
The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023 937

A Highly Parallelizable Hash Algorithm Based on

Latin Cubes

Ming Xu

Department of Mathematics and Physics,

Shijiazhuang Tiedao University, China

13400115751@126.com

Abstract: Latin cubes are the high-dimensional form of Latin squares. Latin cubes have discreteness, uniformity and 3D attribute.

There have been some applications of Latin squares in hash algorithms, but few applications of Latin cubes in this field. In this

paper, a highly parallelizable hash algorithm based on four Latin cubes of order 4 is proposed. The parallelism is reflected in

two aspects: on the one hand, the whole message is divided into several blocks, and all the blocks are processed in parallel; on

the other hand, each block is further divided into several channels, and these channels are also processed in parallel. The whole

hash procedure is based on four fixed Latin cubes. By the aid of uniformity and 3D attribute of Latin cubes, the algorithm has

good statistical performances and strong collision resistance. Furthermore, the parallel structure makes the algorithm have

satisfactory computation speed. Therefore the algorithm is quite suitable for the current applications of communication security.

Keywords: Hash algorithm, latin cubes, 3D attribute, parallelism.

Received February 28, 2023; accepted May 24, 2023

https://doi.org/10.34028/iajit/20/6/10

1. Introduction

Hash algorithm is a special kind of cryptographic

algorithm. It transforms a message with arbitrary length

into a hash value with fixed length. Hash algorithms

have important applications in many fields, such as file

checksum, authentication protocol and digital signature.

In recent years, accompanied with the rapid

development of blockchain technique, the importance of

hash algorithms has been realized by more and more

people. In many links of a blockchain, such as the

computation of node addresses and the proof of work in

Bitcoin mining, hash algorithms always play very

important roles.

Hash algorithms should satisfy compression,

irreversibility, collision resistance, etc. Among these

properties, collision resistance is crucial for the security

of hash algorithms. Many hash algorithms have been

attacked due to the weak ability of collision resistance

[18, 21, 24]. Chaotic systems have high sensitivity to

tiny changes in initial values and system parameters,

which can provide strong ability of collision resistance

for hash algorithms. Moreover, random-like behavior of

chaotic systems can provide good statistical

performance for hash algorithms. Then lots of hash

algorithms based on chaos have been proposed [5, 9, 10,

13]. Apart from chaos, there are also some other

instruments widely used in hash algorithms, such as

lattice theory, neural network and Latin squares.

In [19], Snášel designs a hash algorithm based on

quasigroups, i.e., Latin squares. To ensure security, the

algorithm uses Latin squares of large order. To reduce

complexity, the algorithm uses modular subtraction

Latin squares to replace ordinary Latin squares.

However, the special structure of modular subtraction

Latin squares brings security vulnerabilities to the

algorithm, consequently the algorithm is attacked by

Slaminková in [18]. The main reason for being attacked

is that the algorithm in [19] uses 2D mappings generated

from Latin squares to construct the compression

function. Latin cubes can overcome this defect

effectively.

Latin cubes are the high-dimensional form of Latin

squares. There have been some applications of Latin

squares in hash algorithms [7, 19], but few applications

of Latin cubes in this field. Analogous to Latin squares,

Latin cubes also have discreteness and uniformity,

which can make the hash algorithms have good

statistical performance. Unlike Latin squares, Latin

cubes have 3D attribute, which can make the hash

algorithms have strong diffusibility.

The structures of traditional hash algorithms, such as

Merkle-Damgard structure [16], HAIFA structure [4]

and Sponge structure [3], always belong to the

sequential model, that is, the current message unit

cannot be processed until the previous message units

have been completed. Sequential model is not very

suitable for parallel computing environment. In reality,

the CPUs in common use generally have a few to several

dozen cores, some special processors even have

hundreds of cores. To fully utilize the processing power

of multi-core processors, research and development of

the parallel hash algorithms become imperative [8, 12,

20, 22, 25].

In this paper, we use Latin cubes to construct a highly

parallel hash algorithm. The main contributions are

https://doi.org/10.34028/iajit/20/6/10

938 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

stated as follows:

1. For the first time, Latin cubes are utilized to construct

a hash algorithm. Latin cubes have discreteness and

uniformity, which are the basic requirements for the

cryptographic applications. In particular, Latin cubes

have 3D attribute, which can bring strong diffusivity

for the hash algorithm. Furthermore, Latin cubes

have close relations with some more complex

configurations in combinatorial design theory. The

attempts in this work can stimulate the research of

other configurations in hash algorithms, and even

other fields of cryptography.

2. In the hash algorithm, Latin cubes are used as 3D

state tables. The hash process is essentially the

shifting and selecting process of the state tables. By

the 3D attribute of Latin cubes, there are totally three

states to determine each iterative value in the hash

process, which contributes to the strong collision

resistance of the algorithm.

