose the cell with 

the shortest path. This process completes the 

simulation of follow behavior. 

Furthermore, for the i-th cockroach, if the path length 

of Pi is bigger than that in Pathi, then the i-th cockroach 

will execute a new search for the start cell S. 

Instead, if the i-th cockroach finds a new path and its 

length is smaller than that in Pathi, then Pathi is updated 

as follow: 

Path {P ,Path }i i iOpt  

After updating Pathi, the CLCCO algorithm will 

update Pbest. The process is as follow: 

P {P ,Path }best best iOpt  

After updating Pbest, the CLCCO algorithm will update 

the pheromone of the cells on Pathi. The computing 

process of updating the pheromone is as following: 

    (

1/     1/  
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Where, the τ denotes the length of Pathi. During the 

executing of CLCCO, the pheromone of Map is 

updated dynamically and in real time. 

4.3. Arithmetic Flow of CLCCO 

For a more detailed presentation of CLCCO, this 

section presents the overall flow of the algorithm. 

Algorithm1: Overall flow of CLCCO 

Step1: Build a grid map for a workspace, remark the start 

cell S and destination cell D, set the value of pheromone for 

each cell (Eq. (2)) 

Step2: Initialize the number of cockroaches as I, the number 

of iterations of CLCCO as M. Set m=0 and i=0. 

Step3: Execute the initializing search (Eq. (4)). 

Step4: When finding the Q collusion-free paths, CLCCO 

finishes the initializing search. 

Step5: According the Q collusion-free paths, CLCCO 

updates the pheromone of Map (Eq. (5)). 

Step6: i←i+1. 

Step7: If i>I, then i =1. 

Step8: The i-th cockroach executes the cooperative learning 

search (Eq.(7)). 

Step9: If the length of Pathi is better than that of Pi, then the 

i-th cockroach return to the start cell, Pi is emptied and CLCCO 

jumps and executes Step6. 

Step10: If the i-th cockroach doesn’t find the destination cell 

D, then CLCCO jumps and executes Step6. 

Step11: If the length of Pathi is better than that of Pi, the i-th 

cockroach return to the start cell, Pi is emptied and CLCCO 

jumps and executes Step6. 

Step12: Update Pathi with Pi (Eq.(8)) and update the 

pheromone of the cells on Pi(Eq.(10)). 

Step13: If the length of Pbest is better than that of Pathi, the i-

th cockroach return to the start cell, Pi is emptied and CLCCO 

jumps and executes Step6. 

Step14: Update Pbestwith Pathi (Eq.(8)). 

Step15: m←m+1. 

Step16: If m≤M, then CLCCO jumps and executes Step6. 

Step17: Output Pbest. 

Step 1 to 4 belong to the initial search phase with time 

complexity O(n3). Step 5 to 17 belong to the 

cooperative learning search phase with time complexity 

O(n3). Therefore, the time complexity of CLCCO is 

O(n3). 

5. Simulation Studies 

To demonstrate the feasibility and effectiveness of 

CLCCO, a variety of experiments are carried out by 

computer simulation. Section 5.1 is the simulated 

experiments of CLCCO for the RPP problem. Section 

5.2 gives the comparison among CLCCO, CCO and 

ACO. The computer configuration for experiments is 

that on Windows (32-bit versions) operations, 

Core(TM) i5-4300U CPU, 4GB memory. The 

programming language is Java. 

5.1. Simulation Experiment on CLCCO 

In this section, three groups of simulation experiments 

are conducted and twelve maps are chosen as 

workspace. To test the effectiveness of the algorithm 

under different conditions, all maps were divided into 

(8) 

(9) 

(10) 
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three groups according to the location of the start cell 

and the destination cell. The details are as follows: 

1. Map(A) to (D) are set to start at S(2,26) and target at 

D(26,2).  

2. Map(E) to (H) are set to start at S(2,2) and target at 

D(26,26). 

3. Map(I) to (L) are set to start at S(15,28) and target at 

D(15,2). 

The parameters of CLCCO are set as follow: 

1. The number of cockroaches as I=20. 

2. The number of iterations of CLCCO as M=50. 

Figure 9, 10, and 11 show that the CLCCO algorithm 

has successfully planned a collision-free path for all the 

complicated workspaces. The symbols “◎” mark the 

planned route. By using the 16-geometry and multi-

objective search, the planned path is hence shown to be 

smooth. Notice that cells marked only as “◎” need to 

be stored as path nodes. Therefore, the path planned by 

CLCCO needs to store less information, which is 

conducive to sending the path to the real robot. 

