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Abstract: Latin cubes are the high-dimensional form of Latin squares. Latin cubes have discreteness, uniformity and 3D attribute. 

There have been some applications of Latin squares in hash algorithms, but few applications of Latin cubes in this field. In this 

paper, a highly parallelizable hash algorithm based on four Latin cubes of order 4 is proposed. The parallelism is reflected in 

two aspects: on the one hand, the whole message is divided into several blocks, and all the blocks are processed in parallel; on 

the other hand, each block is further divided into several channels, and these channels are also processed in parallel. The whole 

hash procedure is based on four fixed Latin cubes. By the aid of uniformity and 3D attribute of Latin cubes, the algorithm has 

good statistical performances and strong collision resistance. Furthermore, the parallel structure makes the algorithm have 

satisfactory computation speed. Therefore the algorithm is quite suitable for the current applications of communication security. 
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1. Introduction 

Hash algorithm is a special kind of cryptographic 

algorithm. It transforms a message with arbitrary length 

into a hash value with fixed length. Hash algorithms 

have important applications in many fields, such as file 

checksum, authentication protocol and digital signature. 

In recent years, accompanied with the rapid 

development of blockchain technique, the importance of 

hash algorithms has been realized by more and more 

people. In many links of a blockchain, such as the 

computation of node addresses and the proof of work in 

Bitcoin mining, hash algorithms always play very 

important roles. 

Hash algorithms should satisfy compression, 

irreversibility, collision resistance, etc. Among these 

properties, collision resistance is crucial for the security 

of hash algorithms. Many hash algorithms have been 

attacked due to the weak ability of collision resistance 

[18, 21, 24]. Chaotic systems have high sensitivity to 

tiny changes in initial values and system parameters, 

which can provide strong ability of collision resistance 

for hash algorithms. Moreover, random-like behavior of 

chaotic systems can provide good statistical 

performance for hash algorithms. Then lots of hash 

algorithms based on chaos have been proposed [5, 9, 10, 

13]. Apart from chaos, there are also some other 

instruments widely used in hash algorithms, such as 

lattice theory, neural network and Latin squares.  

In [19], Snášel designs a hash algorithm based on 

quasigroups, i.e., Latin squares. To ensure security, the 

algorithm uses Latin squares of large order. To reduce 

complexity, the algorithm uses modular subtraction  

 

Latin squares to replace ordinary Latin squares. 

However, the special structure of modular subtraction 

Latin squares brings security vulnerabilities to the 

algorithm, consequently the algorithm is attacked by 

Slaminková in [18]. The main reason for being attacked 

is that the algorithm in [19] uses 2D mappings generated 

from Latin squares to construct the compression 

function. Latin cubes can overcome this defect 

effectively. 

Latin cubes are the high-dimensional form of Latin 

squares. There have been some applications of Latin 

squares in hash algorithms [7, 19], but few applications 

of Latin cubes in this field. Analogous to Latin squares, 

Latin cubes also have discreteness and uniformity, 

which can make the hash algorithms have good 

statistical performance. Unlike Latin squares, Latin 

cubes have 3D attribute, which can make the hash 

algorithms have strong diffusibility.  

The structures of traditional hash algorithms, such as 

Merkle-Damgard structure [16], HAIFA structure [4] 

and Sponge structure [3], always belong to the 

sequential model, that is, the current message unit 

cannot be processed until the previous message units 

have been completed. Sequential model is not very 

suitable for parallel computing environment. In reality, 

the CPUs in common use generally have a few to several 

dozen cores, some special processors even have 

hundreds of cores. To fully utilize the processing power 

of multi-core processors, research and development of 

the parallel hash algorithms become imperative [8, 12, 

20, 22, 25]. 

In this paper, we use Latin cubes to construct a highly 

parallel hash algorithm. The main contributions are 
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stated as follows: 

1. For the first time, Latin cubes are utilized to construct 

a hash algorithm. Latin cubes have discreteness and 

uniformity, which are the basic requirements for the 

cryptographic applications. In particular, Latin cubes 

have 3D attribute, which can bring strong diffusivity 

for the hash algorithm. Furthermore, Latin cubes 

have close relations with some more complex 

configurations in combinatorial design theory. The 

attempts in this work can stimulate the research of 

other configurations in hash algorithms, and even 

other fields of cryptography.  

