
The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023 863

A Novel Resource Scheduler for Resource

Allocation and Scheduling in Big Data Using

Hybrid Optimization Algorithm at Cloud

Environment

Aarthee Selvaraj

Department of Electrical and

Electronics Engineering, University

College of Engineering, India

aarthee@aubit.edu.in

Prabakaran Rajendran

Department of Electrical and

Electronics Engineering, University

College of Engineering, India

hiprabakaran@aubit.edu.in

Kanimozhi Rajangam

Department of Electrical and Electronics

Engineering, University College of

Engineering, India

kanimozhi_17@aubit.edu.in

Abstract: Big Medical Data (BMD) is generated by cellular telephones, clinics, academics, suppliers, and organizations.

Collecting, finding, analyzing, and managing the big data to make people's lives better, comprehending novel illnesses, and

treatments, predicting results at initial phases, and making real-time choices are the actual issues in healthcare systems. Dealing

with big medical data in resource scheduling is a major issue that aims to offer higher quality healthcare services. Hadoop

MapReduce has been widely used for parallel processing of large data tasks and efficient job scheduling. The number of big

data tasks is constantly growing; it is becoming more essential to minimize their energy usage to reduce the environmental effect

and operating expenses. Hence to overcome these disadvantages, we propose a novel resource scheduler for big data using a

Hybrid 2-GW Optimization Algorithm (H2-GWOA). We employ the Improved GlowWorm Swarm Optimization Algorithm

(IGSOA) and Mean GreyWolf Optimization Algorithm (MGWOA) for optimizing the MapReduce framework in heterogeneous

big data. The CloudSim platform was used for the simulations. The performance of the proposed scheduler is proved to be better

than the conventional methods in terms of metrics like latency, makespan, resource utilization, skewness, and Central Processing

Unit (CPU) consumption.

Keywords: Resource management, particle swarm optimization, computer performance, data analysis, virtualization.

Received August 4, 2022; accepted May 24, 2023

https://doi.org/10.34028/iajit/20/6/3

1. Introduction

On-demand delivery of needed resources and services

via high-speed computer systems is among the most

significant advantages of cloud computing. It has shown

improved results in servicing different types of large-

scale and complicated client activities due to continuous

development, network technologies, and infrastructure

improvements. Complex development systems and apps,

cutting-edge virtualized and physical technology met

heterogeneous customers' needs. Cloud technology and

the Internet of Things (IoT) have become essential ideas

in today's technological advances, setting new objectives

for technology innovation. Resource scheduling is one

of the most significant problems in the era of cloud

technology. A Satisfactory Quality of Service (QoS)

must be achieved using appropriate hardware

architecture and techniques while conducting resource

scheduling. In contemporary literature, a cloud

infrastructure component known as the broker is

responsible for mapping required end-user tasks to

accessible virtualization equipment, often implemented

in Virtual Machines (VMs) [14]. By performing the task

scheduling, the broker conducts mapping.

With the rise in the number of tasks submitted and the

number of possible resources, mapping tasks to the

suitable VMs for execution becomes more challenging.

If an inefficient scheduling method is employed, certain

VMs may cause over-utilized or under-utilized, resulting

in cloud system performance deterioration. The resource

scheduling issue falls under the NP (pseudo-random

polynomial duration) categories of hard design

problems. It is worth noting that the words task and

cloudlet planning have been used in recent computer

science research to describe the process of matching

requested end-user tasks to available VMs.

