
The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023                                                                          965 

RoboGuard: Enhancing Robotic System Security 

with Ensemble Learning  

Ali Al Maqousi  

Department of Information Security, University of Petra, 

Jordan  

amaqousi@uop.edu.jo 

Mohammad Alauthman  

Department of Information Security, University of Petra, 

Jordan  

mohammad.alauthman@uop.edu.jo 

Abstract: Robots are becoming increasingly common in critical healthcare, transportation, and manufacturing applications. 

However, these systems are vulnerable to malware attacks, compromising reliability and security. Previous research has 

investigated the use of Machine Learning (ML) to detect malware in robots. However, existing approaches have faced several 

challenges, including class imbalance, high dimensionality, data heterogeneity, and balancing detection accuracy with false 

positives. This study introduces a novel approach to malware detection in robots that uses ensemble learning combined with the 

Synthetic Minority Over-sampling Technique (SMOTE). The proposed approach stacks three (ML models Random Forest (RF), 

Artificial Neural Networks (ANN), and Support Vector Machines (SVM) to improve accuracy and system robustness. SMOTE 

addresses the class imbalance in the dataset. Evaluation of the proposed approach on a publicly available dataset of robotic 

systems yielded promising results. The approach outperformed individual models and existing approaches regarding detection 

accuracy and false positive rates. This study represents a significant advancement in malware detection for robots. It could 

enhance the reliability and security of these systems in various critical applications.  
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1. Introduction 

The growing integration of robotic systems into 

everyday life underscores the critical importance of 

cybersecurity in robotic networks. With the expanding 

use of robots in diverse environments such as offices, 

homes, and schools, ensuring the security of these 

systems has become increasingly vital. Cyberattacks on 

robotic systems can severely threaten the integrity and 

the safety of those interacting [4]. 

Robotic systems are Cyber-Physical Systems (CPS) 

comprising hardware and software components. These 

components interact with each other and their 

environment to provide various functionalities. CPS 

systems, including robotic networks, necessitate security 

measures to guarantee the system's confidentiality, 

integrity, and availability. Confidentiality protects 

sensitive information from unauthorized access, 

integrity maintains the accuracy and trustworthiness of 

data and system functionality, and availability 

guarantees the system's performance when needed [27]. 

The range of cybersecurity threats in robotic networks 

is diverse and continuously evolving. Attacks can vary 

from simple unauthorized access to more complex 

system hijacking [26]. Common cyber-attacks on robotic 

systems encompass Denial-Of-Service (DoS), malware, 

and injection attacks. Robotic networks are especially 

vulnerable to malware attacks. Malware infects systems  

 

and causes faults. Networks, storage, and email 

attachments can spread malware [18]. 

Cyberattacks on robotic systems can damage systems, 

steal data, and even injure humans [17, 25]. Attackers 

may control autonomous vehicles or surgical robots, 

injuring patients. Thus, defending robotic systems from 

cyber-attacks is essential for system and user safety. 

Access control, encryption, firewalls, Intrusion 

Detection Systems (IDS), and antivirus software are 

used to secure robotic networks [2]. However, 

sophisticated and diversified cyberattacks on robotic 

networks may outpace typical security solutions. New 

technologies like the Internet of Things (IoT) have 

created new attack vectors. Thus, new robotic network 

cybersecurity methods must be investigated. 

Robotic networks can detect malware using Machine 

Learning (ML) [22]. ML algorithms learn from data and 

identify malware-related anomalies. ML can detect 

novel malware, adapt to evolving threats, and recognize 

small behavioral changes that may indicate malware 

presence. These methods are also more efficient and 

scalable, benefiting resource-constrained embedded 

devices. 

This study's contribution lies in developing a 

learning-enabled framework for detecting malware in 

robotic networks and constructing a new dataset to 

advance research in this area. The proposed framework 
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analyzes sequential information at the byte level to 

detect malware in the robot software executables. 

Additionally, it presents a comprehensive analysis of the 

proposed framework and a comparison against state-of-

the-art models on the RoboMal dataset [13]. 

One limitation of current research in ML-based 

approaches for malware detection in robotic networks is 

the potential vulnerability to adversarial attacks. These 

attacks can manipulate input data to evade the detection 

algorithm, which could be particularly problematic in the 

case of robotic networks. The research addresses this 

limitation by exploring and developing more robust and 

secure ML algorithms that are less susceptible to 

adversarial attacks. 

The proposed approach for malware detection in 

robotic systems utilizes the Synthetic Minority Over-

sampling Technique (SMOTE) [6] with SE of three ML 

models, namely Random Forest (RF), Artificial Neural 

Networks (ANN), and Support Vector Machines (SVM). 

SMOTE is a popular machine-learning method that deals 

with class imbalances often found in malware detection 

datasets. 

The minority class's samples are equalized by creating 

phony examples. This improves ML. SE combines 

predictions from numerous machine-learning models to 

improve system precision and resilience. We train RF, 

ANN, and SVM using SMOTE's harmonized dataset. A 

meta-classifier merges the basis models' predictions to 

determine the final output. 

Since each ML model has strengths and 

shortcomings, SE with numerous models lets the system 

detect more harmful activities. It also reduces overfitting 

by preventing the system from learning patterns that are 

present in training data but not in real-world settings. 

The proposed approach advances malware detection in 

robotic systems and may increase their dependability 

and security. 

Beginning with a research problem and inquiry, this 

work has five sections. The proposed strategy portion 

describes the research problem and methods, while the 

related work section reviews current literature. 

Experiments and findings evaluate the proposed 

approach. The conclusion highlights major 

contributions, limits, and future research. 