2. In the hash algorithm, Latin cubes are used as 3D 

state tables. The hash process is essentially the 

shifting and selecting process of the state tables. By 

the 3D attribute of Latin cubes, there are totally three 

states to determine each iterative value in the hash 

process, which contributes to the strong collision 

resistance of the algorithm. 

3. The structure of the hash algorithm is highly parallel, 

then it can work efficiently in the parallel computing 

environment. The parallelism of the algorithm is 

reflected in two aspects: the whole message is 

divided into several blocks, the processing of each 

block is parallel; each block is divided into several 

channels, the processing of each channel is parallel 

too. The parallelism can improve the efficiency of the 

algorithm greatly. Furthermore, it can make the hash 

value have even sensitivity to the message units at 

different positions. 

4. The paper is organized as follows: In section 1, the 

background is stated. In section 2, some basic 

definitions and conclusions are introduced. In section 

3, concrete process of the algorithm is described. In 

section 4, performance of the algorithm is evaluated. 

Finally, we conclude the work in section 5. 

2. Preliminaries 

The algorithm uses four Latin cubes of order 4 as the 

state tables. The definitions of Latin square and Latin 

cube are stated as follows:  

 Definition 1: A Latin square of order n is an n×n array 

(n rows and n columns) defined on n-set S={0, 1, ..., 

n-1}, satisfying each number appears exactly once in 

each row and each column. 

 Definition 2: A Latin cube of order n is an n×n×n cube 

(n rows, n columns and n files) defined on n-set S={0, 

1, ..., n-1}, satisfying each number appears exactly 

once in each row, each column and each file. 

In a Latin cube A=(aijk)n×n×n, if any two subscripts are 

fixed, then the element aijk will take all the numbers in S 

when the other subscript varies from 0 to n-1. 

By the two definitions, each plane of a Latin cube is 

a Latin square. Therefore, Latin cubes have discreteness 

and uniformity, as Latin squares do. In particular, Latin 

cubes have 3D attribute. 

There are totally 55296 Latin cubes of order 4 [14], 

but not each of them is suitable for hash algorithms. 

After a large number of experiments, we take the four 

Latin cubes in Figure 1 to construct the proposed hash 

algorithm. Each Latin cube is shown in terms of 4 Latin 

squares. 

 
Figure 1. The 4 Latin cubes in the algorithm. 

Apart from Latin cubes, another technique used in the 

proposed algorithm is Logistic map, which is defined by 

Definition 3. 

 Definition 3: The Logistic map is defined as:  

𝑥𝑛 = 𝑢𝑥𝑛−1(1 − 𝑥𝑛−1) 𝑛 = 1, 2, 3, … 

xn is a floating-point number in (0, 1). u is a system 

parameter, 0≤u≤4. when u>3.573815, this system 

exhibits chaotic characteristics. 

Although Logistic map has some defects [9], it does 

not influence security of the hash algorithm, because the 

Logistic map is only used to generate some initial value 

sequences. In the proposed algorithm, the core 

components are the four Latin cubes of order 4, and the 

Logistic map is only taken as a seed generator of the 

hash algorithm. 

3. The Hash Algorithm 

3.1. Secret Key of the Algorithm 

The secret key K consists of: system parameter 

𝑢 0∊(3.574,4] and initial value 𝑥 0∊(0,1] of the Logistic 

map; vector V of 80 bits which is expressed as a 

concatenation of 40 2-bit variables Vi, that is, 

V=V0V1...V39. The counts in the algorithm all start at 0. 

