
890                                                   The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023 

 

An Effective Reference-Point-Set (RPS) Based Bi-

Directional Frequent Itemset Generation 

Ambily Balaram 

Department of Computer Science and Engineering, 
Coimbatore Institute of Technology, Anna University, India 

ambilybalaram@gmail.com 

Nedunchezhian Raju 

Department of Computer Science and Engineering, 
Coimbatore Institute of Technology, Anna University, India 

nedunchezhian@cit.edu.in 

 

Abstract: Data Mining (DM) is a combination of several fields that effectively extracts hidden patterns from vast amounts of 

historical data. One of the DM activities used to produce association rules is Association Rule Mining (ARM). To significantly 

reduce time and space complexities, the proposed method utilizes an effective bi-directional frequent itemset generation 

approach. The dataset is explicitly bifurcated into dense and sparse regions in the process of mining frequent itemset. One more 

feature is proposed in this paper which sensibly predetermines a candidate subset called, Reference-Points-Set (RPS), to reduce 

the complexities associated with mining of frequent itemsets. The RPS helps to reduce the number of scans over the actual 

dataset. The novelty is to look at possible candidates during the initial database scans, which can cut down on the number of 

additional database scans that are required. According to experimental data, the average scan count of the proposed method is 

respectively, 24% and 65%, lower than that of Dynamic Itemset Counting (DIC) and M-Apriori, across different support counts. 

The proposed method typically results in a 10% reduction in execution time over DIC and is three times more efficient than M-

Apriori. These results significantly outperform those of their predecessors, which strongly supports the proposed approach when 

creating frequent itemsets from large datasets. 
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1. Introduction 

In today's rapidly evolving technological and business 

world, the power of data, information and knowledge 

inferred out of the data are well understood and the same 

is applied in business and scientific activities. Due to the 

technological advancements, a huge amount of data is 

generated, collected, stored and analyzed in real world 

applications. Statistics, Artificial Intelligence (AI), 

Machine Learning (ML), database technologies, and some 

other technologies are used in the field of Data Mining 

(DM). DM functionalities like Association Rule Mining 

(ARM) [1, 2, 6], clustering [11], classification [11], 

regression, and outlier detection [11] can be used to extract 

the hidden knowledge from a large amount of data. 

Typically, an association rule finds the affinity between 

data points. Association rule generation comprises of two 

phases: 

1. Mining of the itemset that are frequent according to the 

user-specified minimum threshold  

2. The process of deriving strong rules from the frequent 

itemsets discovered in the first step of ARM. 

The benchmark ARM algorithms are Apriori [2], Dynamic 

Itemset Counting (DIC) [4], and FP- Growth method [12]. 

The Apriori algorithm is the sentinel algorithm that follows 

the bottom-up method to mine frequent itemsets through a 

generate-and-test approach from a large amount of 

transactional data. The Apriori Algorithm scans the dataset 

iteratively as the frequent itemsets are mined 

incrementally. The generation of candidates and counting 

of their support are really time and space consuming 

processes. Many methods have been proposed to address 

these difficulties, including many Apriori variants. Some 

of the methods include hash-based itemset counting [18], 

partitioning [20], and sampling [23]. DIC is an extension 

of Apriori algorithm that permits addition and omission of 

candidate itemsets at multiple stages of the database scans 

with an objective to reduce the time complexity. In order 

to eventually organize the itemsets into frequent or 

infrequent, it uses four distinct data structures.  

The paper proposes an effective frequent itemset 

generation approach using Transactional Bucket (TB) and 

Reference-Point-Set (RPS) to find frequent itemsets with 

minimum number of data source scans of the transactional 

data source. A set of reference point candidates, RPS, 

produced from Reference Point (RP), is used to guide 

the mining process further. These RPS is derived using 

the weightage of certain buckets in the TB. The length 

of RP, derived through the combination formula, nCr, is 

used to generate RPS from every itemset in the TB. The 

method bifurcates the data into dense and sparse regions. 

The suggested methodology is combined with DIC, to 

make a hybrid approach that better demonstrates the 

benefits of the proposed approach.  

The novelty in the proposed method is that in the early 

runs of the database scan itself it looks at the possible 

potential candidates of varying sizes. The process of TB 
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construction and RPS formation cuts down the 

requirement for additional database scans. The 

hybridization is accomplished by enhancing DIC with the 

following features:  

1. Buckets are additionally created. 

2. RPS are generated anticipating the reduction in the 

number of database scans.  