3. The structure of the hash algorithm is highly parallel,

then it can work efficiently in the parallel computing

environment. The parallelism of the algorithm is

reflected in two aspects: the whole message is

divided into several blocks, the processing of each

block is parallel; each block is divided into several

channels, the processing of each channel is parallel

too. The parallelism can improve the efficiency of the

algorithm greatly. Furthermore, it can make the hash

value have even sensitivity to the message units at

different positions.

4. The paper is organized as follows: In section 1, the

background is stated. In section 2, some basic

definitions and conclusions are introduced. In section

3, concrete process of the algorithm is described. In

section 4, performance of the algorithm is evaluated.

Finally, we conclude the work in section 5.

2. Preliminaries

The algorithm uses four Latin cubes of order 4 as the

state tables. The definitions of Latin square and Latin

cube are stated as follows:

 Definition 1: A Latin square of order n is an n×n array

(n rows and n columns) defined on n-set S={0, 1, ...,

n-1}, satisfying each number appears exactly once in

each row and each column.

 Definition 2: A Latin cube of order n is an n×n×n cube

(n rows, n columns and n files) defined on n-set S={0,

1, ..., n-1}, satisfying each number appears exactly

once in each row, each column and each file.

In a Latin cube A=(aijk)n×n×n, if any two subscripts are

fixed, then the element aijk will take all the numbers in S

when the other subscript varies from 0 to n-1.

By the two definitions, each plane of a Latin cube is

a Latin square. Therefore, Latin cubes have discreteness

and uniformity, as Latin squares do. In particular, Latin

cubes have 3D attribute.

There are totally 55296 Latin cubes of order 4 [14],

but not each of them is suitable for hash algorithms.

After a large number of experiments, we take the four

Latin cubes in Figure 1 to construct the proposed hash

algorithm. Each Latin cube is shown in terms of 4 Latin

squares.

Figure 1. The 4 Latin cubes in the algorithm.

Apart from Latin cubes, another technique used in the

proposed algorithm is Logistic map, which is defined by

Definition 3.

 Definition 3: The Logistic map is defined as:

𝑥𝑛 = 𝑢𝑥𝑛−1(1 − 𝑥𝑛−1) 𝑛 = 1, 2, 3, …

xn is a floating-point number in (0, 1). u is a system

parameter, 0≤u≤4. when u>3.573815, this system

exhibits chaotic characteristics.

Although Logistic map has some defects [9], it does

not influence security of the hash algorithm, because the

Logistic map is only used to generate some initial value

sequences. In the proposed algorithm, the core

components are the four Latin cubes of order 4, and the

Logistic map is only taken as a seed generator of the

hash algorithm.

3. The Hash Algorithm

3.1. Secret Key of the Algorithm

The secret key K consists of: system parameter

𝑢 0∊(3.574,4] and initial value 𝑥 0∊(0,1] of the Logistic

map; vector V of 80 bits which is expressed as a

concatenation of 40 2-bit variables Vi, that is,

V=V0V1...V39. The counts in the algorithm all start at 0.

3.2. Description of the Hash Process

The inputs of the algorithm are secret key K and a

message. The length of messages can be arbitrary. The

output of the algorithm is an N-bit hash value. To resist

(1)

A Highly Parallelizable Hash Algorithm Based on Latin Cubes 939

(3) (5)

(4)

birthday attacks, N should satisfy N≥128. Actually, N

can be set to arbitrary values greater than or equal to 128

in the proposed algorithm, as long as we adjust the

length of message block accordingly. For convenience,

we set N=128 in this paper. The proposed hash process

consists of: message extension, initialization, message

block processing, and hash value generation.

3.2.1. Message Extension

Given a message, we pad it to obtain a message M

satisfying that its length is a multiple of 2048 bits (256

bytes). Specifically, if the length of original message is

n bits, then we pad it with m bits (010101...01)2

satisfying (n+m) mod 2048=2048-64. The left 64 bits

are reserved to denote the length of original message.

The padded message M is then divided into several

blocks with length of 2048 bits, i.e., M=(M0, M1, ..., Ml-

1). For each Mi, we perform hash operations in parallel.

The intermediate hash value of Mi is denoted as Hi. As

can be seen, the block length is a large number, it is

because there are totally four parallel channels to

process each block in the proposed algorithm.

3.2.2. Initialization

We totally use 40 working Latin cubes to perform 40

transformations on message M. The 40 working Latin

cubes Li(i=0, ..., 39) are generated by vector

V=V0V1...V39 and the four Latin cubes in Figure 1. The

assignment of the 40 working Latin cubes is done

following Equation (2):

𝐿𝑖 ← 𝐴𝑦𝑖 (0 ≤ 𝑖 ≤ 39)

Apart from the assignment of 40 working Latin cubes,

the initialization also includes the generation of initial

value sequence. Assume there are l message blocks,

then we need to generate an initial value sequence with

length 40l. The concrete process is described as follows:

 Step 1: Firstly, iterate Logistic map n times. n is the

length of original message. The parameter and initial

value of Logistic map are u0 and x0 respectively.
Discard the n values, then continue iterating Logistic

map 40l times to generate a chaotic sequence x=(x0,

x1, ... , x40l-1).

