
890 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

An Effective Reference-Point-Set (RPS) Based Bi-

Directional Frequent Itemset Generation

Ambily Balaram

Department of Computer Science and Engineering,
Coimbatore Institute of Technology, Anna University, India

ambilybalaram@gmail.com

Nedunchezhian Raju

Department of Computer Science and Engineering,
Coimbatore Institute of Technology, Anna University, India

nedunchezhian@cit.edu.in

Abstract: Data Mining (DM) is a combination of several fields that effectively extracts hidden patterns from vast amounts of

historical data. One of the DM activities used to produce association rules is Association Rule Mining (ARM). To significantly

reduce time and space complexities, the proposed method utilizes an effective bi-directional frequent itemset generation

approach. The dataset is explicitly bifurcated into dense and sparse regions in the process of mining frequent itemset. One more

feature is proposed in this paper which sensibly predetermines a candidate subset called, Reference-Points-Set (RPS), to reduce

the complexities associated with mining of frequent itemsets. The RPS helps to reduce the number of scans over the actual

dataset. The novelty is to look at possible candidates during the initial database scans, which can cut down on the number of

additional database scans that are required. According to experimental data, the average scan count of the proposed method is

respectively, 24% and 65%, lower than that of Dynamic Itemset Counting (DIC) and M-Apriori, across different support counts.

The proposed method typically results in a 10% reduction in execution time over DIC and is three times more efficient than M-

Apriori. These results significantly outperform those of their predecessors, which strongly supports the proposed approach when

creating frequent itemsets from large datasets.

Keywords: Reference point, reference-point-set, transactional buckets, sparse region, dense region.

Received October 20, 2022; accepted May 29, 2023

 https://doi.org/10.34028/iajit/20/6/6

1. Introduction

In today's rapidly evolving technological and business

world, the power of data, information and knowledge

inferred out of the data are well understood and the same

is applied in business and scientific activities. Due to the

technological advancements, a huge amount of data is

generated, collected, stored and analyzed in real world

applications. Statistics, Artificial Intelligence (AI),

Machine Learning (ML), database technologies, and some

other technologies are used in the field of Data Mining

(DM). DM functionalities like Association Rule Mining

(ARM) [1, 2, 6], clustering [11], classification [11],

regression, and outlier detection [11] can be used to extract

the hidden knowledge from a large amount of data.

Typically, an association rule finds the affinity between

data points. Association rule generation comprises of two

phases:

1. Mining of the itemset that are frequent according to the

user-specified minimum threshold

2. The process of deriving strong rules from the frequent

itemsets discovered in the first step of ARM.

The benchmark ARM algorithms are Apriori [2], Dynamic

Itemset Counting (DIC) [4], and FP- Growth method [12].

The Apriori algorithm is the sentinel algorithm that follows

the bottom-up method to mine frequent itemsets through a

generate-and-test approach from a large amount of

transactional data. The Apriori Algorithm scans the dataset

iteratively as the frequent itemsets are mined

incrementally. The generation of candidates and counting

of their support are really time and space consuming

processes. Many methods have been proposed to address

these difficulties, including many Apriori variants. Some

of the methods include hash-based itemset counting [18],

partitioning [20], and sampling [23]. DIC is an extension

of Apriori algorithm that permits addition and omission of

candidate itemsets at multiple stages of the database scans

with an objective to reduce the time complexity. In order

to eventually organize the itemsets into frequent or

infrequent, it uses four distinct data structures.

The paper proposes an effective frequent itemset

generation approach using Transactional Bucket (TB) and

Reference-Point-Set (RPS) to find frequent itemsets with

minimum number of data source scans of the transactional

data source. A set of reference point candidates, RPS,

produced from Reference Point (RP), is used to guide

the mining process further. These RPS is derived using

the weightage of certain buckets in the TB. The length

of RP, derived through the combination formula, nCr, is

used to generate RPS from every itemset in the TB. The

method bifurcates the data into dense and sparse regions.

The suggested methodology is combined with DIC, to

make a hybrid approach that better demonstrates the

benefits of the proposed approach.

The novelty in the proposed method is that in the early

runs of the database scan itself it looks at the possible

potential candidates of varying sizes. The process of TB

mailto:ambilybalaram@gmail.com
mailto:nedunchezhian@cit.edu.in

An Effective Reference-Point-Set (RPS) Based Bi-Directional Frequent Itemset Generation 891

construction and RPS formation cuts down the

requirement for additional database scans. The

hybridization is accomplished by enhancing DIC with the

following features:

1. Buckets are additionally created.

2. RPS are generated anticipating the reduction in the

number of database scans.

The effectiveness of the method is theoretically and

experimentally proved, and the results show that a

significant increase in performance over its predecessors.

The paper is organized as follows: Section 2 presents

the relevant background work. In section 3, the definition

and problem statement are explained. In section 4, the

proposed method is explained. Section 5 deals with results

and discussion. Section 6 concludes the paper.