The effectiveness of the method is theoretically and 

experimentally proved, and the results show that a 

significant increase in performance over its predecessors. 

The paper is organized as follows: Section 2 presents 

the relevant background work. In section 3, the definition 

and problem statement are explained. In section 4, the 

proposed method is explained. Section 5 deals with results 

and discussion. Section 6 concludes the paper.  

2. Literature Review 

ARM [1, 4] is applied on a dataset to detect the affinity, 

association or correlation among variables of the 

dataset that essentially focuses on market-basket 

analysis. Retailing, clustering, classification, cross 

marketing, and catalog design are some of the uses of 

ARM. The Market-basket analysis approach involves 

observing and researching consumer shopping habits, 

thus identifying correspondence between items in their 

baskets. Over the years, several methods for 

discovering strong association rules [13, 19, 24, 28] 

have been proposed. A few benchmark papers are 

explained in this section. 

Zaki [26] proposed hybrid search strategies that 

used both BFS and DFS. Using lattice traversal 

technique, frequent itemsets and their subsets were 

generated. The issue has been broken down into sub-

issues, such as prefix-based and maximum clique-

based partitions. With the decrease in the support 

count, which accounts for the time complexity, large 

number of frequent itemsets was generated.  

In [21], the Index-BitTableFI algorithm used bit -

wise operations and it exploited the BitTable vertically 

and horizontally. A combination of BFS and DFS was 

used for the generation of frequent itemsets with index 

array support. The BitTable-based algorithm cannot 

perform well in the event of large datasets as there is a 

massive memory requirement to retain the BitTable 

representation.  

Chen and Xiao [7] have proposed an algorithm for 

Bitmap Itemset Support Counting (BISC) consisting of 

three techniques, namely BISC1, BISC2 and 

technology for projection. All frequent DFS-based 

element sets are contained in BISC1. In BISC2, the 

database consisted of two elements, namely the prefix 

and the suffix.  

Wang et al. [24] investigated the significant issue of 

extracting frequent item sets from a large uncertain 

database using the Possible World Semantics (PWS) 

concept. Also, two incremental mining algorithms has 

been proposed for discovering Probabilistic Frequent 

Itemset (PFIs), to avoid having to run the entire mining 

algorithm over on a new database.  

To get over the drawbacks of the traditional Apriori 

algorithm, Maolegi and Arkok [17] introduced an 

upgraded Apriori algorithm, called M-Apriori. The 

algorithm's primary goal was to shorten the amount of 

time needed to scan the entire database in finding 

frequently itemsets. When compared to the original 

Apriori, the, the M-Apriori utilized 67.38% less time, 

making it more effective and less time-consuming. A 

detailed comparative study in the performance of the 

proposed method and M-Apriori are made in the 

results and discussions section. 

Webb and Vreeken [25] proposed the branch-and-

bound OPUS Miner algorithm that used a DFS search 

strategy and pruning mechanisms to generate self-

sufficient item sets that summarized the key 

associations in the data.  

Leeuwen and Galbrun [13] proposed an approach 

where attributes were divided into two sets that could 

provide two separate views in order to define the data 

structure of the same object set. The translation tables 

were used to include both unidirectional and 

bidirectional rules with a translation of the two views. 

To pick the translation tables, a score based Minimum 

Definition Length (MDL) concept was suggested 

along with the translator algorithm to find good 

models.  

Utilizing a variety of cooccurrences and kernel item 

occurrences in at least one transaction, Phan and Le 

[19] presented a NOV-FI technique to swiftly find 

common itemsets from transactional databases. The 

proposed method addressed the problem of 

discovering frequent itemsets on search space items 

with at least a minimum support and without reusing 

for mining the succeeding time.  

In the study [5], the paper proposed a method of 

Recent Maximum Frequent Itemsets Mining 

(RMFIsM) that worked with two matrixes to store each 

transaction's data and frequent 1-itemsets respectively. 

To achieve successful results, the authors performed a 

series of experiments  

Zhang et al. [27] presented HashEclat, an 

approximation Eclat method based on MinHash that 

could quickly estimate the size of the intersection set 

and change the parameters to address the tradeoff 

between mining accuracy and execution time.  