2. Relevant Work 

The attack terrain has broadened due to the growing use 

of robotic technologies. Malware detection in robotics 

has been neglected despite research on spamming, 

spoofing, and intrusion [8, 9, 15]. Antivirus software 

protects most enterprises by matching against large 

malware libraries. This approach is expensive due to 

library upkeep and vulnerable to sophisticated virus 

attacks that avoid typical detection technologies. Studies 

have shown that modest software modifications can 

drastically modify robot behavior, making them 

vulnerable to infection [24]. Thus, as robotics get more 

popular, virus detection and eradication become more  

important. 

Malware detection in robotic networks is new, and 

few research have used ML. Artificial Intelligence (AI) 

advances have accelerated the development of intelligent 

robots like those in driverless vehicles, increasing 

security concerns. Clark et al. [7] examined autonomous 

vehicle ML system vulnerabilities in 2018. They 

successfully manipulated a robotic vehicle using the Q-

learning system to test an indirect attack. 

Pang et al. [23] suggested a covert two-channel False 

Data Injection (FDI) attack against networked 

controllers and sensors to degrade their performance. A 

Kalman filter-based approach eliminated network-

induced delays to avoid attack detectors. They also 

simulated the attack's feasibility and impact. 

Li et al. [16] developed a two-loop covert attack for 

Industrial Control Systems (ICSs) to change plant 

condition and avoid anomaly detectors. Least squares 

SVM attacks proportional-integral-derivative 

techniques. The findings of several tests showed that ML 

can be used to build stealthy attacks. 

Khojasteh et al. [14] studied the susceptibility of CPS 

to learning-based attacks when attackers lack prior 

knowledge of the systems' dynamics. They investigated 

a learning-based attack employing Gaussian process-

based learning to deduce system dynamics and revealed 

how a controller could bolster a system's security with a 

privacy-enhancing signal. Moreover, they proposed an 

innovative approach to counter similar attacks in CPSs, 

paving the way for future research in this domain. 

Zhao et al. [30] proposed a FDI attack method against 

CPS systems using a subspace identification technique. 

They employed a data-driven approach to design 

undetectable FDI attacks with limited energy 

constraints. The authors also explored the detection of 

the proposed FDI attack using coding theory and 

assessed its feasibility by simulating it on a flight vehicle 

model. 

Hector et al. [10] added a new layer of defense to 

robotic systems by monitoring the torque values for a 

moving robotic arm to detect possible anomalies. The 

proposed approach raises a threat alarm when the 

difference between the expected and actual torque values 

significantly surpasses a predefined threshold. The 

authors tested the proposed defense on the Franka Panda 

robot simulated in Unity and found it functional. 

Moreover, they reported that anomalies observed during 

the simulation were detected and relayed to the operator. 

Tang et al. [29] proposed an event-triggering 

mechanism to protect robotic systems from DoS attacks 

causing loss of control over the speed and direction of 

mobile robots. They examined the proposed approach in 

an operational environment, and the results suggested it 

achieved reliable operation. 

Hong et al. [11] introduced an integrated host and 

network intrusion detection approach for power grid 
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substations systems. The merit of the integration in the 

proposed framework is to provide an additional layer of 

defense to protect the system's application and network 

layers, as most substations have limited physical 

security. The host-based component monitors and 

detects temporal anomalies in the substation facilities, 

while the network-based component identifies 

anomalous behavior in multicast messages in a 

substation network. The proposed detection approach 

identifies the same attacks across multiple substations 

and pinpoints their locations. Furthermore, the authors 

simulated various intrusion scenarios in an automated 

substation testbed. 

Alheeti et al. [3] suggested an intrusion detection 

approach using Integrated Circuit Metrics (ICMetrics)-

based indicators to mitigate internal and external attacks 

on self-driving cars. This intrusion detection approach 

can provide a robust defense against cyber threats and 

ensure the secure operation of the car. 

Zhou et al. [31] proposed a comprehensive ICSs 

framework to enhance cybersecurity and ensure stable 

system operation. The framework integrates multiple 

layers of protection to provide comprehensive defense 

against cyberattacks, including process-aware attacks, to 

ensure the reliable operation of physical ICS processes. 

Additionally, the framework adopts a risk-based and 

hierarchical approach to protect control systems, 

including prevention- and tolerance-centric defenses. 

Zhou et al. [32], the authors proposed a multi-model 

anomaly-based IDS. They constructed several models 

from the perspective of communication, tasks, resources, 

and control data flow and used them to analyze industrial 

systems' field control layers comprehensively. Anomaly 

detection algorithms based on multi-models were 

proposed, and a hidden Markov model was employed to 

detect anomalies. The proposed IDS was analyzed for its 

detection accuracy and real-time performance using a 

combination simulation platform. The results 

demonstrated the proposed model's high precision and 

real-time detection capabilities. They argued that 

existing IT intrusion detection technologies were 

inadequate for industrial process automation, prompting 

them to design their model to address this industry's 

specific challenges. 

Singh et al. [26], the authors developed a resilient 

tracking control approach using a convex optimization 

algorithm for networked control systems under attack. 

The proposed approach ensures the system's true state 

despite attacks and noises. Moreover, it secures the 

system against deception attacks when the system's state 

is not trusted. The performance of the proposed approach 

was demonstrated through an Internet-based three-tank 

system. 

Jiang and Chen [12] proposed an anomaly-based IDS 

for ICSs. The proposed approach employs a ML model 

with a Denoising Autoencoder (DAE) for noise 

reduction and a SMOTE to address class data imbalance. 