 Step 2: Divide x into l sub-sequences sequentially,

each sub-sequence xi(0 ≤i< l) has length of 40.

 Step 3: Process each sub-sequence xi by Equation (3):

[𝑙𝑥𝑖 , 𝑓𝑥𝑖] = 𝑠𝑜𝑟𝑡(𝑥𝑖)

where [,]=sort() is the sequencing index function. After

ascending to xi, a new sequence fxi is obtained. lxi are the

index values of fxi. Denote lxi as lxi=(ci
0, c

i
1, ..., c

i
39).

 Step 4: For each element ci
j in lxi (0≤ j≤39, 0≤i<l),

take its first 8 bits, then divide the 8 bits into 4 2-bit

units, denoted as ci
j=(ci

 j,0, c
i
j,1, c

i
j,2, c

i
 j,3).

In the algorithm, each message block is divided into

several channels. Considering that the Central

Processing Unit (CPU) of our computer has 4 cores, we

set the number of channels to 4 in the algorithm

description. Actually, the number of channels can be

adjusted flexibly according to the running platform. The

sequences ci
j (0≤ j≤39, 0≤i<l) in Step 4 are used as the

initial value sequences on each channel. Specifically,

the first 2-bit units ci
j,0 are used as the initial value

sequence on channel 0, the next 2-bit units ci
j,1 are used

as the initial value sequence on channel 1, and so on.

3.2.3. Message Block Processing

In the proposed algorithm, the l message blocks (M0,

M1, ..., Ml-1) are processed in parallel. Each message

block consists of 2048 bits (256 bytes). Without loss of

generality, we take Mi as an instance to demonstrate the

message block processing. Mi is firstly divided into 256

characters (each character consists of 8 bits), i. e.

Mi=(mi
0, mi

1, ..., mi
255). For each character mi

j, we re-

divide it into 4 2-bit units, i.e. mi
j=(mi

j,0, m
i
j,1, m

i
j,2, m

i
j,3).

These units range from 0 to 3. Then Mi is divided into 4

channels:

 Channel 0: It consists of the first unit of each

character in Mi. We denote channel 0 as (mi
0, 0, m

i
1, 0,

mi
2, 0, ... , m

i
255, 0);

 Channel 1: It consists of the second unit of each

character in Mi. We denote channel 1 as (mi
0, 1, m

i
1, 1,

mi
2, 1, ... , m

i
255, 1);

 Channel 2: It consists of the third unit of each

character in Mi. We denote channel 2 as (mi
0, 2, m

i
1, 2,

mi
2, 2, ... , m

i
255, 2);

 Channel 3: It consists of the last unit of each

character in Mi. We denote channel 3 as (mi
0, 3, m

i
1, 3,

mi
2, 3, ... , m

i
255, 3).

Next, we process the 4 channels in parallel. To be

specific, we perform 40 transformations on each

channel as described in Tables 1, 2, 3, and 4.

The transformations on channel 0 are described by

Equations (4) and (5).

 Cycle 0:

{

𝑡0,0 = 𝐿0 (𝑐𝑖
0,0, 𝑚𝑖

0,0, 𝑚𝑖
1,0)

𝑡0,𝑗 = 𝐿0 (𝑡0,𝑗−1, 𝑚𝑖
𝑗,0, 𝑚𝑖

𝑗+1,0)(1 ≤ 𝑗 ≤ 254)

𝑡0,255 = 𝐿0 (𝑡0,254, 𝑚𝑖
255,0, 𝑡0,0)

 Cycle k: (1≤k≤39):

{

𝑡𝑘,0 = 𝐿𝑘 (𝑐𝑖
𝑘,0, 𝑡𝑘−1,0 , 𝑡𝑘−1,1)

𝑡𝑘,𝑗 = 𝐿𝑘 (𝑡𝑘,𝑗−1, 𝑡𝑘−1,𝑗 , 𝑡𝑘−1,𝑗+1)(1 ≤ 𝑗 ≤ 254)

𝑡𝑘,255 = 𝐿𝑘 (𝑡𝑘,254 , 𝑡𝑘−1,255, 𝑡𝑘,0)

In Equations (4) and (5), Li (0≤i≤39) are the 40 working

Latin cubes designated in Section 3.2.2, ci
 j, k (0 ≤ i≤ l-1,

0≤ j ≤39, 0≤ k ≤3) are the initial values generated in

Section 3.2.2. tk,j (0 ≤ k≤ 39, 0 ≤ j≤ 255) are the iterative

values.

The transformation formulas on the other channels

are similar to the formulas on channel 0.