Classic algorithms for resource scheduling are

employed in specific low-level applications and

optimization methods are inefficient because

deterministic methods cannot produce satisfactory,

optimum, or near-optimal solutions for NP-hard

problems in a reasonable amount of time. Classical

methods cannot assess every viable solution from the

dimensional search space in the polynomial period due

to the random search complexity and increasing range of

available solutions. Implementing meta-heuristics and

heuristics-based methods [12] is among the most

effective approaches to resource provisioning rather than

864 The International Arab Journal of Information Technology, Vol. 20 November 2023

NP-hard methodology. While these approaches do not

ensure discovering an optimum solution, they have been

shown to produce satisfactory answers in polynomial

time practice. The primary benefit of employing a

resource allocation method in cloud computing is

optimizing resource usage while lowering operational

costs. In a cloud computing environment, the

fundamental purpose of resource allocation is to

efficiently optimize Physical Machines (PMs) or manage

workloads in distributed PMs to decrease resource

consumption, bottlenecks, and overloaded resource

utilization [20]. The practice of distributing cloud

resources to cloud apps over the network in a structured

way is referred to as resource allocation. The solutions

may not even be long-lasting if cloud solutions fail to

provide a resource to consumers on request. This issue

was addressed by allowing cloud providers to allocate

resources individually at every module. As a result, the

allocation of resources is emphasized as a component of

the management framework, demonstrating that it is a

cost-effective element in allocating resources. In the

cloud architecture, allocation of resources is used to

enhance customer satisfaction while decreasing

processing time. Minimizing resource consumption

guarantees cloud service quality, satisfaction for the

service provider, and enhances the makespan and

latency. The fundamental concept behind dynamic

scheduling is allocating requests according to the time of

program execution.

2. Related Works

Cloud computing has evolved into a new computing

paradigm with enormous corporate and commercial

possibilities in this real-world [11]. In a world with finite

energy supplies and an ever-increasing need for greater

processing capacity, green cloud computing is becoming

more essential, must handle resources correctly, and

virtual machines must assign suitable host nodes to

conduct computations to optimize utilization and reduce

the total cost of cloud computing infrastructure and

application maintenance. We proposed a novel resource

allocation scheduler based on the QoS-aware VMs

consolidation technique for cloud settings and efficient

resource allocation that uses the mechanism of virtual

machine resource usage for performance analysis to

allocate virtual servers on the public cloud [8]. We have

used the CloudSim simulator to develop and test the

proposed methods. Chen et al. [4] presents a system for

self-adaptive resource allocation that is made up of

feedback loops that are performed independently using

our constructed:

a) Iterative QoS prediction model.

b) Particle Swarm Optimization (PSO)-based runtime

decision method.

Unlike earlier QoS prediction algorithms that predicted

a QoS value once and for all, our method improves the

anticipated QoS value over time until it reaches the

greatest possible value. [7] In the first step, we conduct

resource provisioning while taking into consideration

resource prices, quality of service violations, and cloud-

based root server redirection, as well as QoS restrictions

and limited cloud site resources. In the second step,

cloud site assignment is performed, in which expenses

associated with QoS violations and cloud-based root

server redirection are avoided or decreased by utilizing

three distinct proposed methods for fixed assigned

resources. The challenge of cloud-based computation

requires MapReduce (MR) computations that are

abstracted as a dynamic optimization problem [23]. To

solve this issue, an event-driven resource provisioning

system is proposed. Experiments compared this new

event-driven framework to the commonly used static

resource provisioning framework and periodic resource

provisioning techniques.

 Virtualized technology [16] manages resources in the

cloud environment to enhance the energy efficiency, and

virtual machines often host applications. QVMS, a QoS-

aware VM scheduling technique for energy saving in

cloud-based CPS with QoS standards, has been

developed in response to this issue. Stanik et al. [18]

proposed an orchestrating and federating heterogeneous

networks in API-based system software architecture that

allows for QoS-aware network resource settings in a

single cloud datacenter's infrastructure, as well as

federated networking across various SDN-based cloud

networks beyond the information edge networks.

Additionally, this architecture employs a Service Level

Agreement (SLA) protocol, language to disclose Key

Performance Indicators (KPI) and to negotiate suitable

QoS constraints that are applied to the virtualized

network substrate [9]. The study [17] also seeks to

investigate the function of virtualization in efficiently

delivering resources depending on customers' needs. It

also looked at how virtualization may improve network

speed, save money by decreasing the number of physical

machines in the datacenter, balance load, reduce server

energy, and distribute resources dynamically while

meeting customers' needs. This provides [13] a

Reinforcement Learning (RL)-based resource allocation

system, which enables the cloud to choose whether to

approve a request and exactly how many resources to

provide in response. The dynamic resource allocation

technique [24] and the energy conservation method are

the two approaches, we considered for our proposed

work. To test the proposed method with live virtual

machine migration, we first built an infrastructure

architecture based on OpenStack VMs. Second, we

developed an energy-saving proposed method for

assigning the dynamic resources. Finally, we discovered

in the tests that the proposed methods could efficiently

use VM resources and save energy on datacenters. Tong

et al. [21] used the Fog Radio Access Network (F-RAN)

model in which content transmission and cooperative

caching methods are optimized together. To obtain an

A Novel Resource Scheduler for Resource Allocation and Scheduling in Big Data ... 865

ultra-low latency for the model F-RAN, they constructed

a mixed-integer nonlinear programming problem. In

response to this issue [22], a dynamic resource allocation

strategy for balancing load in fog environments was

provided. The load-balance assessment for various

computing hubs is presented first, followed by a fog

computing system design. Then, to establish a load

balancing for fog computing systems, a matching

allocation of resource technique in the environment of

fog is developed using the allocation of resources for the

static method and service migration for the dynamic

method. The categorization of big data types in

healthcare-associated analytical methods [6], generated

value for stakeholders, platforms, tools for managing

large health data, and future elements of the client are

discussed.