The approach was tested on a real-world railway ICS 

dataset, and the results in terms of precision, recall, and 

F1 score surpassed those previously published in the 

literature. Furthermore, the authors provided the 

proposed method's comprehensive complexity and 

convergence analyses. 

Akpinar and Ozcelik [1] suggested a ML-based 

approach for anomaly detection on the EtherCAT 

protocol. To address the lack of data needed to build the 

model, the authors developed an EtherCAT-based water 

level control system and operated it to create a synthetic 

dataset. The resulting dataset contains 16 different 

events categorized into four classes. The experiment 

results demonstrated the superiority of the integrated 

model of SVM and Genetic Algorithm (SVM-GA) and 

the k-Nearest Neighbours (k-NN) model. Additionally, 

the study highlighted the importance of preventing 

protocol-based cyber-attacks in ICSs and the challenges 

in acquiring data to advance research in this field. 

Maushart et al. [19] described a way to find bad actors 

in robotic systems. They utilized ensemble learning for 

modelling and analyzing stochastic task allocation. The 

authors evaluated their proposed method via stochastic 

simulations, examining how different design decisions 

influenced early detection. The study offers an analytical 

framework that precludes malicious agents from 

accessing the system. 

Narayanan and Bobba [21] showed how to find 

problems in industrial robotic arms using ML. They 

specifically employed one-class SVM to develop a joint 

angle anomaly detection model. The experimental 

results indicated that the proposed model effectively 

detects anomalies that alter a robot's pre-determined 

tolerance levels. The primary contribution of this study 

is a framework for detecting anomalous behaviour in 

industrial robotic arms, which aids in identifying 

potential intrusions and mitigating cyber risks in smart 

manufacturing. 

Recent research on cybersecurity for autonomous 

systems, like self-driving cars, industrial control 

systems, and robotic systems, is shown in Table 1 below. 

The findings of these studies underscore the significance 

of devising robust security measures to safeguard against 

cyberattacks, as well as the necessity for continued 

research in this domain to tackle the unique challenges 

and risks associated with these systems. 

ML-based approaches to malware detection in robotic 

networks have received much attention. Previous 

research has examined ML methods to detect malware in 

robotic networks, such as decision trees, SVM, ANN, 

and deep learning models. Several researchers have 

looked into behaviour-based ML algorithms, which 

assess a robotic system's behaviour to detect hostile 

behaviour. These approaches develop a model that can 

detect malware using numerous features such as system 

calls, network activity, and file actions. Other research 

has looked into static and dynamic analytic techniques 

for detecting malware in robotic networks. Static 
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analysis techniques entail examining a program's code to 

uncover possibly harmful activity. 

The suggested ensemble learning approach for 

malware detection in robotic systems expands on 

previous work in this area. Ensemble learning is a robust 

technique for improving the accuracy and robustness of 

a system by combining the predictions of numerous ML 

models. This approach solves some of the issues raised 

by prior studies, such as the necessity for extensive and 

diverse datasets and the ability to manage robotic 

systems' high-dimensional and heterogeneous nature. 

We can detect harmful activities by merging various 

models, resulting in a more effective and dependable 

system. Furthermore, the method can balance detection 

accuracy with false positive rates, which is critical in 

real-world circumstances where false positives can cause 

excessive system downtime and resource consumption. 

Overall, the suggested method represents a potential 

route for future study in the field of malware detection in 

robotic systems. 

 

Table 1. Summary of cybersecurity research for robotic systems and ICSs. 

Study Area of Focus Method(s) Outcome/Contribution 

Clark et al. [7] Autonomous vehicle 

vulnerabilities 

Q-learning algorithm Demonstrated manipulation of an autonomous vehicle. 

Pang et al. [23] Networked systems' 

performance degradation 

Stealthy two-channel FDI attack Demonstrated feasibility and impact of the proposed attack. 

Li et al. [16] ICSs Two-loop covert attack Showed feasibility of covert attacks using ML methods. 

Khojasteh et al. [14]  CPS vulnerability Gaussian process-based learning Introduced privacy-enhancing signal and mitigation approach 
for learning-based attacks. 

Zhao et al. [30] CPS Subspace identification technique for 

FDI attacks 

Demonstrated feasibility of the attack and investigated 

detection using coding theory. 

Hector et al. [10] Robotics systems Torque monitoring Developed security measures and demonstrated anomaly 

detection in a Franka Panda robot simulation. 

Tang et al. [29] Robotic systems protection Event-triggering mechanism Achieved reliable operation against DoS attacks. 

Hong et al. [11] Power grid substation 

systems 

Integrated host and network intrusion 

detection 

Simulated various intrusion scenarios and provided additional 

defense layers. 

Alheeti et al. [3] Self-driving cars ICMetrics-based indicators for 

intrusion detection 

Developed a robust defense against cyber threats. 

Zhou et al. [31] ICSs Comprehensive cybersecurity 

framework 

Enhanced cybersecurity and ensure stable operation of ICSs. 

Zhou et al. [32]  Industrial process 
automation 

Anomaly-based intrusion detection 
with multiple models 

Designed a model to address industry-specific challenges with 
high precision and real-time detection. 

Mousavinejad et al. 

[20]  

Networked control systems Resilient tracking control using convex 

optimization 

Ensured the system's true state despite attacks and noises. 

Jiang and Chen [12]  ICSs DAE and SMOTE for anomaly-based 

IDS 

Improved detection performance compared to previous 

literature. 

Akpinar et al. [1] EtherCAT protocol ML-based anomaly detection Emphasized the importance of preventing protocol-based 

cyber-attacks in ICSs. 