           

Map (A)                                     Map (B)                                           Map (C)                                             Map (D) 

Figure 9. Simulation experiment 1 (start cell: S (2,26) and destination cell: D(26,2)). 

      

Map (E)                                    Map (F)                                        Map (G)                                         Map (H) 

Figure 10. Simulation experiment 2 (start cell: S (2,2); destination cell: D(26,26)). 

     

Map (I)                                         Map (J)                                    Map (K)                                         Map (L) 

Figure 11. Simulation experiment 3(start cell: S (15,28); destination cell: D(15,2)). 

5.2. Comparison between CLCCO and other 

Algorithms 

In this section, the tests focus on the comparisons 

among CLCCO, CCO [2] and ACO [22]. CCO is the 

cockroach-inspired algorithm and ACO is a classic 

bionic algorithm. To make a fair comparison, the ACO 

and CCO algorithms were set to a group size of 20 and 

an iteration number of 50, respectively. Other 

parameter settings are derived from literature [2] and 

[22]. The twelve maps in section 5.1(Map (A) to 

(L) )are as workspaces. Each algorithm is continuously 

executed 20 times. Table 1 to 3 show the detailed 

experimental data. In Table 1, Table 2 and Table 3, the 

symbol “best” and “mean” refer to the optimal and 
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average path length respectively. The symbol “std” 

represents the standard deviation. Since the CCO 

algorithm is a deterministic search algorithm, and the 

path length of each experiment is the same. Therefore, 

for CCO, it is not necessary to calculate the values of 

standard deviation. 

From the three data tables, we can find that CCO is 

superior to ACO in optimal and average path length. 

The main reasons are that CCO uses16- geometry and 

multi-objective strategies. These strategies are 

described in section 2.3. However, the determination of 

search strategy makes CCO lose its flexibility. It is why 

CLCCO is better than CCO in average and optimal 

path length. The value of standard deviation represents 

the stable performance of the CLCCO algorithm.  

Figure 12 illustrates the convergence characteristics 

of map A, B, C, and D in terms of the mean 

performance of the total runs. The termination criterion 

is that the number of iterations reaches 50. Every five 

iterations, the current mean path lengths found by the 

algorithms are recorded. The average of all twenty runs 

of the algorithms are shown. 

 

 

Table 1. Comparison experiment 1 (start cell: S(2,26) and destination cell: D(26,2)). 

MAP 
CLCCO CCO ACO 

best mean std best mean std best mean std 

(A) 39.67 40.25 0.61 41.34 41.34 － 42.46 43.53 1.09 

(B) 40.77 40.94 0.19 42.46 42.46 － 44.94 45.33 0.44 

(C) 40.03 40.38 0.50 42.43 42.43 － 43.46 43.69 0.30 

(D) 43.37 43.75 0.39 46.17 46.17 － 48.79 49.67 0.97 

Table 2. Comparison experiment 3 (start cell: S(2,2) and destination cell: D(26,26)). 

MAP 
CLCCO CCO ACO 

best mean std best mean std best mean std 

(E) 43.79 43.92 0.34 46.63 46.63 － 48.87 49.10 0.20 

(F) 42.37 42.66 0.25 44.46 44.46 － 45.54 46.46 0.77 

(G) 41.96 42.01 0.09 44.34 44.34 － 45.85 46.28 0.52 

(H) 42.45 42.57 0.21 46.75 46.75 － 49.84 49.99 0.15 

Table 3. Comparison experiment 2 (start cell: S(15, 28) and destination cell: D(15, 2)). 

MAP 
CLCCO CCO ACO 

best mean std best mean std best mean std 

(I) 39.08 39.23 0.19 43.18 43.18 － 46.26 46.49 0.44 

(J) 37.48 37.70 0.28 42.81 42.81 － 43.64 44.66 0.87 

(K) 38.54 38.74 0.25 40.77 40.77 － 42.65 43.27 0.63 

(L) 37.54 37.87 0.39 42.27 42.27 － 43.25 43.58 0.39 

Figure 12 illustrates that the convergence rate of 

CLCCO is generally better than that of CCO and ACO. 