Improved Fruit Fly Optimization (IFFO) algorithm is

used for optimizing complex scenarios with multiple

workflows scheduling over the cloud that helps to reduce

the cost and makespan in the minimal amount of time

[1]. The Sunflower Whale Optimization Algorithm

(SWOA) achieves effective resource allocation based on

the execution of the selected task where every

application handles different tasks that improves the

efficiency of the cloud model [19]. PSO algorithm dealt

with optimizing the cloud resources. A scheduler model

for efficient allocation of resources for data processing,

as well as a [5] PSO-based scheduling algorithm named

PSO-COGENT not only optimizes execution cost and

time but also reduces the energy consumption of cloud

datacenters while keeping the deadline in mind. It

monitors the virtual machine placement to identify the

optimal resource mapping. The sequence of mapping is

carried out between PMs and VMs concerning particles

for optimization.

3. Proposed Methodology

Big data task, MapReduce, and its open-source

implementation have received significant popularity.

There have been several efforts to enhance existing MR

schedulers and build more efficient techniques or

algorithms. Because the number of such big data jobs is

always expanding, minimizing their energy use is crucial

to save the environmental and operational expenditures.

We proposed a new resource scheduler for big medical

data utilizing the hybrid 2-GW optimization algorithm to

tackle these challenges. Here, the term 2-GW refers to

the combination of techniques GreyWolf and

GlowWorm. The flow of the proposed approach is

described in this section which is shown schematically

in Figure 1. Resource management's job is to distribute

resources to service providers based on their needs and

limitations. A service provider's goal is to follow its SLA

with clients. We propose a hybrid 2-GW optimization

algorithm to optimize the MapReduce framework and

heterogeneous workloads in handling large datasets. The

main elements of the proposed approach are described in

detail.

a) Cloud Portal: it gives you a single point of entry to a

cloud-based distributed application that helps to find

and manage cloud resources. This module is in

charge of converting user requests into Resource

Specification Language (RSL), a cloud-friendly

language. The final product is initially sent to the

cloud portal, which then sends it to the users.

b) Enforcement of the SLA: the various cloud

computing models and levels should be considered

while deploying SLA in the cloud since the

measurements and needs of QoS specified in SLAs

vary with each model and every level. Throughout

the contractual process, service terms and levels, as

well as QoS requirements, are created, including

SLA metrics that will be expressed and monitored to

ensure that the SLA agreement is fulfilled.

c) Migration Monitoring: it monitors VM migration,

which refers to the transfer of VMs from one resource

to another, such as from one physical host to another

physical host. One of automated migration tools, the

VMware vSphere Distributed Resource Scheduler,

makes use of vMotion to enhance virtual machine

performance across virtual clusters.

d) Resource Scheduling: the MR class schedule is the

heart of cloud computational resources scheduled,

and it implements the logical step. This approach will

handle all scheduling schemes. Concurrent analysis,

fault-tolerant handling, and load-balancing issues are

handled while managing the resources.

e) Resource Pool: it also helps with centralized resource

delivery and management by recording resource

information such as resource type, quantity, and

resource location.

f) Workload Analyzer: the workload analyzer is the

component in charge of producing request arrival rate

estimations. This data is utilized to calculate the

precise number of application instances. It notifies

the load predictor and efficiency modeler when the

service request rate is anticipated to vary, in addition

to the specific technique for estimating future load.

This warning must be sent before the expected time

for the arrival rate to change, giving enough time for

the load predictor and performance modeler to

compute system modifications and the applications

provisionary for enough time to release or deploy the

necessary VMs.

g) MapReduce AppMaster: it coordinates the set of MR

tasks running in the cluster. Each application has a

dedicated AppMaster who is responsible for

managing the containers and collaborating with the

node managers to execute and monitor the tasks.