Maushart et al. [19] Robotic system Ensemble learning for stochastic task 

allocation 

Provided an analytical framework to prevent malicious agents 

from accessing the system. 

Narayanan and 
Bobba [21] 

Industrial robotic arms One-class SVM for joint angle 
anomaly detection 

Developed a framework to detect anomalous behavior and 
prevent cyber risks in smart manufacturing. 

3. Proposed Approach  

The suggested approach entails a series of sequential 

steps. Initially, the dataset is imported. Subsequently, the 

data undergoes normalization to ensure it has both zero 

mean and unit variance. The permutation feature 

importance method is then employed to determine the 

most pivotal features, which are subsequently utilized 

for training three distinct ML models: RF, SVM, and 

Neural network (NN). These models enable predicting 

the target variable accurately. To enhance accuracy and 

robustness further, predictions from these models are 

combined using Logistic Regression (LR) in a SE 

methodology. In order to gauge the effectiveness of our 

proposed approach, we compare its performance against 

conventional ML models such as RF, SVM, and NN. 

Furthermore, we repeat this entire process twenty times 

to evaluate result stability while utilizing the Wilcoxon 

test to assess statistical significance pertaining to 

disparities between our ensemble model and traditional 

ML methods illustrated in Figure 1. 

 

Figure 1. Overview of the proposed approach. 
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3.1. Normalization  

Normalization is a commonly employed pre-processing 

method that converts the features' values in a dataset to 

a consistent range. Min-max scaling, an extensively 

used normalization technique, adjusts the feature values 

to be within a particular range, frequently from 0 to 1. 

This operation can be executed by applying the formula 

as shown: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

Where X is the original value of the feature, Xmin and 

Xmax are the minimum and maximum values of the 

feature, respectively, and Xscaled is the scaled value of the 

feature. 

The linear transformation known as min-max scaling 

preserves the relative relationships between the data 

points. This technique is frequently employed when the 

feature values' range changes significantly, and the 

values must be regularly distributed. It is crucial to 

remember that min-max scaling can be impacted by 

outliers and may need to perform better with data that 

contains many outliers. Additionally, data with a limited 

range of values or a nonlinear connection between the 

characteristics and the target variable may not be suited 

for min-max scaling. Therefore, trying out several 

normalization strategies and assessing how they affect 

the model's performance is recommended before 

selecting the one that works best for a particular dataset. 

3.2. Features Selection 

Permutation feature importance is a method for 

assessing the relevance of features in a ML model [5]. It 

entails randomly permuting a feature's values in the test 

data and observing how the model's performance 

changes. A feature's significance is then calculated as 

the mean drop in performance over all possible 

permutations. A feature xi permutation feature 

significance can be mathematically stated as: 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑥𝑖) = 1/𝑀∑(𝑚 = 1)𝑀 𝐿 (𝑦, 𝑓(𝑋𝑚(𝑖), 𝑤)) 

Where 𝑦 is the vector of true labels for the test set, 

f(Xm(i), w) is the predicted labels of the model on the test 

set with the values of feature xi randomly permuted in 

the 𝑚𝑡ℎ permutation, L is a loss function that measures 

the performance of the model, Xmi is the test set with the 

values of feature xi randomly permuted in the 𝑚𝑡ℎ 

permutation, and M is the number of permutations 

performed. 

Permutation feature importance is a powerful way to 

determine which parts of a ML model are the most 

important. It is a simple method that works well and 

does not make any assumptions about how the data is 

spread out or how the model is built. Permutation 

feature importance can help with feature selection and 

model interpretation. It can be used to diagnose issues 

such as overfitting and identify which features may be 

causing problems in the model. However, it can be 

computationally expensive, especially for high-

dimensional datasets, and may not be suitable for 

models that are not sensitive to the evaluated features. 

3.3. Data Augmentation  

SMOTE [6], is a popular data augmentation method 

used to address the class imbalance problem ML. Class 

imbalance occurs when the number of instances in one 

class is significantly lower than the number of instances 

in another class. This leads to biased models that are 

likely to follow the majority class. SMOTE generates 

synthetic minority class examples based on the 

distribution of the existing minority class examples. The 

synthetic examples are created by selecting a random 

minority class example and finding its k-NN. New 

examples are generated by randomly selecting a point 

on the line segment connecting the minority class 

example and one of its neighbours. A user-defined 

parameter specifying the desired oversampling degree 

controls the number of synthetic examples generated. 

Mathematically, the SMOTE algorithm can be 

expressed as follows: Let X be the matrix of features for 

the minority class examples, and Y be the corresponding 

vector of class labels. Let N be the number of minority 

class examples, and let k be the number of nearest 

neighbors to consider. The SMOTE algorithm can be 

expressed mathematically as follows:  

𝑋𝑠𝑦𝑛 = 𝑋 + 𝜖 ∗ (𝑋𝑛𝑛 − 𝑋) 

Where Xsyn is the matrix of synthetic examples, X is the 

matrix of original minority class examples, ϵ is a vector 

of random numbers between 0 and 1, and Xnn is the 

matrix of nearest neighbours for each minority class 

example. The user-defined parameter specifying the 

desired oversampling degree controls the number of 

synthetic examples generated. SMOTE is a powerful 

technique for addressing the problem of class imbalance 

in ML. It can be implemented easily using libraries such 

as imblearn in Python, and it has been shown to improve 

the performance of ML models on imbalanced datasets. 

However, it can generate noisy examples and may not 

be suitable for all datasets. 

3.4. Stacking Ensemble and Machine Learning 

Algorithms Used for Robotic Malware 

Detection. 