3.2. Description of the Hash Process 

The inputs of the algorithm are secret key K and a 

message. The length of messages can be arbitrary. The 

output of the algorithm is an N-bit hash value. To resist 

(1) 
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(3) (5) 

 

(4) 

 

birthday attacks, N should satisfy N≥128. Actually, N 

can be set to arbitrary values greater than or equal to 128 

in the proposed algorithm, as long as we adjust the 

length of message block accordingly. For convenience, 

we set N=128 in this paper. The proposed hash process 

consists of: message extension, initialization, message 

block processing, and hash value generation. 

3.2.1. Message Extension 

Given a message, we pad it to obtain a message M 

satisfying that its length is a multiple of 2048 bits (256 

bytes). Specifically, if the length of original message is 

n bits, then we pad it with m bits (010101...01)2 

satisfying (n+m) mod 2048=2048-64. The left 64 bits 

are reserved to denote the length of original message. 

The padded message M is then divided into several 

blocks with length of 2048 bits, i.e., M=(M0, M1, ..., Ml-

1). For each Mi, we perform hash operations in parallel. 

The intermediate hash value of Mi is denoted as Hi. As 

can be seen, the block length is a large number, it is 

because there are totally four parallel channels to 

process each block in the proposed algorithm. 

3.2.2. Initialization 

We totally use 40 working Latin cubes to perform 40 

transformations on message M. The 40 working Latin 

cubes Li(i=0, ..., 39) are generated by vector 

V=V0V1...V39 and the four Latin cubes in Figure 1. The 

assignment of the 40 working Latin cubes is done 

following Equation (2):  

𝐿𝑖 ← 𝐴𝑦𝑖 (0 ≤ 𝑖 ≤ 39) 

Apart from the assignment of 40 working Latin cubes, 

the initialization also includes the generation of initial 

value sequence. Assume there are l message blocks, 

then we need to generate an initial value sequence with 

length 40l. The concrete process is described as follows:  

 Step 1: Firstly, iterate Logistic map n times. n is the 

length of original message. The parameter and initial 

value of Logistic map are u0 and x0 respectively. 
Discard the n values, then continue iterating Logistic 

map 40l times to generate a chaotic sequence x=(x0, 

x1, ... , x40l-1). 

 Step 2: Divide x into l sub-sequences sequentially, 

each sub-sequence xi(0 ≤i< l) has length of 40.  

 Step 3: Process each sub-sequence xi by Equation (3):  

[𝑙𝑥𝑖 , 𝑓𝑥𝑖] = 𝑠𝑜𝑟𝑡(𝑥𝑖) 

where [ , ]=sort() is the sequencing index function. After 

ascending to xi, a new sequence fxi is obtained. lxi are the 

index values of fxi. Denote lxi as lxi=(ci
0, c

i
1, ..., c

i
39). 

 Step 4: For each element ci
j in lxi (0≤ j≤39, 0≤i<l), 

take its first 8 bits, then divide the 8 bits into 4 2-bit 

units, denoted as ci
j=(ci

 j,0, c
i
j,1, c

i
j,2, c

i
 j,3). 

In the algorithm, each message block is divided into 

several channels. Considering that the Central 

Processing Unit (CPU) of our computer has 4 cores, we 

set the number of channels to 4 in the algorithm 

description. Actually, the number of channels can be 

adjusted flexibly according to the running platform. The 

sequences ci
j (0≤ j≤39, 0≤i<l) in Step 4 are used as the 

initial value sequences on each channel. Specifically, 

the first 2-bit units ci
j,0 are used as the initial value 

sequence on channel 0, the next 2-bit units ci
j,1 are used 

as the initial value sequence on channel 1, and so on.  

3.2.3. Message Block Processing 

In the proposed algorithm, the l message blocks (M0, 

M1, ..., Ml-1) are processed in parallel. Each message 

block consists of 2048 bits (256 bytes). Without loss of 

generality, we take Mi as an instance to demonstrate the 

message block processing. Mi is firstly divided into 256 

characters (each character consists of 8 bits), i. e. 

Mi=(mi
0, mi

1, ..., mi
255). For each character mi

j, we re-

divide it into 4 2-bit units, i.e. mi
j=(mi

j,0, m
i
j,1, m

i
j,2, m

i
j,3). 