The cloud users are categorized into administrative staff,

patients, doctors and clinical staff who request the set of

services to execute the jobs through cloud portal. The

workload analyzer performs the healthcare analysis such

as electronic health records, patient health data and

866 The International Arab Journal of Information Technology, Vol. 20 November 2023

clinical data are integrated for the personalized exact

treatment methodology. The resource manager allocates

the desired resources for the exact VM depend on the

type and size of the healthcare data through the node

manager. It maintains the SLA with cloud service

providers for the live VM migration if it is over-utilized

by the set of resources. The node manager maintains the

container for task allocation and MR Application Master

(AppMaster) allows the user to get the status of the

requested healthcare service through resource manager

3.1. Hybrid 2-GW Optimization Algorithm

The GreyWolf and GlowWorm techniques are combined

with the queuing theory to boost cloud performance by

decreasing overall application execution time via

optimized resource scheduling. It uses preemptive

scheduling, which reschedules jobs that have been

waiting in line for a long time. This utilizes the join

procedure to stop a thread from running. The proposed

2GW hybrid optimization Algorithm (1) provides a

better performance analysis of the five scheduling

metrics with enhanced QoS scheduling techniques which

is derived below, along with a glossary of terminology

Figure 1. Schematic representation of the proposed method.

Algorithm 1: Hybrid 2-GW Optimization Algorithm

SET task Tk to ready queue q

INIT accessible resources to nodes N

COMPUTE each completed job at different metrics on N

ASSIGN current status of the job as CS

 FOR each task Tk has a deadline TD

 CALCULATE arrival time for Tk

DETERMINE probability mass function to arrival time

 END FOR

CALCULATE resource capacity as rc along with waiting time on TD

 FOR Tk on different metrics

 GET minimal arrival time as D from TD

 IF D is minimum than rc then

DETERMINE resource to Tk

 ELSE

DETERMINE resource rescheduling Tk with

D on CS that maximize TD

 END

IF arrival time is greater than executing tasks in q include

waiting time then

SCHEDULE required job from q with minimal TD

 END

 END FOR

Store/Retrieve

Job
Scheduling

Proposed 2GW Hybrid Optimization Algorithm

Live Migration

Request/
Response

Resource
Pool

QoS Metric
Data

Resource
Manager

(Master Node)
 SLA

Management

Migration
Monitoring

Resource
Scheduling

Cloud User

Resource
Allocation

Bag of Jobs

Cloud Portal
Workload Analyzer

Physical
Machine

Virtual
Machine

Container
Allocation

MapReduce
AppMaster

Node Manager
(Slave Node1)

Enhanced QoS
Scheduling
Algorithm

Improved
GlowWorm Swarm

Optimization
Algorithm

Performance Analysis

Container
Allocation

MapReduce
AppMaster

Node Manager
(Slave Node2)

Node Status Node Status

Mean GreyWolf
Optimization
Algorithm

A Novel Resource Scheduler for Resource Allocation and Scheduling in Big Data ... 867

(13)

The tasks Tk to be completed and will be queued in the

ready queue ‘q’. The variable ‘D’ denotes the virtual

machines. A similar set of jobs is categorized into

different categories that represent ‘C’ from 1 to m

resources. The variable rc is the average number of tasks

performed by ‘D’ in a given amount of time and CS

represents the task's current status. The combination of

available resources and processing time is used to

calculate the Task Deadline (TD). To calculate the

waiting period, the arrival time of each job is taken into

consideration. The set of task arrival times is calculated

using the probability mass function. Because the arrival

time of jobs is unknown, it is considered to be stochastic.

The continuous-time sequences for the tasks are handled

by the Markov process that is used to determine the

arrival time. The exact solution space in VM is identified

to schedule the resources to execute the set of MR jobs.

3.2. Mean GreyWolf Optimization Algorithm

The mean greywolf optimization method improves the

GWO method's performance and accuracy. The

surrounding and hunting equations have been changed in

this proposed approach. The processes for the following

equations are identical to the GWO algorithm as a whole.

The primary goal of this method is to increase the

efficiency of each wolf's mobility and find the best route

for each wolf in the search region. The following are the

divisions of the MGWOA:

a. Surrounding the prey: the following Equations (1),

(2), (3), and (4) are used to create a hunt where grey

wolves surround the prey.