In order to detect and counteract malware in robotic 

systems, ML techniques are needed. NNs, SVM, and RF 

are some of the most used ML methods. Popular 

ensemble learning method RF uses decision trees to 

improve classification performance [28]. To handle 

high-dimensional data and locate the optimal decision 

boundary in the feature space, SVM, a binary 

classification method, is used. Robotic malware 

detection is a common use case for NNs since this 

powerful model class can be taught to recognize 

(1) 

(2) 

(5) 

(3) 
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complicated data patterns and links. Training data, 

feature selection, and model parameters all have an 

impact on the effectiveness of these machine-learning 

approaches for detecting and preventing malware in 

robotic systems. To enhance malware detection 

algorithms for robots, scientists are working on new ML 

techniques.  

 RF is an ensemble learning method that improves 

classifier performance by combining numerous 

decision trees. The final forecast is the majority vote 

of all the trees trained on different attributes and data. 

RF algorithm decision function:  

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 [ ∑ 𝑤𝑗𝑓(𝑥, 𝜃𝑗)

𝑛𝑡𝑟𝑒𝑒

𝑗=1

] 

Where f(x,j) is the output of the jth decision tree, wj is a 

weight assigned to each tree, and tree is the number of 

trees in the forest. 

 SVM is a binary classification algorithm that finds 

the best hyperplane to separate the different classes. 

It tries to maximize the margin between the 

hyperplane and the closest data points to improve the 

generalization performance. The equation for the 

decision function of a linear SVM is: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 [∑𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)

𝑛

𝑖=1

+ 𝑏] 

Where yi is the class label of the ith training sample, 

K(xi, x) is a kernel function that maps the samples to a 

higher-dimensional space, αi is a Lagrange multiplier, 

and b is the bias term.  

 NNs are a class of models inspired by the structure 

and function of the human brain. A typical NN 

consists of multiple layers of interconnected nodes 

that process and transform the input data. The 

following equation shows the output of a single node 

in a NN:  

𝑦 = 𝑔(𝑤𝑇𝑥 + 𝑏) 

The weight vector, input vector, bias term, activation 

function, and node output are w, x, b, g, and y, 

respectively. NNs feature numerous layers and dozens 

or millions of nodes, making math harder. Each node 

transforms input data linearly and utilizes a nonlinear 

activation function to generate output. Backpropagation 

adjusts settings to minimize the discrepancy between 

expected and actual output. This learns node weights 

and biases. 

Stacking models in ML improves results. A higher-

level model, or “meta-classifier”, learns to combine the 

predictions of one or more base models to produce the 

final output. Base models and meta-classifiers can form 

the ensemble.  

The meta-classifier in the following tier receives base 

model output. The top-layer meta-classifier predicts the 

output. The number of layers, base model types, base 

model parameters, and meta-classifier type are stacked 

ensemble model hyperparameters. The result of a 

stacked ensemble model is given in the following 

equation:  

𝑦 = 𝑓𝑚 (∑𝑤𝑖𝑔𝑖(𝑥)

𝑛

𝑖=1

) 

where fm is the meta-classifier, gi(x) is the output of the 

ith base model, wi is a weight assigned to the ith base 

model, n is the number of base models, and x is the input 

data. 

For example, a three-layer stacked ensemble might 

have a RF, an SVM, and a NN as base models in the first 

layer, with a LR meta-classifier, as shown in Figure 2. 

The RF, SVM, and NN output would be fed into the LR 

meta-classifier in the second layer, and the output of the 

meta-classifier would be the final prediction. The LR 

meta-classifier can be represented as the following 

equation:  

𝑦 =
1

1+𝑒−𝑧
  

 

 

Figure 2. Proposed ensemble learning approach. 

(5) 

(6) 

(8) 

(7) 

(4) 
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Where 𝑧 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏 

is the linear combination of the input features xi, weights 

wi, and bias term b The output y is the predicted 

probability of the positive class. 

4. Experiment and Results  

The experiment and results section of the study can be 

broken down into the following steps: 

1. Pre-processing the data: the dataset is pre-processed 

by normalizing the features and selecting the most 

important ones using the permutation feature 

importance method. 

2. Training ML models: three ML models, namely RF, 

ANN, and SVM, are trained on the selected features. 

3. Stacking Ensemble (SE) approach: the RF, ANN, and 

SVM model predictions are combined using a meta-

classifier in a SE approach to improve overall 

accuracy and robustness. 

4. Comparing performance: the performance of the 

proposed approach is compared with traditional ML 

models, such as RF, SVM, and ANN, to assess its 

effectiveness in detecting malware in robotic 

systems. 

5. Evaluation: the proposed approach is evaluated on a 

publicly available dataset of robotic systems, and the 

results are analyzed to determine detection accuracy 

and false positive rates. 

6. Statistical analysis: the Wilcoxon test evaluates the 

statistical significance of the differences between the 

proposed approach and traditional models. 

7. Using the RoboMal dataset, we conducted a series of 

experiments to gauge the performance of the 

suggested ensemble approach for malware detection 

in robotic systems. In the evaluation part of the study, 

the details of these experiments and how they turned 

out are given. This study's dataset was split into two 

parts: a training set with 360 samples and a testing set 

with 90 examples. The information was split into two 

parts using standard ML methods: train the models 

and test how well they worked. A random splitting 

method was used to ensure that these subsets 

accurately describe the whole.  

Balanced accuracy, accuracy, recall, False Positive Rate 

(FPR), F1-score (F1 measure), Root Mean Squared 

Error (RMSE), and Area Under Curve (AUC) were 

utilized to evaluate model performance accurately. 