(2)

940 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

(7)

(8)

(9)

(6)

Table 1. The 40 transformations on channel 0.

 mi
0, 0

mi

1, 0

mi
2, 0

…

mi

255, 0

L0

ci
0, 0

t0, 0

t0, 1

t0, 2

…

t0, 255

 L1

ci
1, 0

t1, 0

t1, 1

t1, 2

…

t1, 255

︙

︙

︙

︙

︙

…

︙

L39

ci

39, 0

t39, 0

t39, 1

t39, 2 …

t39, 255

Table 2. The 40 transformations on channel 1.

 mi
0, 1

mi

1, 1

mi
2, 1

… mi

255, 1

L0

ci
0, 1

t'0, 0

t'0, 1

t'0, 2

… t'0, 255

L1

ci
1, 1

t'1, 0

t'1, 1

t'1, 2

… t'1, 255

︙ ︙ ︙ ︙ ︙ … ︙

L39

ci
39, 1

t'39, 0

t'39, 1

t'39, 2

… t'39, 255

Table 3. The 40 transformations on channel 2.

 mi
0, 2

mi

1, 2

mi
2, 2

… mi

255, 2

L0

ci
0, 2

t''0, 0

t''0, 1

t''0, 2

… t''0, 255

 L1

ci
1, 2

t''1, 0

t''1, 1

t''1, 2

… t''1, 255

︙ ︙ ︙ ︙ ︙ … ︙
L39

ci

39, 2

t''39, 0

t''39, 1

t''39, 2

… t''39, 255

Table 4. The 40 transformations on channel 3.

 mi
0, 3

mi

1, 3

mi
2, 3

… mi

255, 3

L0

ci
0, 3

t'''0, 0

t'''0, 1

t'''0, 2

… t'''0, 255

 L1

ci
1, 3

t'''1, 0

t'''1, 1

t'''1, 2

… t'''1, 255

︙ ︙ ︙ ︙ ︙ … ︙

L39

ci
39, 3

t'''39, 0

t'''39, 1

t'''39, 2

… t'''39, 255

The output of each channel is the concatenation of

every other value in the last round of the iteration (In

Tables 1, 2, 3, and 4, we make marks on the outputs by

the boxes).

From Equation (5), it can be seen that each iterative

value tk,j is determined by three values. They are tk,j-1 (the

value on the left), tk-1,j (the value above), and tk-1,j+1 (the

value on the top right). After 40 iterations, each bit of

the outputs is related to all the bits of the message. Then

a tiny change in the message can result in a big

difference in the outputs of the four channels. It makes

the algorithm have strong collision resistance.

3.2.4. Hash Value Generation

After obtaining the outputs of the four channels, we

further compute the intermediate hash value Hi of Mi

(0≤i≤l-1) as follows:

1. Conduct XOR operations on outputs of the four

channels, results are denoted as (ai
0, a

i
1, ..., a

i
127), i.e.,

(𝑎0
𝑖 , … , 𝑎127

𝑖) = (𝑡39,0⨁𝑡39,0
′ ⨁𝑡39,0

′′ ⨁𝑡39,0
′′′ , …,

𝑡39,254⨁𝑡39,254
′ ⨁𝑡39,254

′′ ⨁𝑡39,254
′′′)

2. Choose one bit from each ai
j (0≤ j≤ 127) following

Equation (7), then connect them sequentially to

generate the 128-bit hash value Hi.

 1 mod 2 1

1 1 mod 2 0

i
a jj

h j i
a jj

 (0 ≤ 𝑗 ≤ 127)

In Equation (7), “&” denotes Bitwise AND. After all the

intermediate hash values are obtained, we use Equation

(8) to Equation (9) to compute the final hash value H.

𝐻 = 𝐻0⨂𝐻1⨂ ⋯ ⨂𝐻𝑙−1

where“⨂”is defined as:

⨂ = {
(𝐻⨁𝐻𝑖) << 1 𝑖 𝑚𝑜𝑑 2 == 0
(𝐻⨁𝐻𝑖) >> 1 𝑖 𝑚𝑜𝑑 2 == 1

From the algorithm description, it can be seen the

algorithm is highly parallelizable. The parallelism is

reflected in two aspects: the parallelism of different

message blocks and the parallelism of different channels

in each message block. If the positions of any two

message blocks are exchanged, the final hash value will

be totally different, because the hash process of each

message block is related to its initial value sequence,

and message blocks at different positions correspond to

different initial value sequences. For the same reason, if

the positions of any two channels in one message block

are exchanged, the final hash value will be different too.

Furthermore, parallelism makes each message block

and each channel have equivalent effects on the final

hash value.

4. Performance Evaluation

The algorithm is evaluated from the following aspects:

uniform distribution of hash values, sensitivity of hash

values to messages and secret keys, confusion and

diffusion properties, collision resistance and efficiency.