These units range from 0 to 3. Then Mi is divided into 4 

channels: 

 Channel 0: It consists of the first unit of each 

character in Mi. We denote channel 0 as (mi
0, 0, m

i
1, 0, 

mi
2, 0, ... , m

i
255, 0); 

 Channel 1: It consists of the second unit of each 

character in Mi. We denote channel 1 as (mi
0, 1, m

i
1, 1, 

mi
2, 1, ... , m

i
255, 1); 

 Channel 2: It consists of the third unit of each 

character in Mi. We denote channel 2 as (mi
0, 2, m

i
1, 2, 

mi
2, 2, ... , m

i
255, 2); 

 Channel 3: It consists of the last unit of each 

character in Mi. We denote channel 3 as (mi
0, 3, m

i
1, 3, 

mi
2, 3, ... , m

i
255, 3). 

Next, we process the 4 channels in parallel. To be 

specific, we perform 40 transformations on each 

channel as described in Tables 1, 2, 3, and 4.  

The transformations on channel 0 are described by 

Equations (4) and (5). 

 Cycle 0: 

{

𝑡0,0 = 𝐿0 (𝑐𝑖
0,0, 𝑚𝑖

0,0, 𝑚𝑖
1,0)

𝑡0,𝑗 = 𝐿0 (𝑡0,𝑗−1, 𝑚𝑖
𝑗,0, 𝑚𝑖

𝑗+1,0)(1 ≤ 𝑗 ≤ 254)

𝑡0,255 = 𝐿0 (𝑡0,254, 𝑚𝑖
255,0, 𝑡0,0)

 

 Cycle k: (1≤k≤39):  

{

𝑡𝑘,0 = 𝐿𝑘 (𝑐𝑖
𝑘,0, 𝑡𝑘−1,0 , 𝑡𝑘−1,1 )

𝑡𝑘,𝑗 = 𝐿𝑘 (𝑡𝑘,𝑗−1, 𝑡𝑘−1,𝑗 , 𝑡𝑘−1,𝑗+1)(1 ≤ 𝑗 ≤ 254)

𝑡𝑘,255 = 𝐿𝑘 (𝑡𝑘,254 , 𝑡𝑘−1,255, 𝑡𝑘,0)

 

In Equations (4) and (5), Li (0≤i≤39) are the 40 working 

Latin cubes designated in Section 3.2.2, ci
 j, k (0 ≤ i≤ l-1, 

0≤ j ≤39, 0≤ k ≤3) are the initial values generated in 

Section 3.2.2. tk,j (0 ≤ k≤ 39, 0 ≤ j≤ 255) are the iterative 

values. 

The transformation formulas on the other channels 

are similar to the formulas on channel 0.  

(2) 
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(7) 

(8) 

(9) 

(6) 

Table 1. The 40 transformations on channel 0. 

  mi
0, 0

 
mi

1, 0
 

mi
2, 0

 
…

 
mi

255, 0
 

L0
 

ci
0, 0

 
t0, 0

 
t0, 1

 
t0, 2

 
…

 
t0, 255

 L1
 

ci
1, 0

 
t1, 0

 
t1, 1

 
t1, 2

 
…

 
t1, 255

 
︙

 
︙

 
︙

 
︙

 
︙

 
…

 
︙

 
L39

 
ci

39, 0
 

t39, 0
 

t39, 1
 

t39, 2 …
 

t39, 255
 

Table 2. The 40 transformations on channel 1. 

  mi
0, 1

 
mi

1, 1
 

mi
2, 1

 
… mi

255, 1
 

L0
 

ci
0, 1

 
t'0, 0

 
t'0, 1

 
t'0, 2

 
… t'0, 255 

L1
 

ci
1, 1

 
t'1, 0

 
t'1, 1

 
t'1, 2

 
… t'1, 255

 
︙ ︙ ︙ ︙ ︙ … ︙ 

L39
 

ci
39, 1

 
t'39, 0

 
t'39, 1

 
t'39, 2

 
… t'39, 255

 