Table 2 shows that these measures were chosen for their 

complete assessment capabilities. 

Numerous investigations used the RoboMal dataset 

to test the ensemble method's malware detection ability 

in robotic systems. The evaluation section details these 

experiments and their results. This study used a 360-

sample training set and a 90-sample testing set. The 

dataset was split into two parts: one to train the models 

and one to evaluate them, following ML methodology.  

A random split technique was employed on these 

subsets to ensure accurate representation. An array of 

evaluation metrics such as balanced accuracy, accuracy, 

recall, FPR, F1-score (F1 measure), RMSE, and AUC 

were utilized to measure model performance accurately. 

These specific metrics were chosen because they offer 

comprehensive assessment capabilities, as 

demonstrated in Table 2.

Table 2. Performance evaluation metrics. 

Metric Description Equation 

Balanced accuracy Measures the average of sensitivity and specificity and is useful when 

the distribution of classes is imbalanced. 

True Positive Rate + True Negative Rate

2
 

Accuracy Measures the ratio of correctly classified instances to the total number 

of instances in a given dataset. 

True Positives + True Negatives

Total
 

Recall Measures the proportion of actual positives that the model correctly 

identifies. 

True Positives

True Positives + False Negatives
 

FPR  Measures the proportion of actual negatives incorrectly identified as 
positive by the model. 

False Positives

False Positives  +  True Negatives
 

F1-score The harmonic mean of precision and recall provides a balanced model 

performance measure. 
2 ⋅

Precision ⋅ Recall

Precision + Recall
 

RMSE A metric used in regression analysis to measure the difference 
between predicted and actual values. 

√
1

𝑛
∑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖)

2

𝑛

𝑖=1

 

AUC  The Receiver Operating Characteristic (ROC) curve's AUC is a common measure employed to evaluate a model's 

ability to distinguish between positive and negative instances. This metric provides a reliable assessment of the 
model's discriminative capacity and its effectiveness in distinguishing between the two classes. 

4.1. Dataset 

The RoboMal dataset [13] consists of a collection of 450 

binary Executable and Linkable Format (ELF) files 

designed to aid in detecting malware within robotic 

software. The dataset was generated by altering 

parameters, such as gains and scalars, in the controller 

files of a publicly accessible autonomous car. It includes 

232 malware files and 218 legitimate software files, 

each containing distinct modifications meticulously 

documented in an accompanying label Excel file. The 

platform-agnostic characteristic of the binary 

executables makes them particularly suitable for 

malware detection on Windows and Android operating 

systems, as demonstrated in Table 3. 

(9) 
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Table 3. Dataset distribution. 

Dataset Number of binary 

executables 

Malware 

files 

Good software 

files 

RoboMal dataset 450 232 218 

4.2. Experimental Results  

Table 4 presents the initial performance of the models. 

Table 5 demonstrates their performance following 

feature selection, and Table 6 displays the models' 

performance after applying both feature selection and 

SOMTE data augmentation. This section will examine 

each table's results in-depth and summarize the models' 

performance. 

Table 4 indicates that all four models exhibit similar 

performance across most evaluation metrics, including 

accuracy, recall, F1-score, and AUC. Nevertheless, their 

performance differs based on specific evaluation 

criteria. For example, SVM achieves the highest 

balanced accuracy at 0.650, while RF registers the 

lowest at 0.630. Likewise, the NN model yields the 

lowest RMSE at 0.587, whereas RF has the highest at 

0.606. Overall, the findings imply that the four models 

perform comparably and do not significantly diverge 

from one another. 

Table 4. Performance comparison of RF, SVM, NN, and SE models 
(NO features selection, NO and SOMTE). 

Model 
Balanced 

Accuracy 
Accuracy Recall FPR F1-score RMSE AUC 

RF 0.630 0.633 0.660 0.400 0.667 0.606 0.630 

SVM 0.650 0.656 0.700 0.400 0.693 0.587 0.650 

NN 0.650 0.656 0.700 0.400 0.693 0.587 0.650 

SE 0.650 0.656 0.700 0.400 0.693 0.587 0.650 

Upon examining Table 5, it is evident that the 

performance of all four models improves substantially 

across all evaluation criteria following feature selection. 

This enhancement is especially prominent for RF, 

which exhibits the highest balanced accuracy, F1-score, 

and AUC among all models. SVM also displays an 

increased balanced accuracy, while the NN and SE 

models exhibit improvements in F1-score and AUC. 

These results suggest that feature selection enables the 

models to perform more effectively and bolsters their 

generalization capacity to new data. 

Table 5. Performance comparison of RF, SVM, NN, and SE models 
based on features selection. 

Model 
Balanced 

Accuracy 
Accuracy Recall FPR F1-score RMSE AUC 

RF 0.733 0.722 0.640 0.175 0.719 0.527 0.733 

SVM 0.713 0.711 0.700 0.275 0.729 0.537 0.713 

NN 0.728 0.722 0.680 0.225 0.731 0.527 0.728 

SE 0.778 0.767 0.680 0.125 0.764 0.483 0.778 

Lastly, Table 6 reveals that after implementing 

feature selection and SOMTE data augmentation, the 

performance of all four models further improves across 

all evaluation criteria. The most significant 

improvement is observed in the RF model, which 

achieves the highest scores for all evaluation criteria 

except RMSE. SVM and NN models also enhance 

balanced accuracy, recall, F1-score, and AUC, while SE 

registers improvements in F1-score and AUC. Overall, 

the findings indicate that feature selection and SOMTE 

data augmentation are efficient methods for enhancing 

the performance of ML models. 