Meanwhile, we make comparisons between the

algorithm and several representative hash algorithms [1,

2, 6, 12, 23]. For ease of demonstrations, the secret key

K is set as: u0=3.99999, x0=0.123456789,

V=00.

A message M is chosen randomly as:

Shijiazhuang Tiedao University (STU) is a key

vocational university under the direct administration of

Hebei province. It was early established in 1950. Its

predecessor is the Chinese people’s Liberation Army

Railway Engineering Institute. STU is situated in

Chang’an District, Shijiazhuang, Hebei province.

4.1. Uniform Distribution of Hash Values

The uniformity is an important index for the security of

hash algorithms [15]. To evaluate the uniformity of hash

values, the algorithm is firstly implemented on message

M. The distributions of message M and its hash value

are plotted in Figure 2. As shown in Figure 2, the ASCII

code of message M spreads in a small range [32, 126],

while its hexadecimal hash value spreads uniformly.

Moreover, we also evaluate the uniformity in an extreme

situation, that is, we implement the algorithm on a

“blank space” message. The distributions of the special

message and its hash value are plotted in Figure 3. In the

extreme situation, the hash value still has uniform

distribution. All the experimental results in this section

demonstrate that there isn’t any leak of statistical

information in the proposed hash algorithm.

A Highly Parallelizable Hash Algorithm Based on Latin Cubes 941

a) Distribution of the message M in ASCII code.

b) Distribution of the hexadecimal hash value (eec22a0fd5dba31356cf67bb36028fae).

Figure 2. Distributions of the message M and hexadecimal hash value.

a) Distribution of the all “blank-space” message.

b) Distribution of the hexadecimal hash value (7439c75a7e245466423abcc6ab2d0615).

Figure 3. Distributions of the all “blank-space” message and hexadecimal hash value.

4.2. Hash Sensitivity

The sensitivity of hash values to messages and secret

keys is another important index for the security of hash

algorithms [24]. To evaluate sensitivity, we implement

the algorithm under the following different situations:

 Situation 1: The original message M.

 Situation 2: Change the first character “S” of M into

“T”.

 Situation 3: Change the full stop “.” at the end of M

into question mark “?”.

 Situation 4: Change the initial value x0 in secret key

K from “0.123456789” to “0.1234567890001”.

 Situation 5: Change the parameter u0 in secret key K

from “3.99999” to “3.99999000001”.

 Situation 6: Change the vector V in secret key K from

“00”

to

“1000000000000000000000000000000000000000”.

Table 5 lists the hexadecimal hash values under the six

situations and corresponding hamming distances. The

binary hash values are depicted in Figure 4. It can be

seen that subtle changes of messages or secret keys can

bring large differences in hash values, then the proposed

algorithm has high sensitivity to both messages and

secret keys.

Table 5. The hexadecimal hash values and corresponding hamming

distances under the six different situations.

Situation

Hash value

Hamming distance
 1 eec22a0fd5dba31356cf67bb36028fae

0

2 fbb490411d51710abfd8c7347495b80e

60

3 eec76910071486a00f4a480a556bb120

61

4 92ac92b07430a37d5a6b070c50ce9b6d

62

5 1109084680dafb16ba7aabc6252d141c

65

6 d056d4c793e73187e75a75285ddc77cd

65

942 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

(10)

(11)

(12)

(13)

(14)

(15)

Figure 4. Binary hash values under six different situations.

4.3. Confusion and Diffusion

Confusion and diffusion are two necessary properties of

general cryptographic algorithms [17] and not limited to

hash algorithms. The confusion and diffusion tests for

the proposed algorithm are conducted as follows:

choose a message randomly and compute its hash value;

modify one bit of the message randomly and compute

its hash value; make comparisons between the two hash

values, count the number of different bits at the same

position, then compute six metrics for confusion and

diffusion, which are Bmin, Bmax, Bave, ΔB, P and ΔP. The

six metrics are specifically defined by Equation (10) to

Equation (15).

𝐵𝑚𝑖𝑛 = min {𝐵1, 𝐵2, … , 𝐵𝑇}

𝐵𝑚𝑎𝑥 = max {𝐵1, 𝐵2, … , 𝐵𝑇}

𝐵𝑎𝑣𝑒 =
1

𝑇
 ∑ 𝐵𝑖

𝑇

𝑖=1

∆𝐵 = √
1

𝑇 − 1
 ∑ (𝐵𝑖 − 𝐵𝑎𝑣𝑒

𝑇

𝑖=1
)2

𝑃 =
𝐵𝑎𝑣𝑒

𝑁
× 100%

∆𝑃 = √
1

𝑇 − 1
 ∑ (𝐵𝑖

𝑇

𝑖=1
∕ 𝑁 − 𝑃)2 × 100%

In Equation (10) to Equation (15), Bi (i=1, ..., T) is the

number of changed bits, T is the testing times, and N is

the length of hash values. In the simulation experiments,

we set N=128, T=256, 512, 1024, 2048, respectively.