Table 3. The 40 transformations on channel 2.  

  mi
0, 2

 
mi

1, 2
 

mi
2, 2

 
… mi

255, 2
 

L0
 

ci
0, 2

 
t''0, 0

 
t''0, 1

 
t''0, 2

 
… t''0, 255

 L1
 

ci
1, 2

 
t''1, 0

 
t''1, 1

 
t''1, 2

 
… t''1, 255

 
︙ ︙ ︙ ︙ ︙ … ︙ 
L39

 
ci

39, 2
 

t''39, 0
 

t''39, 1
 

t''39, 2
 

… t''39, 255
 

Table 4. The 40 transformations on channel 3. 

  mi
0, 3

 
mi

1, 3
 

mi
2, 3

 
… mi

255, 3 

L0
 

ci
0, 3

 
t'''0, 0

 
t'''0, 1

 
t'''0, 2

 
… t'''0, 255

 L1
 

ci
1, 3

 
t'''1, 0

 
t'''1, 1

 
t'''1, 2

 
… t'''1, 255

 
︙ ︙ ︙ ︙ ︙ … ︙ 

L39
 

ci
39, 3

 
t'''39, 0

 
t'''39, 1

 
t'''39, 2

 
… t'''39, 255

 

The output of each channel is the concatenation of 

every other value in the last round of the iteration (In 

Tables 1, 2, 3, and 4, we make marks on the outputs by 

the boxes).
  

From Equation (5), it can be seen that each iterative 

value tk,j is determined by three values. They are tk,j-1 (the 

value on the left), tk-1,j (the value above), and tk-1,j+1 (the 

value on the top right). After 40 iterations, each bit of 

the outputs is related to all the bits of the message. Then 

a tiny change in the message can result in a big 

difference in the outputs of the four channels. It makes 

the algorithm have strong collision resistance. 

3.2.4. Hash Value Generation 

After obtaining the outputs of the four channels, we 

further compute the intermediate hash value Hi of Mi 

(0≤i≤l-1) as follows:
 
 

1. Conduct XOR operations on outputs of the four 

channels, results are denoted as (ai
0, a

i
1, ..., a

i
127), i.e., 

(𝑎0
𝑖 , … , 𝑎127

𝑖 ) = (𝑡39,0⨁𝑡39,0
′ ⨁𝑡39,0

′′ ⨁𝑡39,0
′′′ , …,  

𝑡39,254⨁𝑡39,254
′ ⨁𝑡39,254

′′ ⨁𝑡39,254
′′′ ) 

2. Choose one bit from each ai
j (0≤ j≤ 127) following 

Equation (7), then connect them sequentially to 

generate the 128-bit hash value Hi.
 
 

 
  1                    mod 2 1 

1 1          mod 2 0 

i
a jj

h j i
a jj

 












  

                            (0 ≤ 𝑗 ≤ 127)   

In Equation (7), “&” denotes Bitwise AND. After all the 

intermediate hash values are obtained, we use Equation 

(8) to Equation (9) to compute the final hash value H.
 
 

𝐻 = 𝐻0⨂𝐻1⨂ ⋯ ⨂𝐻𝑙−1 

where“⨂”is defined as: 

⨂ = {
(𝐻⨁𝐻𝑖) << 1  𝑖 𝑚𝑜𝑑 2 == 0
(𝐻⨁𝐻𝑖) >> 1  𝑖 𝑚𝑜𝑑 2 == 1

 

From the algorithm description, it can be seen the 

algorithm is highly parallelizable. The parallelism is 

reflected in two aspects: the parallelism of different 

message blocks and the parallelism of different channels 

in each message block. If the positions of any two 

message blocks are exchanged, the final hash value will 

be totally different, because the hash process of each 

message block is related to its initial value sequence, 

and message blocks at different positions correspond to 

different initial value sequences. For the same reason, if 

the positions of any two channels in one message block 

are exchanged, the final hash value will be different too. 