The study in [3] explored numerous connections 

between sliding window size, genetic algorithm 

limitations, and notion drift and described a method for 

mining common itemsets from streaming transaction 

data using genetic algorithms.  

In [22], a novel Fast Incremental Updating Frequent 

Pattern growth (FIUFP-growth) based on Incremental 

Conditional Pattern tree (ICP-tree) was proposed. By 

mining frequent sets gradually, the tree produced 

incremental association rule mining. Additionally, the 
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plan reduced the amount of time and resources needed 

to build their sub-trees. 

In their study, Zhao et al. [28] provided a 

methodical, in-depth, and thorough investigation on 

DM technologies. The proposed mining method 

reduced the noise in data, and also the precision is kept 

very high, indicating the greatest accuracy of the 

method. 

The study in the paper [8] offered a comprehensive 

framework that used Generic Itemset Mining based on 

Reinforcement Learning (GIM-RL) to train agents to 

extract itemsets. Since the investigation was iterative, 

it was possible that GIM-RL recovered the necessary 

itemsets from datasets. When changes were made to 

existing item sets, either additions or deletions, the 

proposed environment informed agents about the 

appropriate itemsets for the target kinds. With the aid 

of successive trial-and-error phases and rewards for 

different actions, agents learned how to maximize 

cumulative benefits. As a consequence, the most 

necessary item sets were generated. 

Li et al. [15] proposed a matrix-based strong 

association rule extraction approach to process and 

represent information, setting the minimal support to 

10%, the minimum confidence to 80%, and obtaining 

all frequent item sets from the data set. 

Magdy et al. [16] proposed the Closed Candidates-

based Incremental Frequent Itemset Mining technique 

(CC-IFIM) to reduce candidate generation and boost 

the reliability of the obtained global frequent itemsets. 

The proposed methodology is combined with DIC, 

one of the traditional frequent itemset methods, to 

make a hybrid approach that better demonstrates the 

benefits of the proposed approach. The following 

subsection 2.1 of the DIC algorithm provides an 

explanation of its basic operation. 

2.1. Dynamic Itemset Counting (DIC) 

The DIC [4] approach is used to produce frequent 

itemsets with fewer transaction databases scans. It 

eliminates some of the drawbacks faced by Apriori. 

When each transaction is read from the dataset, at 

various stages of a scan, the itemsets are added and 

pruned dynamically. Like Apriori, two user specified 

measures are used. When all its subsets are frequent 

and its support count is greater or equal to the 

threshold, minsupp, the candidate itemset is considered 

as frequent itemset. The DIC introduces multiple 

stopping points, M, which indicates the number of 

virtual partitions in the dataset. In the respective 

counters, the support of each item collection is counted 

and retained.  

The method follows an incremental approach in 

adding and deleting the itemset in the above-

mentioned stopping points. The DIC method follows 

the anti-monotone property stating that all of a set's 

subgroups must be frequent in order for a set of items 

to be frequent. The general Algorithm (1) of DIC is 

presented below [10]. 

Algorithm 1: Dynamic Itemset Counting  

Input: transactions from database M, Stopping Points 

 Threshold, minimum support threshold  

Output: c, frequent itemsets 

1: SS=ɸ // solid square (frequent) 

2: SC=ɸ // solid circle (infrequent) 

3: DS = ɸ // dashed square (suspected frequent) 

4: DC= {all 1-itemsets} // dashed circle (suspected infrequent) 

5: While (DS! =0) or (DC! =0) do begin 

6:     read M transactions from database into T 

7:     for all transactions t ϵ T do begin 

//increment the respective counters of the itemsets 

marked with dash 

8:         for each itemset c in DS or DC do begin 

9:             if (c ϵ t) then 

10:              c. counter++; 

11:       for each itemset c in DC 

12:          if (c. counter ≥ threshold) then 

13:              move c from DC to DS; 

14:              if (any immediate superset sc of c has all of its 

subsets in SS or DS) then 

15:                  add a new itemsets c in DC; 

16:      end 

17:      for each itemset c in DS 

18:            if (c has been counted through all transactions) then 

19:                move it into SS; 

20:      for each itemset c in DC 

21:            if (c has been counted through all transactions) then 

22:                move it into SC; 

23:       end 

24:  end  

25:  Answer = {c ϵ SS};  

Normally, the number of scans over the transaction 

databases, the number of candidates itemsets 

produced, the support-confidence threshold settings 

and the time and space complexities are the major 

issues in most ARM algorithms. To overcome these 

issues the paper proposes an enhanced RPS based bi-

directional scanning method.  