Table 6. Performance comparison of RF, SVM, NN, and SE models 
based on features selection+SOMTE data augmentation. 

Model 
Balanced 

Accuracy 
Accuracy Recall FPR F1-score RMSE AUC 

RF 0.850 0.870 0.830 0.120 0.850 0.240 0.930 

SVM 0.820 0.830 0.780 0.160 0.800 0.290 0.890 

NN 0.870 0.880 0.850 0.100 0.870 0.210 0.940 

SE 0.890 0.900 0.870 0.090 0.890 0.190 0.960 

In conclusion, when applied to the given dataset, the 

three tables offer valuable insights into the performance 

of the four ML models. The results indicate that all four 

models exhibit similar baseline performance; however, 

feature selection and SOMTE data augmentation can 

substantially enhance their performance. Moreover, RF 

appears to be the best-performing model among the 

four, particularly after applying feature selection and 

SOMTE data augmentation. Nonetheless, the optimal 

model choice ultimately hinges on the specific 

requirements of the task and the trade-off between 

performance and interpretability. Figure 3 presents a 

line chart comparing the balanced accuracy scores of 

different models under three scenarios: without feature 

selection and SMOTE, with feature selection, and with 

feature selection and SMOTE. The chart demonstrates 

that all models exhibit improved performance when 

using feature selection and SMOTE, with SE achieving 

the highest overall balanced accuracy scores. 

 

Figure 3. Comparison of balanced accuracy. 

A boxplot in Figure 4 compares the balanced 

accuracy scores of four distinct algorithms: RF, SVM, 

NN, and SE. The boxplot reveals that SE generally 

boasts the highest balanced accuracy scores, 

accompanied by a narrower distribution of scores 

compared to the other algorithms. The remaining three 

algorithms display similar median scores but with wider 

score distributions. 

A boxplot in Figure 4, compares the balanced 

accuracy scores of four different algorithms: RF, SVM, 

NN, and Ensembles Stacking. The boxplot shows that 

Ensembles Stacking generally has the highest balanced 
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accuracy scores, with a narrower distribution of scores 

than the other algorithms. The other three algorithms 

have similar median scores but with wider distributions 

of scores. 

 

Figure 4. Comparison of ML and ensemble approach performance 

based on balanced accuracy. 

4.3. Evaluate Result Stability 

Table 7 provides the standard deviation for the models 

without any feature selection or data augmentation. The 

SE model outperforms the other models, with the lowest 

standard deviation for most metrics. The NN model also 

shows consistent performance across all metrics with 

relatively low standard deviations. However, the RF and 

SVM models show more variation in their performance 

with higher standard deviations. 

Table 7. Standard deviation for performance comparison of RF, 

SSVM, NN, and SE Models. 

Model Balanced 

Accuracy 

Accuracy Recall FPR F1-score RMSE AUC 

RF 0.006 0.008 0.012 0.027 0.009 0.018 0.015 

SVM 0.007 0.009 0.008 0.005 0.016 0.009 0.018 

NN 0.007 0.011 0.008 0.002 0.008 0.018 0.017 

SE 0.008 0.006 0.007 0.001 0.006 0.017 0.015 

Table 8 shows model standard deviations after 

feature selection. The SE model has the lowest standard 

deviation across most criteria. The N model performs 

consistently across measures with modest standard 

deviations. The RF and SVM models have bigger 

standard deviations, indicating greater performance 

variability. 

Table 8. Standard deviation for performance comparison of RF, 

SVM, NN, and SE models based on features selection. 

Model 
Balanced 

accuracy 
Accuracy Recall FPR F1-score RMSE AUC 

RF 0.019 0.017 0.020 0.029 0.018 0.023 0.019 

SVM 0.018 0.017 0.020 0.040 0.019 0.025 0.018 

NN 0.015 0.017 0.016 0.026 0.018 0.023 0.015 

SE 0.011 0.018 0.017 0.027 0.014 0.019 0.011 

Table 9 shows model standard deviations after 

feature selection and SMOTE data augmentation. The 

SE model has the lowest standard deviation across most 

criteria, followed by the NN model. RF and SVM 

performance has higher standard deviations.  

Table 9. Standard deviation for performance comparison of RF, 

SVM, NN, and SE models based on features selection+SOMTE data 
augmentation. 

Model Balanced 

accuracy 

Accuracy Recall FPR F1-score RMSE AUC 

RF 0.016 0.016 0.018 0.007 0.016 0.012 0.014 

SVM 0.012 0.012 0.018 0.010 0.013 0.025 0.014 

NN 0.010 0.011 0.010 0.007 0.011 0.012 0.011 

SE 0.007 0.008 0.007 0.004 0.007 0.009 0.006 

In summary, it can be observed that the SE and NN 

models consistently exhibit superior performance 

compared to the other models across all tables. The 

findings additionally indicate that the utilization of 

feature selection and data augmentation techniques can 

enhance the performance of models and mitigate the 

variability in their performance. However, the optimal 

selection of a model is contingent upon the specific 

problem at hand and the characteristics of the dataset. 

4.4. Statistical Test Using Wilcoxson Test.  

The Wilcoxon test, also called the Wilcoxon signed-

rank test, is a non-parametric statistical test used to 

compare two similar groups. It is often used when the 

data doesn't fit the t-test's standards, such as being 

normal or having the same number of high and low 

scores. The Wilcoxon test ranks the differences between 

the two sets of data and checks to see if the positive and 

negative ranks are spread out in the same way around 

the median. 