2. Literature Review

ARM [1, 4] is applied on a dataset to detect the affinity,

association or correlation among variables of the

dataset that essentially focuses on market-basket

analysis. Retailing, clustering, classification, cross

marketing, and catalog design are some of the uses of

ARM. The Market-basket analysis approach involves

observing and researching consumer shopping habits,

thus identifying correspondence between items in their

baskets. Over the years, several methods for

discovering strong association rules [13, 19, 24, 28]

have been proposed. A few benchmark papers are

explained in this section.

Zaki [26] proposed hybrid search strategies that

used both BFS and DFS. Using lattice traversal

technique, frequent itemsets and their subsets were

generated. The issue has been broken down into sub-

issues, such as prefix-based and maximum clique-

based partitions. With the decrease in the support

count, which accounts for the time complexity, large

number of frequent itemsets was generated.

In [21], the Index-BitTableFI algorithm used bit -

wise operations and it exploited the BitTable vertically

and horizontally. A combination of BFS and DFS was

used for the generation of frequent itemsets with index

array support. The BitTable-based algorithm cannot

perform well in the event of large datasets as there is a

massive memory requirement to retain the BitTable

representation.

Chen and Xiao [7] have proposed an algorithm for

Bitmap Itemset Support Counting (BISC) consisting of

three techniques, namely BISC1, BISC2 and

technology for projection. All frequent DFS-based

element sets are contained in BISC1. In BISC2, the

database consisted of two elements, namely the prefix

and the suffix.

Wang et al. [24] investigated the significant issue of

extracting frequent item sets from a large uncertain

database using the Possible World Semantics (PWS)

concept. Also, two incremental mining algorithms has

been proposed for discovering Probabilistic Frequent

Itemset (PFIs), to avoid having to run the entire mining

algorithm over on a new database.

To get over the drawbacks of the traditional Apriori

algorithm, Maolegi and Arkok [17] introduced an

upgraded Apriori algorithm, called M-Apriori. The

algorithm's primary goal was to shorten the amount of

time needed to scan the entire database in finding

frequently itemsets. When compared to the original

Apriori, the, the M-Apriori utilized 67.38% less time,

making it more effective and less time-consuming. A

detailed comparative study in the performance of the

proposed method and M-Apriori are made in the

results and discussions section.

Webb and Vreeken [25] proposed the branch-and-

bound OPUS Miner algorithm that used a DFS search

strategy and pruning mechanisms to generate self-

sufficient item sets that summarized the key

associations in the data.

Leeuwen and Galbrun [13] proposed an approach

where attributes were divided into two sets that could

provide two separate views in order to define the data

structure of the same object set. The translation tables

were used to include both unidirectional and

bidirectional rules with a translation of the two views.

To pick the translation tables, a score based Minimum

Definition Length (MDL) concept was suggested

along with the translator algorithm to find good

models.

Utilizing a variety of cooccurrences and kernel item

occurrences in at least one transaction, Phan and Le

[19] presented a NOV-FI technique to swiftly find

common itemsets from transactional databases. The

proposed method addressed the problem of

discovering frequent itemsets on search space items

with at least a minimum support and without reusing

for mining the succeeding time.

In the study [5], the paper proposed a method of

Recent Maximum Frequent Itemsets Mining

(RMFIsM) that worked with two matrixes to store each

transaction's data and frequent 1-itemsets respectively.

To achieve successful results, the authors performed a

series of experiments

Zhang et al. [27] presented HashEclat, an

approximation Eclat method based on MinHash that

could quickly estimate the size of the intersection set

and change the parameters to address the tradeoff

between mining accuracy and execution time.

The study in [3] explored numerous connections

between sliding window size, genetic algorithm

limitations, and notion drift and described a method for

mining common itemsets from streaming transaction

data using genetic algorithms.

In [22], a novel Fast Incremental Updating Frequent

Pattern growth (FIUFP-growth) based on Incremental

Conditional Pattern tree (ICP-tree) was proposed. By

mining frequent sets gradually, the tree produced

incremental association rule mining. Additionally, the

892 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

plan reduced the amount of time and resources needed

to build their sub-trees.

In their study, Zhao et al. [28] provided a

methodical, in-depth, and thorough investigation on

DM technologies. The proposed mining method

reduced the noise in data, and also the precision is kept

very high, indicating the greatest accuracy of the

method.

The study in the paper [8] offered a comprehensive

framework that used Generic Itemset Mining based on

Reinforcement Learning (GIM-RL) to train agents to

extract itemsets. Since the investigation was iterative,

it was possible that GIM-RL recovered the necessary

itemsets from datasets. When changes were made to

existing item sets, either additions or deletions, the

proposed environment informed agents about the

appropriate itemsets for the target kinds. With the aid

of successive trial-and-error phases and rewards for

different actions, agents learned how to maximize

cumulative benefits. As a consequence, the most

necessary item sets were generated.