Furthermore, parallelism makes each message block 

and each channel have equivalent effects on the final 

hash value. 

4. Performance Evaluation 

The algorithm is evaluated from the following aspects: 

uniform distribution of hash values, sensitivity of hash 

values to messages and secret keys, confusion and 

diffusion properties, collision resistance and efficiency. 

Meanwhile, we make comparisons between the 

algorithm and several representative hash algorithms [1, 

2, 6, 12, 23]. For ease of demonstrations, the secret key 

K is set as: u0=3.99999, x0=0.123456789, 

V=0000000000000000000000000000000000000000. 

A message M is chosen randomly as: 

Shijiazhuang Tiedao University (STU) is a key 

vocational university under the direct administration of 

Hebei province. It was early established in 1950. Its 

predecessor is the Chinese people’s Liberation Army 

Railway Engineering Institute. STU is situated in 

Chang’an District, Shijiazhuang, Hebei province. 

4.1. Uniform Distribution of Hash Values 

The uniformity is an important index for the security of 

hash algorithms [15]. To evaluate the uniformity of hash 

values, the algorithm is firstly implemented on message 

M. The distributions of message M and its hash value 

are plotted in Figure 2. As shown in Figure 2, the ASCII 

code of message M spreads in a small range [32, 126], 

while its hexadecimal hash value spreads uniformly. 

Moreover, we also evaluate the uniformity in an extreme 

situation, that is, we implement the algorithm on a 

“blank space” message. The distributions of the special 

message and its hash value are plotted in Figure 3. In the 

extreme situation, the hash value still has uniform 

distribution. All the experimental results in this section 

demonstrate that there isn’t any leak of statistical 

information in the proposed hash algorithm. 
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a) Distribution of the message M in ASCII code.

 
b) Distribution of the hexadecimal hash value (eec22a0fd5dba31356cf67bb36028fae). 

Figure 2. Distributions of the message M and hexadecimal hash value. 

  
a) Distribution of the all “blank-space” message.

 
b) Distribution of the hexadecimal hash value (7439c75a7e245466423abcc6ab2d0615). 

Figure 3. Distributions of the all “blank-space” message and hexadecimal hash value.
 

 

4.2. Hash Sensitivity 

The sensitivity of hash values to messages and secret 

keys is another important index for the security of hash 

algorithms [24]. To evaluate sensitivity, we implement 

the algorithm under the following different situations: 

 Situation 1: The original message M. 

 Situation 2: Change the first character “S” of M into 

“T”. 

 Situation 3: Change the full stop “.” at the end of M 

into question mark “?”. 

 Situation 4: Change the initial value x0 in secret key 

K from “0.123456789” to “0.1234567890001”. 

 Situation 5: Change the parameter u0 in secret key K 

from “3.99999” to “3.99999000001”. 

 Situation 6: Change the vector V in secret key K from 

“0000000000000000000000000000000000000000”

to 

“1000000000000000000000000000000000000000”. 

Table 5 lists the hexadecimal hash values under the six 

situations and corresponding hamming distances. The 

binary hash values are depicted in Figure 4. It can be 

seen that subtle changes of messages or secret keys can 

bring large differences in hash values, then the proposed 

algorithm has high sensitivity to both messages and 

secret keys.  

Table 5. The hexadecimal hash values and corresponding hamming 

distances under the six different situations. 

Situation
 

Hash value
 

Hamming distance
 1 eec22a0fd5dba31356cf67bb36028fae

 
0 

2 fbb490411d51710abfd8c7347495b80e
 

60 

3 eec76910071486a00f4a480a556bb120
 

61 

4 92ac92b07430a37d5a6b070c50ce9b6d
 

62 

5 1109084680dafb16ba7aabc6252d141c
 

65 

6 d056d4c793e73187e75a75285ddc77cd
 

65 
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(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

 
Figure 4. Binary hash values under six different situations. 