    . .M F Y ci Y ci
q

 

   1 .Y ci Y ci B M
q

  

Where,  .F Y ciq represents the vector of prey's

location, ci represents the current iteration, and  Y ci

represents the vector of grey wolf location. The vectors

are denoted as,

2 .
1 1 2

B b s b 

2.
2

M s

It has reduced the element b from 2 to 0 and the vectors

2,1b b each take a random value among [0,1].

b. Hunting: the three best and optimum design

parameters are designated by ρ, μ, δ, and the grey

wolf vector solution is derived by  1Y ci . By

computing the mean of the locations, each wolf's

location in the search space area has been improved

by using the below Equations (5), (6), (7), (8), (9),

(10), and (11).

 . .
1

M F Y Y ci
 
 

 . .
2

M F Y Y ci
 
 

 . .
3

M F Y Y ci
 
 

.
1 1

Y Y B M
 

    
 

.
2 2

Y Y B M
 

    
 

 .
3 3

Y Y B M
 

 

  1 2 31
3

Y Y Y
Y ci

 
 

3.3. Improved GlowWorm Swarm Optimization

Algorithm

The Glowworm Swarm Optimization Algorithm

(GSOA) is an excellent candidate for parallel processing

due to its clustering nature. We used the MapReduce

framework in conjunction with the sequential

glowworm optimization technique.

 The initialization phase and the MapReduce phase

are the two major stages of improved GSOA. An initial

glowworm swarm is generated during the startup

process. Within the specified search space, regular

randomized produces a random location vector (Yj) for

every glowworm ‘j’ which explores its own

neighborhood region; ‘t’ is the current iteration; ‘s’

refers to the luciferin decay constant (s∊(0,1)) and β is

the luciferin enhancement fraction. The Yj vector is then

used to assess the objective function I(Yj). After that,

using the starting luciferin level LL0, I(Yj), and other

specified variables, (12) is used to determine the

Luciferin Level (LLj).

       LL t 1 s L t 1 βI Y t
j j j

 
     

 

The MR task in the MapReduce phase uses the first

saved file as its input. Step two of MR-Glowworm

Swarm Optimization (MR-GSO) involves an iterative

sequence of MapReduce tasks, with each MapReduce

task representing glowworm swarm optimization

iteration. Each MR task produces an upgraded

glowworm swarm with updated data, subsequently fed

into the next MR operation. The method uses the

MapReduce model's power to speed up the time-

consuming phases of luciferin level updating and

glowworm movements at every MapReduce operation.

For each glowworm, an objective function I(Yj) uses

(13) to identify the neighbor group NGj(t) during the

movement step, which necessitates distance

computations and luciferin levels (LLi and LLj)

comparison between every glowworm and other

swarming members.

       i NG t iff d qd t and LL t LL t
j ji j i

<
j

 

(1)

(2)

(3)

(4)

(8)

(7)

(6)

(5)

(9)

(10)

(11)

(12)

868 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

(16)

Where ‘i’ is one of the closer glowworms to glowworm

‘j’; dji is the Euclidean distance between glowworm ‘j’

and glowworm ‘i’; qd is the radial sensor range that is

initialized with the same value q0. This procedure is

repeated N2 times, where N is the size of the swarm.

The map function, which is part of a MapReduce task,

is responsible for identifying neighbor groups. A

duplicate of the saved glowworm swarm is obtained

from the distributed environment. The functionality

offered by the MR framework for file storage before the

neighbor group discovery procedure is done in the map

phase. To identify the best neighbor (14) using the

roulette wheel selection technique, the neighbor

probabilities are computed.

    

     

LL t LL t
i j

prb
ji LL t LL tm NG t m jj




 

The reduce function receives glowworm ID ‘j’,

including its value and glowworm ID ‘j’ with the chosen

neighbor position vector (Yj) from the map phase after

the map operations. The mapped function's produced

intermediary outputs are divided using the standard

partitioner by allocating the glowworms to the removers

depending on the IDs using the modulus hashing

algorithm as an intermediate stage in the MapReduce

process. The MR Job’s reducer is in charge of upgrading

the luciferin level LLm, which is the most costly step in

the glowworm optimization since the optimization

problem is assessed for the current glowworm location

at this point. When the controller gets the key, a list of

values from the map function, where the key is the

glowworm ID, and the list of values includes the

glowworm values and its best neighbor location, the

luciferin level upgrading process starts (Yj). The reduce

function retrieves the glowworm data Yj, I(Yj), LLj, and

qdj, as well as the neighbor position vector. After that,

(15) is used to update the glowworm position vector.