Li et al. [15] proposed a matrix-based strong

association rule extraction approach to process and

represent information, setting the minimal support to

10%, the minimum confidence to 80%, and obtaining

all frequent item sets from the data set.

Magdy et al. [16] proposed the Closed Candidates-

based Incremental Frequent Itemset Mining technique

(CC-IFIM) to reduce candidate generation and boost

the reliability of the obtained global frequent itemsets.

The proposed methodology is combined with DIC,

one of the traditional frequent itemset methods, to

make a hybrid approach that better demonstrates the

benefits of the proposed approach. The following

subsection 2.1 of the DIC algorithm provides an

explanation of its basic operation.

2.1. Dynamic Itemset Counting (DIC)

The DIC [4] approach is used to produce frequent

itemsets with fewer transaction databases scans. It

eliminates some of the drawbacks faced by Apriori.

When each transaction is read from the dataset, at

various stages of a scan, the itemsets are added and

pruned dynamically. Like Apriori, two user specified

measures are used. When all its subsets are frequent

and its support count is greater or equal to the

threshold, minsupp, the candidate itemset is considered

as frequent itemset. The DIC introduces multiple

stopping points, M, which indicates the number of

virtual partitions in the dataset. In the respective

counters, the support of each item collection is counted

and retained.

The method follows an incremental approach in

adding and deleting the itemset in the above-

mentioned stopping points. The DIC method follows

the anti-monotone property stating that all of a set's

subgroups must be frequent in order for a set of items

to be frequent. The general Algorithm (1) of DIC is

presented below [10].

Algorithm 1: Dynamic Itemset Counting

Input: transactions from database M, Stopping Points

 Threshold, minimum support threshold

Output: c, frequent itemsets

1: SS=ɸ // solid square (frequent)

2: SC=ɸ // solid circle (infrequent)

3: DS = ɸ // dashed square (suspected frequent)

4: DC= {all 1-itemsets} // dashed circle (suspected infrequent)

5: While (DS! =0) or (DC! =0) do begin

6: read M transactions from database into T

7: for all transactions t ϵ T do begin

//increment the respective counters of the itemsets

marked with dash

8: for each itemset c in DS or DC do begin

9: if (c ϵ t) then

10: c. counter++;

11: for each itemset c in DC

12: if (c. counter ≥ threshold) then

13: move c from DC to DS;

14: if (any immediate superset sc of c has all of its

subsets in SS or DS) then

15: add a new itemsets c in DC;

16: end

17: for each itemset c in DS

18: if (c has been counted through all transactions) then

19: move it into SS;

20: for each itemset c in DC

21: if (c has been counted through all transactions) then

22: move it into SC;

23: end

24: end

25: Answer = {c ϵ SS};

Normally, the number of scans over the transaction

databases, the number of candidates itemsets

produced, the support-confidence threshold settings

and the time and space complexities are the major

issues in most ARM algorithms. To overcome these

issues the paper proposes an enhanced RPS based bi-

directional scanning method.

3. Definitions and Problem Statement

The formal description of some of the significant terms

used in this paper and the problem definition are given

in this section.

3.1. Definitions

Let D be the transactional data source and I be the item

domain, I={i1, i2, …. in}. Let T be the set of

transactions, T={T1, T2,……Tn}. An association rule

is an expression of implication of the type A B,

where A B, B I, and A B= . To generate

association rules, first the frequent itemsets have to be

mined from the data source D. Table 1 shows an

example of the transactional data Source, D, as the

An Effective Reference-Point-Set (RPS) Based Bi-Directional Frequent Itemset Generation 893

running example to illustrate the concepts of the

method clearly [11].

Table 1. Transactional date source, D [11].

TID List of items TID List of items

T1 {I1, I2, I5} T7 {I1, I3}

T2 {I2, I4, I6} T8 {I1, I2, I3, I5}

T3 {I2, I3} T9 {I1, I2, I3}

T4 {I1, I2, I4} T10 {I1, I2, I4, I6}

T5 {I1, I3} T11 {I5, I6}

T6 {I2, I3} T12 {I3, I4, I5}

The above table contains twelve transactions and

each transaction is a subset of I is {I1, I2, I3, I4, I5,

I6} and the Transactional Identifier, TID ={T1, T2,

T3, T4, T5, T6, T7, T8, T9, T10, T11, T12}. Assume

that minsupp is 2.

 Support is a measure that provides the occurrence

frequency of an itemset in the table, T. Support

(A→B) =P (A∪B), defines the joint probability of

the itemset being present in the transactions. For

example, itemset {I1} is in T1, T4, T5, T7, T8, T9,

and T10, therefore, support ({I1}) = 7. Itemset {I1,

I2} is in T1, T4, T8, T9 and T10, therefore, support

({I1, I2})=5.

 Confidence measures the strength of an Assertion

Rule, i.e., Confidence (A→B)=P (B|A), defines the

conditional probability of itemsets in the

transactions.