Table 6 lists experimental results of the six metrics. The

corresponding distributions of Bi are shown in Figure 5.

As shown in Table 6, the mean value of Bave is

63.9978, and the mean value of P is 49.9982%. The two

experimental results are extremely close to the ideal

values of Bave and P, which are 64 bits and 50%

respectively. The small values of ΔB and ΔP

demonstrate the stable capability of confusion and

diffusion. In Figure 5, the histogram of Bi is very close

to normal distribution centering on ideal value 64. All

the simulation results demonstrate that the algorithm has

satisfactory confusion and diffusion properties, then it

can resist linear or differential attacks effectively.

Table 6. Statistical results of Bi.

T 256 512 1024 2048 Mean

Bmin 51 51 48 47 43

Bmax 76 63.99609 64.02734 63.96680 64.00067

Bave 63.99609 5.398255 5.485012 5.458532 5.528058

ΔB 5.398255 5.398255 5.485012 5.458532 5.528058

P(%) 49.9969 49.9969 50.0214 49.9741 50.0005

ΔP(%) 4.2174 50.0214 49.9741 50.0005 49.9982

a) Plot of Bi.

b) Histogram of Bi.

Figure 5. Plot and histogram of Bi.

4.4. Collision Resistance

Collision resistance of a hash algorithm means that it is

very hard to find two different messages with the same

hash value [24]. To realize strong collision resistance,

the algorithm uses Latin cubes to conduct 40 rounds of

iteration on each channel. By the 3D attribute of Latin

cubes, each internal state in the iterative process is

related to three internal states on the left, on the top and

on the upper-right. Take channel 0 for example, each tk,

j in the iterative process is related to tk, j-1, tk-1, j, and tk-1,

j+1. The 3D attribute of Latin cubes strengthens the

avalanche effect greatly.

We evaluate the collision resistance of the algorithm

through 2048 repeated experiments: choose a message

randomly, compute its hash value in ASCII code format;

change one bit of the chosen message randomly,

A Highly Parallelizable Hash Algorithm Based on Latin Cubes 943

(16)

generate its hash value in ASCII code format as well;

make comparisons between the two hash values and

count the number of hits, i.e., number of same ASCII

characters at same position. The simulation results are

shown in Figure 6.

Figure 6. Distributions of the number of hits.

From Figure 6, there are 2 tests with 2 hits, 120 tests

with 1 hits, while in 1926 tests, there is not any hit. The

maximum of hits is 2, then the collision in the proposed

algorithm is quite low.

Furthermore, the absolute difference of the two hash

values is computed by Equation (16).

𝑑 = ∑ |𝑡(𝑎𝑖

𝑁

𝑖=1
− 𝑡(𝑎𝑖

′)|

In Equation (16), t() is a function which converts its

inputs into equivalent decimal values. ai is the ith ASCII

character in the original hash value, and ai' is the ith

ASCII character in the new hash value. Table 7 lists the

results of absolute difference d in 2048 tests. All the

experimental results demonstrate strong collision

resistance of the algorithm.

Table 7. Absolute differences of two hash values.

Max Min Mean Mean/character

2297 653 1366.6176 85.4136

4.5. Efficiency

All the simulation experiments are performed under

C99, running on a Personal Computer (PC) with Intel

Core i7-7500U, four-core, 2.70GHz, 8 GB RAM and

Microsoft Windows 10 operation system. To compare

the actual running speed, we use 6 different algorithms

to process 100KB message. The algorithms [1, 2, 6, 23]

are the candidates of SHA-3 in the final round, and the

algorithm [2] is the ultimate winner; the algorithm [12]

is a representative parallel hash algorithm, and the

degree of parallelism in [12] is 2. Partial source code of

hash algorithms [1, 2, 6, 23] are from [11]. All these

algorithms are implemented on the same platform for

2000 times, and the average running time of each

algorithm is listed in Table 8.

Table 8. Average running time.

Algorithm Ours Aumasson et al. [1] Bertoni et al. [2]

Time(S) 0.009 0.003 0.006

Algorithm Gauravaram et

al. [6]

Li and Ge [12] Wu [23]

Time(S) 0.016 0.01 0.112

From Table 8, it can be seen that the proposed

algorithm is faster than algorithms in [6, 12, 23], and

slower than algorithms in [1, 2]. The proposed algorithm

has satisfactory running speed. The high efficiency is

obtained mainly by the parallelism of the proposed

algorithm. The parallelism of the proposed algorithm

can take full advantage of the multicore computers. The

degree of parallelism depends on the number of cores in

a computer. Our computer has 4 cores, then in the

algorithm description, the number of channels in each

message block is set to 4. For a computer with more

cores, the number of channels can be set to a larger

value. Moreover, limited by the practical running

environment, the parallelism of different message

blocks cannot be displayed simultaneously. However,

we can compute the running time under 4n-core

environment in theory, because the cost of message

separation is very low, which can be ignored. To be

specific, if the computer has 4n cores, we can process n

message blocks simultaneously. Compared with the

running time under 4-core environment, the time will

reduce to 1/n approximately. The degree of parallelism

can be adjusted flexibly according to the number of

cores in the future, considering that the number of cores

in computers will be on the increase.