The Wilcoxon test can be written in math as: 

𝑊 = ∑𝑟𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑦𝑖)

𝑛

𝑖=1

× rank(|𝑥𝑖 − 𝑦𝑖|) 

Where W is the test statistic, x and y are the paired 

samples, n is the number of pairs, sign(xi−yi) is the sign 

of the difference between the ith pair, and rank(∣xi−yi∣) 
is the rank of the absolute value of the difference 

between the ith pair. 

The null hypothesis of the Wilcoxon test is that the 

median difference between the paired samples is zero. 

Suppose the p-value associated with the test statistic is 

less than the significance level, typically 0.05. In that 

case, we reject the null hypothesis and conclude that 

there is a significant difference between the paired 

samples. The Wilcoxon test is widely used in medicine, 

psychology, and economics, where paired samples are 

common. It serves as a robust alternative to the t-test and 

can be employed for hypothesis testing without making 

assumptions about the underlying distribution of the 

data. However, when the sample size is small, it may 

have less power than the t-test. 

Table 10 presents the results of the Wilcoxon signed-

rank test comparing the performance of four ML 

models-RF, SVM, NN and SE-based on balanced 

accuracy using different feature selection techniques. 

(10) 
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The table displays the p-values for pairwise 

comparisons between the SE model and each of the 

other three models under each feature selection 

scenario. 

The results suggest that the SE model significantly 

outperforms the RF model when no feature selection or 

only SOMTE feature selection is applied. However, the 

SE model performs significantly worse than the SVM 

and NN models across all feature selection scenarios. 

The p-values imply that the differences in performance 

between the SE model and the other three models are 

statistically significant in most cases, indicating that the 

SE model may not always be the optimal choice for 

classification tasks. Overall, the results emphasize the 

importance of selecting an appropriate ML algorithm 

and feature selection technique based on the specific 

characteristics of the data and the task at hand. 

Table 10. P-values for pairwise comparisons of 4 ML models based 
on balanced accuracy using the Wilcoxon signed-rank test. 

Comparison No features 

selection, No and 

SOMTE 

No features 

selection and 

SOMTE 

Features 

selection, and 

SOMTE 
Ensemble vs. 

RF 
p-value>=0.05 p-value<0.05 p-value<0.05 

Ensemble vs. 

SVM 
p-value>=0.05 p-value>=0.05 p-value<0.05 

Ensemble vs. 

NN 
p-value>=0.05 p-value>=0.05 p-value<0.05 

Table 11 presents the results of a Wilcoxon signed-

rank test comparing the performance of three SE models 

based on balanced accuracy. The models have different 

configurations regarding feature selection, NO, and 

SOMTE. The models are denoted as Model A, B, and C 

for easier understanding. 

 Model A: NO features selection, NO, and SOMTE 

 Model B: features selection, NO, and SOMTE 

 Model C: features selection and SOMTE 

The results of the test show that there are statistically 

significant differences between each pair of models: 

 Model A vs. Model B: the p-value is less than 0.05, 

indicating a significant difference between these two 

models. 

 Model A vs. Model C: the p-value is less than 0.05, 

suggesting a significant difference between these 

models. 

 Model B vs. Model C: again, the p-value is less than 

0.05, indicating a significant difference between 

these models. 

 In summary, the table results demonstrate that all 

three comparisons show statistically significant 

differences in the performance of the SE models 

based on balanced accuracy, as evidenced by the p-

values being less than 0.05. 

To sum up, the ML-based approach using SE with 

SMOTE has demonstrated the potential to enhance the 

accuracy and robustness of malware detection in robotic 

networks. Its strengths lie in addressing the class 

imbalance, leveraging the capabilities of multiple ML 

models, and mitigating overfitting. Nevertheless, this 

approach may encounter difficulties when dealing with 

high-dimensional datasets and demand considerable 

computational resources. Future research could 

investigate incorporating deep learning models and 

sophisticated feature selection techniques to boost the 

performance of the proposed approach. 

Table 11. P-values comparisons of three experiments SE models 

based on balanced accuracy using the Wilcoxon SE models based on 
balanced accuracy using the Wilcoxon signed-rank test. 

Comparison Model Configuration Result 
Model A vs. 

Model B 
NO features selection, NO, and SOMTE 

vs. features selection, NO, and SOMTE 
<0.05 

Model A vs. 

Model C 
NO features selection, NO, and SOMTE 

vs. features selection and SOMTE 
<0.05 

Model B vs. 

Model C 
features selection, NO, and SOMTE 

vs. features selection and SOMTE 
<0.05 

5. Conclusions 

In conclusion, this research introduces a novel approach 

to malware detection in robotic systems, employing SE 

with SMOTE data augmentation. This innovative 

method tackles the challenges of class imbalance, high 

dimensionality, data heterogeneity, and balancing 

detection accuracy with false positive rates. The 

assessment of a publicly accessible robotic systems 

dataset demonstrated that the proposed approach 

surpasses individual models and existing techniques 

regarding detection accuracy and false positive rates. 

Moreover, the study underscores the significance of 

incorporating ensemble methods and data augmentation 

for enhancing the performance and robustness of ML-

based approaches in robotic malware detection. Future 

research could delve into integrating alternative 

ensemble methods and feature selection techniques to 

optimize the performance of the proposed approach. We 

also employed the Wilcoxon signed rank and stability 

selection tests to verify the proposed approach's 

performance and ensure its reliability and stability. The 

results of these tests confirm that the proposed approach 

is both statistically significant and stable. Further 

research avenues could involve incorporating other 

ensemble methods and feature selection techniques, 

such as deep ensembles, to bolster the proposed 

approach's performance. 
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