 Frequent Itemsets: an itemset is frequent if it

satisfies the defined minimum support threshold.

i.e., itemsets’ support is greater than or equal to the

predefined minimum support threshold value,

minsupp. For example, itemset {I2, I3} is in T3, T6,

T8, and T9. support ({I2, I3}) is 4>2, therefore, {I2,

I3} is a frequent itemset.

 Infrequent Itemsets: an itemset is infrequent if

itemsets’ support is less than the predefined

minimum support threshold value, minsupp. For

example, itemset {I5, I6} is in T11. Support ({I5,

I6}) is 1<2, therefore, {I5, I6} is an infrequent

itemset.

3.2. Problem Statement

The major challenges encountered by the existing

methods are:

1. Huge number of candidates itemset generation.

2. Multiple scans over transactional database.

3. Tedious support computations for each candidate

in the candidate set.

The problem is to propose an enhanced ARM method

to effectively generate frequent itemsets where it

applies the construction of RPS that encompasses the

current and anticipated future candidates in order to

reduce unnecessary scans over the input dataset. The

number of candidates for which the frequency needs to

be examined is also reduced.

4. The Proposed Method

In the proposed method, the total transactions in the

dataset, are bifurcated into sparse and dense regions

based on buckets generated, where a TB is data

structure which stores the transaction according to the

transaction length. Let D be the dataset and DR and

SR be the bifurcated regions of dense and sparse

respectively. Also, a set called, RPS, is constructed

logically from the estimated RP. RP is the mid-length

of items. The RPS includes the combinations of all

items of length RP. As a result, the total candidates,

Ctotal includes the complete collection of RPS and the

higher length candidates generated in kth Pass. For

instance, if the candidate set for examination of

support generated in pass 1 is Ck, and the RP length

candidates is RPS, where RPS>k. So, the total number

of candidates to be examined is

Ctotal=|Ck|+|RPS|

The proposed method is illustrated in Figure 1.

Figure 1. The proposed method.

4.1. Reference-Point- Set (RPS) Based Bi-

Directional Frequent Itemset Generation

Using TB and RPS, to decrease the number of

transactional dataset scans and hence the search

space, the paper suggests an innovative approach. The

major goal is to evaluate probable candidates during

the initial database scan passes, which can cut down

on the number of additional database scans that are

required. Using Greedy approach, the potential

candidates are accumulated in each iteration and in

every stage of each pass. The proposed method

includes the following steps:

1. Creation and filling of TB according to the

transaction length.

2. Reference point computation from the defined item

(1)

894 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

domain and RPS generation.

3. Bifurcation of the transactions database into dense

and sparse regions, using TB, respectively.

4. Parallel application of DIC on higher length

candidates and reference point candidate set

respective to DR and SR.

4.1.1. Transactional Bucket (TB) Creation and

Filling

Initially, the data Source DS is scanned to identify L1,

1-length frequent itemsets. Next, |L1| buckets, B1,

B2,…….., B|L1| are created and filled with TIDs

appropriately. For instance, the bucket B1 keeps TIDs

of transaction having one item alone where Bn keeps

TIDs of transaction having n items. Each TBi is a

vector. The size of the vector differs from 0 to |L1|.

4.1.2. Reference Point Computation and Reference-

Point-Set (RPS) Generation

Subsequently, RPS is coined with the reference to RP.

The RP is estimated as

RP= ceil (∑ (Bid ∗ Wid))
max
id=1

Where,

 Wid= (Bid*|TBid|)/ ∑ (Bid ∗
max
id=1 TBid)

Wid is the WeightID, the weightage of particular bucket

ID from the total TB and max denotes the maximum

count of transactional buckets. Bid refers to the

Transactional Bucket ID and |TBid| denotes the number

of transactions in the transactional bucket ID, Bid.

4.1.3. Bifurcation of the Transactions Database into

DR and SR

From the information derived from TBs, the dataset

D is logically organized into DR and SR. Here

standard deviation is applied for dividing the D into

DR and SR.

4.1.4. Parallel Application of DIC

Next, the typical DIC method is applied on DR, SR,

and RPS for finding the frequent itemsets of higher

length. The information obtained from DIC is

exchanged between DR and SR to maintain

consistency in the mining process. The entire mining

process will be terminated when no information exists

to share between DR and SR. The proposed method

applies DIC as the first step to generate 1-length

frequent sets, L1, which in turn provide the basis for

constructing the data structure namely Transactional

Buckets. The structure of the data structures is

depicted in Figure 2. Once the first scan of

transactional data base is completed, the RP is

computed using Equation (2). For instance, for the

transactional Data Source, D, the RP obtained is 3.

Bucket id: Bi, 1 ≥i<n

Filled with TID of i-

length transactions

Figure 2. Transactional bucket structure.

So, for all 6 items, I1 through I6, items of length

three is computed using combination formula, nCr.