The reason is that technology of cooperative learning 

search plays an important role. Because 16- geometry 

and multi-objective strategies are used, the convergence 

speed of CCO is better than that of ACO. Therefore, 

cooperative learning search, 16- geometry and multi-

objective are highly efficient robot road force planning 

strategies. 

       

 

Figure 12. Median convergence characteristics of CLCCO, CCO and ACO on map A, B, C, and D. 

5.3. Compression Path Method 

Notice that the performance of CLCCO to plan the path 

has been validated in sections 5.1 and 5.2. Whether an 

optimal path can be executed correctly by real robot 

depends largely on the mechanical control of real robot. 

The research objective of this paper is to provide the 

planned path information to the robot, but not the 

mechanical control.  

In general, the memory resources of robot are 

limited, but it requires high speed of path information 

transmission. In order to save storage resources and 

a) Convergence Graph for map A. b) Convergence Graph for map B. c) Convergence Graph for map C. d) Convergence Graph for map D. 
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improve the speed of information transmission, we 

design an information compression method. 

 

Path 
information

Compress path information 

Transmit to the real robot

Decompress path information
Path 

information

 

Figure 13. Path compression transmission 

The path compression transfer process is shown in 

Figure 13. Path compression is achieved by Equation 

(11). 

   
( 1)

y y
c cX       

Here, cθ denotes any cell on the optimal path. 
 y

c  is 

the y-coordinate of cell c in grid map. X is the 

number of cells in a row. By Equation (11), the two-

dimensional coordinate is compressed as an integer . 

Path decompression is implemented by Equation (12). 

   
 

( 1) mod 1

( 1) / 1

x

y

c X

c X









   


     

 

Here, 
 x

c  is the x-coordinate of cell c in grid map. 

The symbol “mod” represents the modulus operation 

and the symbol “ ” means round down. Equation (12) 

is going to convert the compressed path information  

to the two-dimensional coordinates of the original path. 

The information compression method is to compress 

the binary coordinate (x, y) into a single value integer. 

This can save up to 50% of storage space. This 

compression path method has been tested with a real 

robot and a grid workspace (See Figure 14). 

 

Figure 14. Mobile robot in real workspace. 

The workspace was randomly blocked and the route 

of the real robot was computed by CLCCO algorithm. 

The real environments are simpler than the maze grid 

maps in the previous simulation experiment. In most 

cases, real robots can find shortest paths by avoiding 

obstacles. It proves that CLCCO algorithm can be 

applied to real robots. 

5.4. Discussions on CLCCO 

According to the testing results, we can performance 

the analyses on CLCCO as follow: 

1. The process of initializing search changes the 

distribution of pheromone that is the crucial 

information of cooperative learning search. 

2. The pheromone value is inversely proportional to the 

path length. By cooperative learning, the cockroach 

individual tends to choose the position with bigger 

pheromone value as the next cell. 

3. In essence, the cockroach individual can move and 

search along the relatively good path by cooperative 

learning, which can make the cockroach individual 

find a better path. 

4. The pheromone is always dynamically updated 

during the execution of CLCCO, which means that 

all cockroaches learn from each other. 

5. Because of the application of cooperative learning, 

CLCCO need only set two parameters, that increases 

the level of controllability of CLCCO. 

6. Path compression technology makes CLCCO 

algorithm control real robot more real-time. 

Overall, CLCCO can be applied to the RPP problem 

with good performance. 

6. Summary and Conclusions 

By introducing the strategy of cooperative learning, a 

novel CLCCO algorithm for RPP problem is presents 

in this paper. The idea of CLCCO is mainly based on 

the strategy of cooperation and machine learning. Some 

new methods, such as Fibonacci transformation and 

multi-objective search, etc., are proposed. Especially, 

this paper presents a new Compression Path Method, 

which can save 50% of the storage space. The CLCCO 

algorithm only needs two parameters. By the 

comparisons with state-of-the-art cockroach-inspired 

algorithm, CLCCO demonstrates the high-performance. 

Among the possible perspectives, the CLCCO 

algorithm will be used for the workspace with weight 

regions or be extended in volume to solve the RPP 

problem for 3-D workspace. 
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