   
   Y t Y t

i j
Y t Y t 1 q

j j d
ji



  

Following that, the goal function is calculated using the

new glowworm location vector Yj(t), and the luciferin

level is adjusted using Equation (12) and at the end of

the IGSO iteration, the local decision range Equation

(16) is used to adjust qdj. Finally, the reduce function

outputs the glowworm ID ‘j’, which contains the freshly

modified glowworm data. The glowworm swarming

replaced the previous swarm in the distributed system,

which is utilized after the next MapReduce task.

       qd t min qs,max 0,qd t 1 γ mt M t 1j jj
     
  

Where, qdj(t-1) is the previous iteration of qdj. qs is the

radial sensor range constant, γ is a model constant, mt is

a constant parameter used to restrict the neighborhood

set size, and  M tj is the actual neighborhood set size.

GreyWolf optimizer helps to schedule workflow

tasks in a cloud environment, which helps to minimize

task completion time and VM usage cost, and to

maximize resource throughput. It identifies the exact

block pool in the available solution space (i.e.,

appropriate virtual machine selection) to execute the set

of jobs based on their priority, size and resource type.

The GlowWorm optimizer uses evolutionary

computation and quantum strategies to identify the

neighbourhood tasks that achieve more efficient task

scheduling with minimal costs. Each glowworm is

obligated to move towards the outstanding individuals

within its selection solution range until the ideal value

is discovered by the proposed algorithm to be optimally

solved. A pre-scheduling strategy helps to improve the

resource scheduling in the execution of large dataset.

The two main parameters of the medical data are the

set of tasks or jobs and the resources needed to

accomplish the task. First initialize the parameters and

resource population to compute the fitness of every

single job in the VM. Secondly, our proposed algorithm

generates the random population to calculate the target

value of the corresponding scheduling strategy for each

individual block in the VM. Then provide judgement by

performing iterations and mutations that guarantees the

exact solution space in that required population. Local

and boundary searches are performed for the evaluation

of the target value. Finally, the solution space is updated

to find the optimal solution in the targeted VM for

resource scheduling. The GreyWolf technique lacks

poor exploration, a prematurely low convergence rate,

and imbalanced exploitation to find the exact optimal

solution. The GlowWorm technique has a few

drawbacks, such as poor stability, low solution

precision, and slow convergence. The main purpose of

the proposed hybrid technique is to increase the

efficiency of the motion to access the block of resources

from the resource pool and the suitable path for each

task present in the desired virtual machine. It reduces

the replicated computation, identifies dependencies

among the virtual machines, and accelerates the

convergence rate depending on the resource type that

provides the optimal solution.

4. Result Analysis

The CloudSim framework [2], a simulation tool for

modeling cloud systems, was employed for the

experimental investigation. The hardware configuration

for the proposed implementation is windows 10 OS on

64-bit with the Intel (R) Core (TM) i5, 6 GB ram, 4 CPU

cores as 40 number of virtual machines with 925 tasks,

number of datacenter is 1 with the network bandwidth of

2800 Mbps, SLA policy by the cloud provider on VM is

Time_Shared and the number of resources is assumed to

be 75. Although the cloud environment is thought to

(14)

(15)

A Novel Resource Scheduler for Resource Allocation and Scheduling in Big Data ... 869

(17)

(20)

contain an infinite amount of resources, we must restrict

the number of resources to arrive at an ideal solution.

The enhancement in our proposed algorithm is analyzed

with the diabetes prediction dataset from Kaggle as the

single resource request for the simulation entity. The size

of the parent population is 500, number of iterations is

50 with the fitness extraction value of 0.4 and Luciferin

volatilization factor is 0.2. Based on five scheduling

goals such as latency, makespan, resource utilization,

memory consumption, and skewness, the proposed

hybrid 2-GW optimization algorithm is compared and

analyzed against IFFO, SWOA, and PSO, which provide

better performances in resource scheduling on given

metrics. The experimental findings are shown in Figures

2 to 6 as graphs and the performance of the proposed

scheduler is improved by 20% to 30%, which is higher

than the existing scheduling methodologies.