As a result, 120, candidate itemsets are generated. In

Pass 2, according to the transactional buckets created

in Pass 1, the entire data source is logically bifurcated

into Dense Regions (DR) and Sparse Regions (SR).

Here standard deviation is applied on the TB for

division of SR and DR. Before the data source is

bifurcated into regions, the transactional buckets are

arranged in descending order of the transactional

Bucket IDs (Bid). The details of TBs generated for

the given dataset is given in the Table 2.

Table 2. Transactional buckets specifications.

Bid Tid Count Region

B6 0 DR

B5 0

B4 T8, T10 2

B3 T1, T2, T4, T9, T12 5

B2 T3, T5, T6, T7, T11 5 SR

B1 0

Similar to DIC, Stopping Points (SPs) are defined

on the dense and sparse regions. The typical DIC

method is applied over blocks of DR, DR-SP1, DR-

SP2, and so on in dense region, and so forth where

each block is marked with a stopping point.

The partial higher length candidate itemsets

generated during the first pass on DS and RPS,

generated with the help of RP are considered for the

generation of frequent itemsets. At the end of pass 2,

L2 and partial higher length candidates C3 are

obtained from both DR and SR regions.

Simultaneously, higher length frequent itemsets are

also obtained from RP computations. The entire

process continues with higher passes to generate

higher length itemsets until no further information

exists to exchange between regions. The higher length

frequent itemsets produced using RP computation can

be further processed until no itemsets satisfy the

minimum support threshold.

5. Results and Discussions

5.1. Experimental Setup

The experiment was run on a Windows 10 PC with an

Intel(R) Core (TM) i3-8130U CPU running at

(2)

(3)

An Effective Reference-Point-Set (RPS) Based Bi-Directional Frequent Itemset Generation 895

2.20GHz, 2201 MHz, with 2 cores and 4 logical

processors. Python was used as the Integrated

Development Environment (IDE) to implement the

proposed method. Three benchmark datasets from

frequent itemset mining dataset repository, known as

UCI repository, used to experiment the performance

of the proposed method [9], are Accidents,

T1014D100K and Retail. Table 3 shows the summary

of the datasets taken for performance evaluation.

Table 3. Dataset summary.

Datasets |T| Size No. of attributes

Accidents 340183 33.8MB 573

T10I4D100K 100000 3.83MB 250

Retail 88162 3.97MB 200

The performance of the proposed method is verified

against the performance of the benchmark methods, M-

Apriori and DIC.

The performance metrices applied are time of

execution measured in seconds and total number of

database scans count with datasets that differs in number

of transactions, their size and the number of attributes.

The study was evaluated for five different minimum

support threshold values ranging from 10 to 50 for each

dataset. The stopping point, M, is set to 50000, 25000,

and 20000 for the datasets Accidents, T10I4D100K and

Retail, respectively.

Time and scan count were used as the foundation for

an analysis of how well the suggested method

performed. The total number of database scans

performed to complete frequent itemset creation and

pattern matching of the candidate itemsets are used to

calculate the scan count. The time performance analysis

is measured in seconds by the time it takes to generate

frequent item sets.

Table 4. Performance evaluations in terms of time and scan count for accidents.

Datasets

Minsupp Performance of

Proposed Method DIC M-Apriori

Scan Count Time (sec.) Scan Count Time (sec.) Scan Count Time (sec.)

Accidents

(340183*573)

M=50000

0 7 8452.37 15.5 10006.25 25 31245.53

20 5.5 6469.27 12 8552.33 22 24568.83

30 4 2997.19 9.5 4989.17 18.5 19457.57

40 3.5 1715.28 8 2251.39 16 14586.24

50 3.5 997.21 8 1587.74 15 9887.89

Table 5. Performance evaluations in terms of time and scan count for T10I4D100K.

Datasets

Minsupp Performance of

Proposed Method DIC M-Apriori

Scan Count Time (sec.) Scan Count Time (sec.) Scan Count Time (sec.)

T10I4D100K

(100000*250)

M=25000

10 5.5 7129.69 11 9002.65 21 15782.47

20 5 5126.10 8.5 6732.287 18 11003.69

30 4.5 1988.23 7.5 2446.212 15 9881.324

40 4 957.89 8 1380.078 14.5 7881.26

50 3 968.47 8 1087.5 14 5669.36

With various support measures, the performance of

association rule mining is analyzed. It demonstrates

that there has been a considerable decrease in the

number of scans across the three data sources.

Similarly, there is considerable amount of reduction in

time taken by proposed method when compared to DIC

and M-Apriori. Table 4, 5, and 6 provide the

performance evaluations in terms of time and scan

count for three datasets, Accidents, T10I4D100K and

Retail, respectively.

Table 4 shows that when the support count rose

from 10 to 50, the scan count significantly fell from 7

to 3.5, and the execution time decreased from 8452.37

to 997.21 for the dataset Accident with a higher

number of transactions, attributes, and stopping points.