3. Definitions and Problem Statement 

The formal description of some of the significant terms 

used in this paper and the problem definition are given 

in this section.  

3.1. Definitions  

Let D be the transactional data source and I be the item 

domain, I={i1, i2, …. in}. Let T be the set of 

transactions, T={T1, T2,……Tn}. An association rule 

is an expression of implication of the type A B, 

where A  B, B  I, and A  B= . To generate 

association rules, first the frequent itemsets have to be 

mined from the data source D. Table 1 shows an 

example of the transactional data Source, D, as the 
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running example to illustrate the concepts of the 

method clearly [11].  

Table 1. Transactional date source, D [11]. 

TID List of items TID List of items 

T1 {I1, I2, I5} T7 {I1, I3} 

T2 {I2, I4, I6} T8 {I1, I2, I3, I5} 

T3 {I2, I3} T9 {I1, I2, I3} 

T4 {I1, I2, I4} T10 {I1, I2, I4, I6} 

T5 {I1, I3} T11 {I5, I6} 

T6 {I2, I3} T12 {I3, I4, I5} 

The above table contains twelve transactions and 

each transaction is a subset of I is {I1, I2, I3, I4, I5, 

I6} and the Transactional Identifier, TID ={T1, T2, 

T3, T4, T5, T6, T7, T8, T9, T10, T11, T12}. Assume 

that minsupp is 2. 

 Support is a measure that provides the occurrence 

frequency of an itemset in the table, T. Support 

(A→B) =P (A∪B), defines the joint probability of 

the itemset being present in the transactions. For 

example, itemset {I1} is in T1, T4, T5, T7, T8, T9, 

and T10, therefore, support ({I1}) = 7. Itemset {I1, 

I2} is in T1, T4, T8, T9 and T10, therefore, support 

({I1, I2})=5. 

 Confidence measures the strength of an Assertion 

Rule, i.e., Confidence (A→B)=P (B|A), defines the 

conditional probability of itemsets in the 

transactions. 

 Frequent Itemsets: an itemset is frequent if it 

satisfies the defined minimum support threshold. 

i.e., itemsets’ support is greater than or equal to the 

predefined minimum support threshold value, 

minsupp. For example, itemset {I2, I3} is in T3, T6, 

T8, and T9. support ({I2, I3}) is 4>2, therefore, {I2, 

I3} is a frequent itemset. 

 Infrequent Itemsets: an itemset is infrequent if 

itemsets’ support is less than the predefined 

minimum support threshold value, minsupp. For 

example, itemset {I5, I6} is in T11. Support ({I5, 

I6}) is 1<2, therefore, {I5, I6} is an infrequent 

itemset.  

3.2. Problem Statement 

The major challenges encountered by the existing 

methods are: 

1. Huge number of candidates itemset generation.  

2. Multiple scans over transactional database. 

3. Tedious support computations for each candidate 

in the candidate set.  

The problem is to propose an enhanced ARM method 

to effectively generate frequent itemsets where it 

applies the construction of RPS that encompasses the 

current and anticipated future candidates in order to 

reduce unnecessary scans over the input dataset. The 

number of candidates for which the frequency needs to 

be examined is also reduced.  

4. The Proposed Method 

In the proposed method, the total transactions in the 

dataset, are bifurcated into sparse and dense regions 

based on buckets generated, where a TB is data 

structure which stores the transaction according to the 

transaction length. Let D be the dataset and DR and 

SR be the bifurcated regions of dense and sparse 

respectively. Also, a set called, RPS, is constructed 

logically from the estimated RP. RP is the mid-length 

of items. The RPS includes the combinations of all 

items of length RP. As a result, the total candidates, 

Ctotal includes the complete collection of RPS and the 

higher length candidates generated in kth Pass. For 

instance, if the candidate set for examination of 

support generated in pass 1 is Ck, and the RP length 

candidates is RPS, where RPS>k. So, the total number 

of candidates to be examined is  

Ctotal=|Ck|+|RPS| 

The proposed method is illustrated in Figure 1.  