4.3. Confusion and Diffusion  

Confusion and diffusion are two necessary properties of 

general cryptographic algorithms [17] and not limited to 

hash algorithms. The confusion and diffusion tests for 

the proposed algorithm are conducted as follows: 

choose a message randomly and compute its hash value; 

modify one bit of the message randomly and compute 

its hash value; make comparisons between the two hash 

values, count the number of different bits at the same 

position, then compute six metrics for confusion and 

diffusion, which are Bmin, Bmax, Bave, ΔB, P and ΔP. The 

six metrics are specifically defined by Equation (10) to 

Equation (15).
 
 

𝐵𝑚𝑖𝑛 = min {𝐵1, 𝐵2, … , 𝐵𝑇} 

𝐵𝑚𝑎𝑥 = max {𝐵1, 𝐵2, … , 𝐵𝑇}
 

𝐵𝑎𝑣𝑒 =
1

𝑇
 ∑  𝐵𝑖

𝑇

𝑖=1  

∆𝐵 = √
1

𝑇 − 1
 ∑  (𝐵𝑖 − 𝐵𝑎𝑣𝑒

𝑇

𝑖=1
)2

 

𝑃 =
𝐵𝑎𝑣𝑒

𝑁
× 100%

 

∆𝑃 = √
1

𝑇 − 1
 ∑  (𝐵𝑖

𝑇

𝑖=1
∕ 𝑁 − 𝑃)2 × 100%

 

In Equation (10) to Equation (15), Bi (i=1, ..., T) is the 

number of changed bits, T is the testing times, and N is 

the length of hash values. In the simulation experiments, 

we set N=128, T=256, 512, 1024, 2048, respectively. 

Table 6 lists experimental results of the six metrics. The 

corresponding distributions of Bi are shown in Figure 5.  

As shown in Table 6, the mean value of Bave is 

63.9978, and the mean value of P is 49.9982%. The two 

experimental results are extremely close to the ideal 

values of Bave and P, which are 64 bits and 50% 

respectively. The small values of ΔB and ΔP 

demonstrate the stable capability of confusion and 

diffusion. In Figure 5, the histogram of Bi is very close 

to normal distribution centering on ideal value 64. All 

the simulation results demonstrate that the algorithm has 

satisfactory confusion and diffusion properties, then it 

can resist linear or differential attacks effectively. 

Table 6. Statistical results of Bi. 

T 256 512 1024 2048 Mean 

Bmin 51 51 48 47 43 

Bmax 76 63.99609 64.02734 63.96680 64.00067 

Bave 63.99609 5.398255 5.485012 5.458532 5.528058 

ΔB 5.398255 5.398255 5.485012 5.458532 5.528058 

P(%) 49.9969 49.9969 50.0214 49.9741 50.0005 

ΔP(%) 4.2174 50.0214 49.9741 50.0005 49.9982 

 
a) Plot of Bi. 

 
b) Histogram of Bi. 

Figure 5. Plot and histogram of Bi. 

4.4. Collision Resistance 

Collision resistance of a hash algorithm means that it is 

very hard to find two different messages with the same 

hash value [24]. To realize strong collision resistance, 

the algorithm uses Latin cubes to conduct 40 rounds of 

iteration on each channel. By the 3D attribute of Latin 

cubes, each internal state in the iterative process is 

related to three internal states on the left, on the top and 

on the upper-right. Take channel 0 for example, each tk, 

j in the iterative process is related to tk, j-1, tk-1, j, and tk-1, 

j+1. The 3D attribute of Latin cubes strengthens the 

avalanche effect greatly.  

We evaluate the collision resistance of the algorithm 

through 2048 repeated experiments: choose a message 

randomly, compute its hash value in ASCII code format; 

change one bit of the chosen message randomly, 
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(16) 

generate its hash value in ASCII code format as well; 

make comparisons between the two hash values and 

count the number of hits, i.e., number of same ASCII 

characters at same position. The simulation results are 

shown in Figure 6. 

 

Figure 6. Distributions of the number of hits. 

From Figure 6, there are 2 tests with 2 hits, 120 tests 

with 1 hits, while in 1926 tests, there is not any hit. The 

maximum of hits is 2, then the collision in the proposed 

algorithm is quite low. 