5. Conclusions and Future Work

In this paper, we propose a highly parallelizable hash

algorithm based on Latin cubes. This work has three

main advantages:

1. Introduce Latin cubes into hash algorithm design for

the first time.

2. The algorithm is highly parallel, and the degree of

parallelism can be adjusted flexibly according to the

number of cores in the computers. This feature is

quite adaptive to development trends of computers

and internet.

3. Latin cube is a typical configuration in combinatorial

design theory. It has close relations to some other

configurations, such as orthogonal array. The work in

this paper will stimulate the application research of

other combinatorial configurations, and these

research results will provide more possibilities for the

hash algorithm design.

In the algorithm, we use four specific Latin cubes which

are chosen by simulation experiments. In the sequential

studies, we will discuss which Latin cubes are suitable

for hash algorithms from the perspective of

combinatorial design theory. Moreover, Latin cubes

have close relations with some other combinatorial

944 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

configurations, such as orthogonal arrays. We will

further discuss the application research of other

configurations in hash algorithms.

References

[1] Aumasson J., Henzen L., Meier W., and Phan R.,

SHA-3 Proposal BLAKE, NIST, 2008.

https://perso.uclouvain.be/fstandae/source_codes/

hash_atmel/specs/blake.pdf

[2] Bertoni G., Daemen J., Peeters M., and Assche G.,

Keer R., Keccak Implementation Overview, NIST,

2012. https://keccak.team/files/Keccak

implementation-3.2.pdf,

[3] Bertoni G., Daemen J., Peeters M., and Assche G.,

Cryptographic Sponge Functions, NIST, 2011.

https://keccak.team/files/CSF-0.1.pdf

[4] Biham E. and Dunkelman O., “A Framework for

Iterative Hash Functions-HAIFA,” The 2nd NIST

Hash Workshop, 2006.

https://csrc.nist.rip/groups/ST/hash/documents/D

UNKELMAN_talk.pdf

[5] Chenaghlu M., Jamali S., and Khasmakhi N., “A

Novel Keyed Parallel Hashing Scheme Based on

a New Chaotic System,” Chaos, Solitons and

Fractals, vol. 87, pp. 216-225, 2016.

DOI:10.1016/j.chaos.2016.04.007

[6] Gauravaram P., Knudsen L.., Matusiewicz K.,

Mendel F., and Rechberger C., Groestl-a SHA-3

Candidate, NIST, 2011.

https://ehash.iaik.tugraz.at/wiki/Groestl

[7] Ghosh R., Verma S., Kumar R., Kumar S., and

Ram S., “Design of Hash Algorithm Using Latin

Square,” Procedia Computer Science, vol. 46, pp.

759-765, 2015.

https://doi.org/10.1016/j.procs.2015.02.144

[8] Huang Z., “A More Secure Parallel Keyed Hash

Function Based on Chaotic Neural Network,”

Communications in Nonlinear Science and

Numerical Simulation, vol. 16, no. 8, pp. 3245-

3256, 2011.

https://doi.org/10.1016/j.cnsns.2010.12.009

[9] Kocarev L. and Lian S., Chaos-Based

Cryptography: Theory, Algorithm and

Applications, Springer, 2011.

https://link.springer.com/book/10.1007/978-3-

642-20542-2

[10] Li Y., Deng S., and Xiao D., “A Novel Hash

Algorithm Construction Based on Chaotic Neural

Network,” Neural Computing and Applications,

vol. 20, pp. 133-141, 2011. DOI:

https://doi.org/10.1007/s00521-010-0432-2

[11] Li Z. and Yang Y., Programming Implement for

Typical Cryptographic Algorithms, National

Defense Industry Press, 2013.

[12] Li Y. and Ge G., “Cryptographic and Parallel Hash

Function Based on cross Coupled Map Lattices

Suitable for Multimedia Communication Security,”

Multimedia Tools and Applications, vol. 78, pp.

17973-17994, 2019.

https://doi.org/10.1007/s11042-018-7122-y

[13] Li Y., Ge G., and Xia D., “Chaotic Hash Function

Based on the Dynamic S-Box with Variable

Parameters,” Nonlinear Dynamics, vol. 84, no. 4,

pp. 2387-2402, 2016. DOI: 10.1007/s11071-016-

2652-1

[14] Mullen G. and Weber R., “Latin Cubes of Order ≤

5,” Discrete Mathematics, vol. 32, no. 3, pp. 291-

297, 1980. https://doi.org/10.1016/0012-

365X(80)90267-8

[15] NIST, “Secure Hash Standard,”

http://csrc.nist.gov/CryptoToolkit/tkhash.html,

Last Visited, 2023.