 

Figure 1. The proposed method. 

4.1. Reference-Point- Set (RPS) Based Bi-

Directional Frequent Itemset Generation 

Using TB and RPS, to decrease the number of 

transactional dataset scans and hence the search 

space, the paper suggests an innovative approach. The 

major goal is to evaluate probable candidates during 

the initial database scan passes, which can cut down 

on the number of additional database scans that are 

required. Using Greedy approach, the potential 

candidates are accumulated in each iteration and in 

every stage of each pass. The proposed method 

includes the following steps:  

1. Creation and filling of TB according to the 

transaction length. 

2. Reference point computation from the defined item 

(1) 
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domain and RPS generation.  

3. Bifurcation of the transactions database into dense 

and sparse regions, using TB, respectively.  

4. Parallel application of DIC on higher length 

candidates and reference point candidate set 

respective to DR and SR.  

4.1.1. Transactional Bucket (TB) Creation and 

Filling 

Initially, the data Source DS is scanned to identify L1, 

1-length frequent itemsets. Next, |L1| buckets, B1, 

B2,…….., B|L1| are created and filled with TIDs 

appropriately. For instance, the bucket B1 keeps TIDs 

of transaction having one item alone where Bn keeps 

TIDs of transaction having n items. Each TBi is a 

vector. The size of the vector differs from 0 to |L1|. 

4.1.2. Reference Point Computation and Reference-

Point-Set (RPS) Generation 

Subsequently, RPS is coined with the reference to RP. 

The RP is estimated as 

RP= ceil (∑ (Bid ∗ Wid))
max
id=1  

Where, 

 Wid= (Bid*|TBid|)/ ∑ (Bid ∗
max
id=1 TBid) 

Wid is the WeightID, the weightage of particular bucket 

ID from the total TB and max denotes the maximum 

count of transactional buckets. Bid refers to the 

Transactional Bucket ID and |TBid| denotes the number 

of transactions in the transactional bucket ID, Bid. 

4.1.3. Bifurcation of the Transactions Database into 

DR and SR 

From the information derived from TBs, the dataset 

D is logically organized into DR and SR. Here 

standard deviation is applied for dividing the D into 

DR and SR. 

4.1.4. Parallel Application of DIC 

Next, the typical DIC method is applied on DR, SR, 

and RPS for finding the frequent itemsets of higher 

length. The information obtained from DIC is 

exchanged between DR and SR to maintain 

consistency in the mining process. The entire mining 

process will be terminated when no information exists 

to share between DR and SR. The proposed method 

applies DIC as the first step to generate 1-length 

frequent sets, L1, which in turn provide the basis for 

constructing the data structure namely Transactional 

Buckets. The structure of the data structures is 

depicted in Figure 2. Once the first scan of 

transactional data base is completed, the RP is 

computed using Equation (2). For instance, for the 

transactional Data Source, D, the RP obtained is 3. 

 

Bucket id: Bi, 1 ≥i<n 

Filled with TID of i-

length transactions 

 

Figure 2. Transactional bucket structure. 

So, for all 6 items, I1 through I6, items of length 

three is computed using combination formula, nCr. 

As a result, 120, candidate itemsets are generated. In 

Pass 2, according to the transactional buckets created 

in Pass 1, the entire data source is logically bifurcated 

into Dense Regions (DR) and Sparse Regions (SR). 

Here standard deviation is applied on the TB for 

division of SR and DR. Before the data source is 

bifurcated into regions, the transactional buckets are 

arranged in descending order of the transactional 

Bucket IDs (Bid). The details of TBs generated for 

the given dataset is given in the Table 2. 

Table 2. Transactional buckets specifications. 

Bid Tid Count Region 

B6  0 DR 

B5  0 

B4 T8, T10 2 

B3 T1, T2, T4, T9, T12 5 

B2 T3, T5, T6, T7, T11 5 SR 

B1  0 

Similar to DIC, Stopping Points (SPs) are defined 

on the dense and sparse regions. The typical DIC 

method is applied over blocks of DR, DR-SP1, DR-

SP2, and so on in dense region, and so forth where 

each block is marked with a stopping point. 

The partial higher length candidate itemsets 

generated during the first pass on DS and RPS, 

generated with the help of RP are considered for the 

generation of frequent itemsets. At the end of pass 2, 

L2 and partial higher length candidates C3 are 

obtained from both DR and SR regions. 