Furthermore, the absolute difference of the two hash 

values is computed by Equation (16).
 

𝑑 = ∑ |𝑡(𝑎𝑖

𝑁

𝑖=1
− 𝑡(𝑎𝑖

′)| 

In Equation (16), t() is a function which converts its 

inputs into equivalent decimal values. ai is the ith ASCII 

character in the original hash value, and ai' is the ith 

ASCII character in the new hash value. Table 7 lists the 

results of absolute difference d in 2048 tests. All the 

experimental results demonstrate strong collision 

resistance of the algorithm. 

Table 7. Absolute differences of two hash values. 

Max Min Mean Mean/character 

2297 653 1366.6176 85.4136 

4.5. Efficiency 

All the simulation experiments are performed under 

C99, running on a Personal Computer (PC) with Intel 

Core i7-7500U, four-core, 2.70GHz, 8 GB RAM and 

Microsoft Windows 10 operation system. To compare 

the actual running speed, we use 6 different algorithms 

to process 100KB message. The algorithms [1, 2, 6, 23] 

are the candidates of SHA-3 in the final round, and the 

algorithm [2] is the ultimate winner; the algorithm [12] 

is a representative parallel hash algorithm, and the 

degree of parallelism in [12] is 2. Partial source code of 

hash algorithms [1, 2, 6, 23] are from [11]. All these 

algorithms are implemented on the same platform for 

2000 times, and the average running time of each 

algorithm is listed in Table 8.  

Table 8. Average running time. 

Algorithm Ours Aumasson et al. [1] Bertoni et al. [2] 

Time(S) 0.009 0.003 0.006 

Algorithm Gauravaram et 

al. [6] 

Li and Ge [12] Wu [23] 

Time(S) 0.016 0.01 0.112 

From Table 8, it can be seen that the proposed 

algorithm is faster than algorithms in [6, 12, 23], and 

slower than algorithms in [1, 2]. The proposed algorithm 

has satisfactory running speed. The high efficiency is 

obtained mainly by the parallelism of the proposed 

algorithm. The parallelism of the proposed algorithm 

can take full advantage of the multicore computers. The 

degree of parallelism depends on the number of cores in 

a computer. Our computer has 4 cores, then in the 

algorithm description, the number of channels in each 

message block is set to 4. For a computer with more 

cores, the number of channels can be set to a larger 

value. Moreover, limited by the practical running 

environment, the parallelism of different message 

blocks cannot be displayed simultaneously. However, 

we can compute the running time under 4n-core 

environment in theory, because the cost of message 

separation is very low, which can be ignored. To be 

specific, if the computer has 4n cores, we can process n 

message blocks simultaneously. Compared with the 

running time under 4-core environment, the time will 

reduce to 1/n approximately. The degree of parallelism 

can be adjusted flexibly according to the number of 

cores in the future, considering that the number of cores 

in computers will be on the increase.  

5. Conclusions and Future Work 

In this paper, we propose a highly parallelizable hash 

algorithm based on Latin cubes. This work has three 

main advantages: 

1. Introduce Latin cubes into hash algorithm design for 

the first time. 

2. The algorithm is highly parallel, and the degree of 

parallelism can be adjusted flexibly according to the 

number of cores in the computers. This feature is 

quite adaptive to development trends of computers 

and internet. 

3. Latin cube is a typical configuration in combinatorial 

design theory. It has close relations to some other 

configurations, such as orthogonal array. The work in 

this paper will stimulate the application research of 

other combinatorial configurations, and these 

research results will provide more possibilities for the 

hash algorithm design. 

In the algorithm, we use four specific Latin cubes which 

are chosen by simulation experiments. In the sequential 

studies, we will discuss which Latin cubes are suitable 

for hash algorithms from the perspective of 

combinatorial design theory. Moreover, Latin cubes 

have close relations with some other combinatorial 
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configurations, such as orthogonal arrays. We will 

further discuss the application research of other 

configurations in hash algorithms. 
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