Experimental evidence shows that the scan count in

DIC is 60% higher and the scan count in M-Apriori is

four times higher than the suggested technique for all

support count ranges. In terms of execution time in

seconds, DIC and M-Apriori, on average, show

increases of 15% and four times higher, respectively,

over the proposed method.

From Table 5, for dataset T10I4D100K with a

smaller number of transactions, attributes and stopping

point count than Accidents, the scan count decreased

from 5.5 to 3 and execution time also decreased from

7129.69 to 968.47 for increasing support count ranges.

Comparing the scan count of proposed method, DIC

shows an increase of 42% and was four times greater

for M-Apriori. For execution time expressed in

seconds, DIC shows a 9 % increase than proposed

method, on an average and M-Apriori shows an

execution time of three times increase than proposed

method.

From Table 6, for dataset Retail with a smaller

number of transactions, attributes and stopping point

count than T10I4D100K, the scan count decreased

from 5 to 3 and execution time also decreased from

10140.2 to 981.344 for increasing support count

ranges. Comparing the scan count of proposed method,

DIC shows an increase of 46% and was four times

greater in M-Apriori.

896 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

Table 6. Performance evaluations in terms of time and scan count

for retail.

Datasets

Minsupp

Performance of

Proposed

Method
DIC M-Apriori

Scan

Count

Time

(sec.)

Scan

Count

Time

(sec.)

Scan

Count
Time (sec.)

Retail

(88162*
200)

M=2000

0

10 5 10140.2 10.5 10569.8 20.5 16258.23

20 4 2998.2 8 3997.20 17 13558.37

30 3.5 1128.69 8 1512.74 16.5 10008.82

40 3 1001.58 7 1299.04 15 8479.19

50 3 981.344 7 1059.30 14.5 8002.96

For execution time expressed in seconds, DIC

shows a 5 % increase than proposed method on an

average and M-Apriori shows an execution time of

three times increase than proposed method.

Figures 3, 4, and 5 for the datasets Accidents,

T10I4D100K, and Retail, respectively, show visually

how the proposed technique performed against DIC

and M-Apriori. Based on support in percent against

time in seconds and scan count for each dataset,

performance is assessed. The aforementioned graphs

show how M-Apriori, DIC, and the proposed method

performed. The proposed method performs better than

DIC and M-Apriori because there are fewer candidate

generations and earlier mining process convergence.

Figure 3. Performance evaluation on data source accident.

Figure 4. Performance evaluation on data source T1014D100K.

Figure 5. Performance evaluation on data source Retail.

The main contributions that lead to the proposed

method's reduced scan count when compared to DIC

and M-Apriori are the bucket creation, reference point

computation, and parallel application of DIC on DR

and SR. Additionally, the earlier generation of RPS

make it simpler to compute frequent higher length

itemsets more quickly. The bifurcated DR and SR

regions provide a clear perspective of mining since it

uses a Pincer-like idea [14] to mine candidates from

either end.

6. Conclusions

Strong-ARM techniques are introduced with a

common objective of generating frequent itemsets

from large datasets with minimum complexities. They

enhance the performance by reducing the search space

in terms of reduction in number of dataset scans

required and reduction in number of candidates as well.

In the proposed method, a tradeoff between the time

complexity and the space complexity is attempted and

demonstrated. The proposed method, using TB and

RPS, increases the mining efficiency by reducing the

search space with the help of simple data structure such

as TB. In turn, the space requirements are also reduced

to a larger extend by RP computation that could

produce higher length potential candidates in the early

passes of the mining process. Experimental evidence

shows that the average scan count in DIC and M-

Apriori is respectively, 24% and 65%, higher than that

of the proposed technique for different support counts.

In terms of execution time in seconds, DIC on average

shows a 10% increase while M-Apriori displays an

execution time that is three times higher than that of the

proposed technique.

The experimental results reveal the potential of the

proposed approach through considerable reduction of

scan count and time complexity. However, in the real-

world dataset, with an increase in the item domain of

the transactional database, the generation of frequent

itemset out of numerous potential candidates may lead

to memory space consumption. As a result, the

proposed method is recommended for in-depth

research for optimally utilizing the memory space

while examining very large datasets.

Furthermore, in the future, the research could be

extended in applying the proposed method on

incremental mining whenever there is a need to update

the dataset incrementally.

References

[1] Agrawal R., Imieliński T., and Swami A.,

“Mining Association Rules Between Sets of

Items in Large Databases,” in Proceedings of the

ACM SIGMOD International Conference on

Management of Data, Washington, pp. 207-216,

1993.