Simultaneously, higher length frequent itemsets are 

also obtained from RP computations. The entire 

process continues with higher passes to generate 

higher length itemsets until no further information 

exists to exchange between regions. The higher length 

frequent itemsets produced using RP computation can 

be further processed until no itemsets satisfy the 

minimum support threshold. 

5. Results and Discussions 

5.1. Experimental Setup 

The experiment was run on a Windows 10 PC with an 

Intel(R) Core (TM) i3-8130U CPU running at 

(2) 

(3) 
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2.20GHz, 2201 MHz, with 2 cores and 4 logical 

processors. Python was used as the Integrated 

Development Environment (IDE) to implement the 

proposed method. Three benchmark datasets from 

frequent itemset mining dataset repository, known as 

UCI repository, used to experiment the performance 

of the proposed method [9], are Accidents, 

T1014D100K and Retail. Table 3 shows the summary 

of the datasets taken for performance evaluation. 

Table 3. Dataset summary. 

Datasets |T| Size No. of attributes 

Accidents 340183 33.8MB 573 

T10I4D100K 100000 3.83MB 250 

Retail 88162 3.97MB 200 

The performance of the proposed method is verified 

against the performance of the benchmark methods, M-

Apriori and DIC. 

The performance metrices applied are time of 

execution measured in seconds and total number of 

database scans count with datasets that differs in number 

of transactions, their size and the number of attributes.  

The study was evaluated for five different minimum 

support threshold values ranging from 10 to 50 for each 

dataset. The stopping point, M, is set to 50000, 25000, 

and 20000 for the datasets Accidents, T10I4D100K and 

Retail, respectively. 

Time and scan count were used as the foundation for 

an analysis of how well the suggested method 

performed. The total number of database scans 

performed to complete frequent itemset creation and 

pattern matching of the candidate itemsets are used to 

calculate the scan count. The time performance analysis 

is measured in seconds by the time it takes to generate 

frequent item sets. 

Table 4. Performance evaluations in terms of time and scan count for accidents. 

Datasets 

 
Minsupp Performance of 

Proposed Method DIC M-Apriori 

Scan Count Time (sec.) Scan Count Time (sec.) Scan Count Time (sec.) 

Accidents 

(340183*573) 

M=50000 

0 7 8452.37 15.5 10006.25 25 31245.53 

20 5.5 6469.27 12 8552.33 22 24568.83 

30 4 2997.19 9.5 4989.17 18.5 19457.57 

40 3.5 1715.28 8 2251.39 16 14586.24 

50 3.5 997.21 8 1587.74 15 9887.89 

Table 5. Performance evaluations in terms of time and scan count for T10I4D100K. 

Datasets 

 
Minsupp Performance of 

Proposed Method DIC M-Apriori 

Scan Count Time (sec.) Scan Count Time (sec.) Scan Count Time (sec.) 

T10I4D100K 

(100000*250) 

M=25000 

10 5.5 7129.69 11 9002.65 21 15782.47 

20 5 5126.10 8.5 6732.287 18 11003.69 

30 4.5 1988.23 7.5 2446.212 15 9881.324 

40 4 957.89 8 1380.078 14.5 7881.26 

50 3 968.47 8 1087.5 14 5669.36 

With various support measures, the performance of 

association rule mining is analyzed. It demonstrates 

that there has been a considerable decrease in the 

number of scans across the three data sources. 

Similarly, there is considerable amount of reduction in 

time taken by proposed method when compared to DIC 

and M-Apriori. Table 4, 5, and 6 provide the 

performance evaluations in terms of time and scan 

count for three datasets, Accidents, T10I4D100K and 

Retail, respectively. 

Table 4 shows that when the support count rose 

from 10 to 50, the scan count significantly fell from 7 

to 3.5, and the execution time decreased from 8452.37 

to 997.21 for the dataset Accident with a higher 

number of transactions, attributes, and stopping points. 

Experimental evidence shows that the scan count in 

DIC is 60% higher and the scan count in M-Apriori is 

four times higher than the suggested technique for all 

support count ranges. In terms of execution time in 

seconds, DIC and M-Apriori, on average, show 

increases of 15% and four times higher, respectively, 

over the proposed method. 