[16] Rivest R., “The MD4 Message-Digest Algorithm,”

LNCS, vol. 537, pp. 303-311, 1991.

https://doi.org/10.1007/3-540-38424-3_22

[17] Shannon C., “Communication Theory of Secrecy

Systems,” Bell System Technical Journal, vol. 28,

pp. 656-715, 1949.

[18] Slaminková I. and Vojvoda M., “Cryptanalysis of

a Hash Function Based on Isotopy of Quasigroups,”

Tatra Mountains Mathematical Publications, vol.

45, no. 1, pp. 137-149, 2010.

DOI:https://doi.org/10.2478/v10127-010-0010-0

[19] Snasel V., Abraham A., Dvorský J., Kromer P., and

Platoš J., “Hash Functions Based on Large

Quasigroups,” in Proceedings of the

Computational Science: 9th International

Conference Baton Rouge, Los Angeles, pp. 521-

529, 2009. DOI:https://doi.org/10.1007/978-3-

642-01970-8_51

[20] Teh J., Samsudin A., and Masoumi A., “Parallel

Chaotic Hash Function Based on the Shuffle-

Exchange Network,” Nonlinear Dynamics, vol. 81,

no. 3, pp. 1067-1079, 2015. DOI:10.1007/s11071-

015-2049-6

[21] Wang S., Li D., and Zhou H., “Collision Analysis

of a Chaos-Based Hash Function with both

Modification Detection and Localization

Capability,” Communications in Nonlinear

Science and Numerical Simulation, vol. 17, no. 2,

pp. 780-784, 2012.

https://doi.org/10.1016/j.cnsns.2011.06.017

[22] Wang Y., Wong K., and Xiao D., “Parallel Hash

Function Construction Based on Coupled Map

Lattices,” Communications in Nonlinear Science

and Numerical Simulation, vol. 16, no. 7, pp.

2810-2821, 2011.

https://doi.org/10.1016/j.cnsns.2010.10.001

[23] Wu H., The Hash Function JH1, NIST,

2011.http://www3.ntu.edu.sg/home/wuhj/researc

h/jh/jh_round3.pdf. 2011.

[24] Xiao D., Peng W., Liao X., and Xiang T.,

“Collision Analysis of One Kind of Chaos-Based

Hash Function,” Physics Letters A, vol. 374, no.

https://keccak.team/files/Keccak%20implementation-3.2.pdf,
https://keccak.team/files/Keccak%20implementation-3.2.pdf,
http://dx.doi.org/10.1016/j.chaos.2016.04.007
https://doi.org/10.1016/j.procs.2015.02.144
https://doi.org/10.1016/j.cnsns.2010.12.009
https://link.springer.com/book/10.1007/978-3-642-20542-2
https://link.springer.com/book/10.1007/978-3-642-20542-2
https://link.springer.com/article/10.1007/s11071-016-2652-1
https://link.springer.com/article/10.1007/s11071-016-2652-1
https://doi.org/10.1016/0012-365X(80)90267-8
https://doi.org/10.1016/0012-365X(80)90267-8
http://csrc.nist.gov/CryptoToolkit/tkhash.html,
https://doi.org/10.1007/3-540-38424-3_22
https://doi.org/10.2478/v10127-010-0010-0
http://dx.doi.org/10.1007/s11071-015-2049-6
http://dx.doi.org/10.1007/s11071-015-2049-6
https://doi.org/10.1016/j.cnsns.2011.06.017
https://doi.org/10.1016/j.cnsns.2010.10.001
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf.
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf.
https://www.sciencedirect.com/author/8904598500/xiaofeng-liao

A Highly Parallelizable Hash Algorithm Based on Latin Cubes 945

10, pp. 1228-1231, 2010.

https://doi.org/10.1016/j.physleta.2010.01.006

[25] Xu M., “A New Chaos-Based Image Encryption

Algorithm,” The International Arab Journal of

Information Technology, vol. 15, no. 3, pp. 493-

498, 2018.

https://www.iajit.org/PDF/May%202018%2C%2

0No.%203/11035.pdf

[26] Zhang P., Zhang X., and Yu J., “A Parallel Hash

Function with Variable Initial Values,” Wireless

Personal Communications: An International

Journal, vol. 96, no. 2, pp. 2289-2303, 2017.

https://doi.org/10.1007/s11277-017-4298-9

Ming Xu female, Born in China, 1981;

PhD in Applied Mathematics, Hebei

Normal University, Shijiazhuang, China,

the degree was earned in 2019; The

main research field: Cryptography.

https://doi.org/10.1016/j.physleta.2010.01.006
https://www.iajit.org/PDF/May%202018%2C%20No.%203/11035.pdf
https://www.iajit.org/PDF/May%202018%2C%20No.%203/11035.pdf
https://doi.org/10.1007/s11277-017-4298-9