An Effective Reference-Point-Set (RPS) Based Bi-Directional Frequent Itemset Generation 897

[2] Agrawal R. and Srikant R., “Fast Algorithms for

Mining Association Rules,” in Proceedings of

the 20th International Conference on Very Large

Data Bases, Chile, pp. 487-499, 1994.

https://dl.acm.org/doi/10.5555/645920.672836

[3] Bagui S. and Stanley P., “Mining Frequent

Itemsets from Streaming Transaction Data

Using Genetic Algorithms,” Journal of Big

Data, vol. 54, no. 7, 2020.

https://doi.org/10.1186/s40537-020-00330-9

[4] Brin S., Motwani R., Ullman J., and Tsur S.,

“Dynamic Itemset Counting and Implication

Rules for Market Basket Data,” in Proceedings

of the ACM SIGMOD International Conference

on Management of Data, Tucson, Arizona USA,

pp. 255-264, 1997.

[5] Cai S., Hao S., Sun R., and Wu G., “Mining

Recent Maximal Frequent Itemsets over Data

Streams with Sliding Window,” The

International Arab Journal of Information

Technology, vol. 16, no. 6, pp. 961-969, 2019.

https://www.iajit.org/PDF/November%202019,

%20No.%206/15400.pdf

[6] Ceglar A. and Roddick J., “Association

Mining,” ACM Computing Surveys, vol. 38, no.

2, pp. 1-42, 2006.

https://doi.org/10.1145/1132956.1132958

[7] Chen J. and Xiao K., “BISC: A Bitmap Itemset

Support Counting Approach for Efficient

Frequent Itemset Mining,” ACM Transactions

on Knowledge Discovery from data, vol. 4, no.

3, pp. 1-37 2010.

https://doi.org/10.1145/1839490.1839493

[8] Fujioka K. and Shirahama K., “Generic Itemset

Mining Based on Reinforcement Learning,”

IEEE Access, vol. 10, pp. 5824-5841, 2022.

https://doi.org/10.48550/arXiv.2105.07753

[9] Goethals B., “Frequent Itemset Mining

Implementations Repository,”

http://fimi.uantwerpen.be/data, Last Visited,

2023.

[10] Hamilton H., “Dynamic Itemset Counting and

Implication Rules for Market Basket Data”

http://www2..uregina.ca/~dbd/cs831/notes/item

sets/DIC.html, Last Visited, 2023.

[11] Han J., Pei J., and Kamber M., Data Mining:

Concepts and Techniques, Morgan Kaufmann,

2011.

https://www.sciencedirect.com/book/97801238

14791/data-mining-concepts-and-techniques.

[12] Han J., Pei J., Yin Y., and Mao R., “Mining

Frequent Patterns without Candidate

Generation: a Frequent-Pattern Tree Approach,”

Data Mining and Knowledge Discovery, vol. 8,

no. 1, pp. 53-87, 2004.

https://doi.org/10.1023/B:DAMI.0000005258.3

1418.83

[13] Leeuwen M. and Galbrun E., “Association

Discovery in Two-View Data,” IEEE

Transactions on Knowledge and Data

Engineering, vol. 27, no. 12, pp. 3190-3202,

2015. 10.1109/TKDE.2015.2453159

[14] Lin D. and Kedem Z., “Pincer-Search: An

Efficient Algorithm for Discovering the

Maximum Frequent Set,” IEEE Transactions on

Knowledge and Data Engineering, vol. 14, no.

3, pp. 553-566, 2002.

doi:

10.1109/TKDE.2002.1000342

[15] Li F., Meng C., Wang C., and Fan S.,

“Equipment Quality Information Mining

Method Based on Improved Apriori

Algorithm,” Journal of Sensors, vol. 2023,

2023. https://doi.org/10.1155/2023/2155590

[16] Magdy M., Ghaleb F., Mohamed D., and

Zakaria W., “CC-IFIM: An Efficient Approach

for Incremental Frequent Itemset Mining Based

on Closed Candidates,” The Journal of

Supercomputing, pp. 7877-7899, 2023.

https://doi.org/10.1007/s11227-022-04976-5

[17] Maolegi M. and Arkok B., “An Improved

Apriori Algorithm for Association Rules,”

International Journal on Natural Language

Computing, vol. 3, no. 1, 2014.

https://doi.org/10.48550/arXiv.1403.3948

[18] Park J., Chen, M., and Yu P., “An Effective Hash

Based Algorithm for Mining Association

Rules,” ACM SIGMOD Record, vol. 24, no. 2,

pp. 175-186, 1995.

DOI:10.1145/568271.223813

[19] Phan H. and Le B., “A Novel Algorithm for

Frequent Itemsets Mining in Transactional

Databases,” Trends and Applications in

Knowledge Discovery and Data Mining, vol.

11154, pp. 243-255, 2018. DOI:10.1007/978-3-

319-95786-9_21

[20] Savasere A., Omiecinski E., and Navathe S.,

“An Efficient Algorithm for Mining Association

Rules in Large Databases,” in Proceedings of the

21st International Conference on Very Large

Data Bases, San Francisco, pp. 432-443, 1995.