From Table 5, for dataset T10I4D100K with a 

smaller number of transactions, attributes and stopping 

point count than Accidents, the scan count decreased 

from 5.5 to 3 and execution time also decreased from 

7129.69 to 968.47 for increasing support count ranges. 

Comparing the scan count of proposed method, DIC 

shows an increase of 42% and was four times greater 

for M-Apriori. For execution time expressed in 

seconds, DIC shows a 9 % increase than proposed 

method, on an average and M-Apriori shows an 

execution time of three times increase than proposed 

method. 

From Table 6, for dataset Retail with a smaller 

number of transactions, attributes and stopping point 

count than T10I4D100K, the scan count decreased 

from 5 to 3 and execution time also decreased from 

10140.2 to 981.344 for increasing support count 

ranges. Comparing the scan count of proposed method, 

DIC shows an increase of 46% and was four times 

greater in M-Apriori.  
 

 

 



896                                                 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023 

 

Table 6. Performance evaluations in terms of time and scan count 

for retail. 

Datasets 

 
Minsupp 

Performance of 

Proposed 

Method 
DIC M-Apriori 

Scan 

Count 

Time 

(sec.) 

Scan 

Count 

Time 

(sec.) 

Scan 

Count 
Time (sec.) 

Retail 

(88162*
200) 

M=2000

0 

10 5 10140.2 10.5 10569.8 20.5 16258.23 

20 4 2998.2 8 3997.20 17 13558.37 

30 3.5 1128.69 8 1512.74 16.5 10008.82 

40 3 1001.58 7 1299.04 15 8479.19 

50 3 981.344 7 1059.30 14.5 8002.96 

For execution time expressed in seconds, DIC 

shows a 5 % increase than proposed method on an 

average and M-Apriori shows an execution time of 

three times increase than proposed method.  

Figures 3, 4, and 5 for the datasets Accidents, 

T10I4D100K, and Retail, respectively, show visually 

how the proposed technique performed against DIC 

and M-Apriori. Based on support in percent against 

time in seconds and scan count for each dataset, 

performance is assessed. The aforementioned graphs 

show how M-Apriori, DIC, and the proposed method 

performed. The proposed method performs better than 

DIC and M-Apriori because there are fewer candidate 

generations and earlier mining process convergence. 

 

Figure 3. Performance evaluation on data source accident. 

 

Figure 4. Performance evaluation on data source T1014D100K.  

 

Figure 5. Performance evaluation on data source Retail. 

The main contributions that lead to the proposed 

method's reduced scan count when compared to DIC 

and M-Apriori are the bucket creation, reference point 

computation, and parallel application of DIC on DR 

and SR. Additionally, the earlier generation of RPS 

make it simpler to compute frequent higher length 

itemsets more quickly. The bifurcated DR and SR 

regions provide a clear perspective of mining since it 

uses a Pincer-like idea [14] to mine candidates from 

either end. 

6. Conclusions 

Strong-ARM techniques are introduced with a 

common objective of generating frequent itemsets 

from large datasets with minimum complexities. They 

enhance the performance by reducing the search space 

in terms of reduction in number of dataset scans 

required and reduction in number of candidates as well. 

In the proposed method, a tradeoff between the time 

complexity and the space complexity is attempted and 

demonstrated. The proposed method, using TB and 

RPS, increases the mining efficiency by reducing the 

search space with the help of simple data structure such 

as TB. In turn, the space requirements are also reduced 

to a larger extend by RP computation that could 

produce higher length potential candidates in the early 

passes of the mining process. Experimental evidence 

shows that the average scan count in DIC and M-

Apriori is respectively, 24% and 65%, higher than that 

of the proposed technique for different support counts. 

In terms of execution time in seconds, DIC on average 

shows a 10% increase while M-Apriori displays an 

execution time that is three times higher than that of the 

proposed technique.  

The experimental results reveal the potential of the 

proposed approach through considerable reduction of 

scan count and time complexity. However, in the real-

world dataset, with an increase in the item domain of 

the transactional database, the generation of frequent 

itemset out of numerous potential candidates may lead 

to memory space consumption. As a result, the 

proposed method is recommended for in-depth 

research for optimally utilizing the memory space 

while examining very large datasets. 

Furthermore, in the future, the research could be 

extended in applying the proposed method on 

incremental mining whenever there is a need to update 

the dataset incrementally.  
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