[21] Song W., Yang B., and Xu Z., “Index-

BitTableFI: An Improved Algorithm for Mining

Frequent Itemsets,” Knowledge Based Systems,

vol. 21, no. 6, pp. 507-513, 2008.

https://doi.org/10.1016/j.knosys.2008.03.011

[22] Thurachon W. and Kreesuradej W.,

“Incremental Association Rule Mining with a

Fast Incremental Updating Frequent Pattern

Growth Algorithm,” IEEE Access, vol. 9, pp.

55726-55741, 2021.

10.1109/ACCESS.2021.3071777

[23] Toivonen H., “Sampling Large Databases for

Association Rules,” in Proceedings of the 22nd

International Conference on Very Large Data

https://dl.acm.org/doi/proceedings/10.5555/645920
https://dl.acm.org/doi/proceedings/10.5555/645920
https://dl.acm.org/doi/proceedings/10.5555/645920
https://doi.org/10.1186/s40537-020-00330-9
https://doi.org/10.1145/1839490.1839493
https://doi.org/10.48550/arXiv.2105.07753
http://fimi.uantwerpen.be/data
http://www2..uregina.ca/~dbd/cs831/notes/itemsets/DIC.html
http://www2..uregina.ca/~dbd/cs831/notes/itemsets/DIC.html
https://www.sciencedirect.com/book/9780123814791/data-mining-concepts-and-techniques
https://www.sciencedirect.com/book/9780123814791/data-mining-concepts-and-techniques
https://doi.org/10.1023/B:DAMI.0000005258.31418.83
https://doi.org/10.1023/B:DAMI.0000005258.31418.83
http://dx.doi.org/10.1109/TKDE.2015.2453159
http://dx.doi.org/10.1145/568271.223813
http://dx.doi.org/10.1007/978-3-319-95786-9_21
http://dx.doi.org/10.1007/978-3-319-95786-9_21
https://dl.acm.org/doi/proceedings/10.5555/645921
https://dl.acm.org/doi/proceedings/10.5555/645921
https://dl.acm.org/doi/proceedings/10.5555/645921
https://doi.org/10.1016/j.knosys.2008.03.011
http://dx.doi.org/10.1109/ACCESS.2021.3071777

898 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

Bases, San Francisco, pp. 134-145, 1996.

https://dl.acm.org/doi/10.5555/645922.673325

[24] Wang L., Cheung D., Cheng R., Lee S., and

Yang X., “Efficient Mining of Frequent Itemsets

on Large Uncertain Databases,”

IEEE

Transactions on Knowledge and Data

Engineering, vol. 24, no. 12, pp. 2170-2183,

2012. DOI:

10.1109/TKDE.2011.165.

[25] Webb G. and Vreeken J., “Efficient Discovery

of the Most Interesting Associations,” ACM

Transactions on Knowledge Discovery from

Data, vol. 8, no. 3, pp. 1-31, 2014.

https://doi.org/10.1145/2601433

[26] Zaki M., “Scalable Algorithms for Association

Mining,” IEEE Transactions on Knowledge and

Data Engineering, vol. 12, no. 3, pp. 372-390,

2000. DOI:

10.1109/69.846291

[27] Zhang C., Tian P., Zhang X., Liao Q., and Jiang

Z., “HashEclat: An Efficient Frequent Itemset

Algorithm,” International Journal of Machine

Learn and Cyber, vol. 10, pp. 3003-3016, 2019.

https://doi.org/10.1007/s13042-018-00918-x

[28] Zhao Z., Zhou J., Gabu G., Alroobaea R., and

Masud M., “An Improved Association Rule

Mining Algorithm for Large Data,” Journal of

Intelligent Systems, vol. 30, no. 1, pp. 750-762,

2021. DOI:10.1515/jisys-2020-0121

Ambily Balaram is currently

pursuing her Ph.D degree in the area

of Data Mining, in the department

of Computer Science and

Engineering at Coimbatore Institute

of Technology. She received the

B.Tech and M.Tech degrees in

Computer Science and Engineering from Government

Engineering College, Kannur University and KMCT

College of Engineering, Calicut University

respectively. She has more than 5 years of teaching

experience in professional colleges. Her research

interests include Data Mining and Machine Learning.

Nedunchezhian Raju, PhD, is a

Professor in the Department of

Computer Science and Engineering,

Coimbatore Institute of

Technology, Coimbatore, India. He

has served in various capacities as

Head of the Department, Vice

Principal, Head of the Institution, and Director of

Research. His research interests include data data

analytics and machine learning. He has more than 25

years of experience in teaching and research. He has

guided 20 PhD scholars, and six more PhD scholars

are currently doing their research under his

supervision. To his credit, he has published more than

100 papers in refereed journals and international

conferences. He has published a few books and book

chapters also. He did his PhD, ME, and BE degrees all

in computer science and engineering.

https://doi.org/10.1145/2601433
https://doi.org/10.1007/s13042-018-00918-x
http://dx.doi.org/10.1515/jisys-2020-0121