4.1. Latency

The latency u(t) is the measurement of the delay that

occurred between the cloud user request and the

response from the service provider. The average delay

for the computation tasks plays an important role in

resources allocation as well as improving resource

utilization (17),

          , , , u t f t u t u t t u t Rd  

Where, delay τ>0 is a constant, t denotes time, u(t)

denotes error rate, delay τ (t)≥0 is a given function and d

is the matrix calculated for each delay R.

Figure 2. Latency vs. no. of iterations.

Figure 2 demonstrates that our proposed approach

results in achieved low latency vs. the number of

iterations compared to existing methods. If iteration

number=10, when compared to existing techniques such

as IFFO, SWOA, and PSO, the latency is 0.19, 0.15, and

0.12 correspondingly, but the proposed H2-GWOA

latency is 0.11. If iteration number=20, when compared

to existing techniques such as IFFO, SWOA, and PSO,

the latency is 0.17, 0.14, and 0.10 correspondingly, but

the proposed H2-GWOA latency is 0.08. If iteration

number=30, when compared to existing techniques such

as IFFO, SWOA, and PSO, the latency is 0.15, 0.12, and

0.08 correspondingly, but the proposed H2-GWOA

latency is 0.06. If iteration number=40, when compared

to existing techniques such as IFFO, SWOA, and PSO,

the latency is 0.13, 0.10, and 0.07 correspondingly, but

the proposed H2-GWOA latency is 0.04. If iteration

number=50, when compared to existing techniques such

as IFFO, SWOA, and PSO, the latency is 0.11, 0.08, and

0.04 correspondingly, but the proposed H2-GWOA

latency is 0.02.

4.2. Makespan

Makespan can be defined as the maximum completion

time of all tasks consumed by any virtual machine. The

minimization of makespan improves the performance

by allocating the exact resources on the specific node. If

the desired node is determined, then the energy

consumption per node can also be measured. The

makespan is an important factor to be considered for

cloud users and resource manager [15]. By selecting the

suitable collection of jobs to allocate to VMs, the goal

is to minimize the makespan to the bare essentials. Let

(1, 2, 3, ... Xab, y, n, y=1, 2, 3,..., n) be the efficient

implementation for running the bth task on the ath VM;

Here, ‘a’ indicates the quantity of VMs, and ‘b’

represents the variety of tasks. The execution time (19)

of jth VM is based on the decision variable Xab that is

denoted (18),

}X {1 T VM | 2 T VM
ab i j i j

if if 

Where the set of all tasks, Ti = {T1, T2, T3, T4,…..,Tn}.

  * /

1

n
ET X lh ps

y ab b a
y

 


Where, lhb=Length of the bth task, psa=Processing

speed of the ath virtual machine. The makespan's (MS)

fitness value is calculated (20),

  , is MS max ET for all tasks T mapped to VM
y i j



Figure 3. Makespan vs. no. of iterations.

(18)

(19)

870 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

Figure 3 illustrates a comparison of makespan based

on the number of iterations. When compared to existing

methods, our proposed method H2-GWOA is better. If

iteration number=10, when compared to existing

techniques such as IFFO, SWOA, and PSO, the

makespan is 0.21, 0.17, and 0.16 correspondingly, but

the proposed H2-GWOA makespan is 0.13. If iteration

number=20, when compared to existing techniques such

as IFFO, SWOA, and PSO, the makespan is 0.19, 0.16,

and 0.14 correspondingly, but the proposed H2-GWOA

makespan is 0.11. If iteration number=30, when

compared to existing techniques such as IFFO, SWOA,

and PSO, the makespan is 0.17, 0.14, and 0.10

correspondingly, but the proposed H2-GWOA

makespan is 0.08. If iteration number=40, when

compared to existing techniques such as IFFO, SWOA,

and PSO, the makespan is 0.15, 0.13, and 0.10

correspondingly, but the proposed H2-GWOA

makespan is 0.07. If iteration number=50, when

compared to existing techniques such as IFFO, SWOA,

and PSO, the makespan is 0.12, 0.10, and 0.07

correspondingly, but the proposed H2-GWOA

makespan is 0.05.

4.3. Resource Consumption

The resource consumption is unstable with the use of

smart devices, so the dynamic pricing quoted in the SLA

is mandatory for both cloud users and service providers.

The concurrent usage of resource consumption by cloud

users deals with the efficiency in handling the cloud

resources. The increased pricing on resource

consumption has occurred for the service providers due

to the maximum utilization of the same cloud resources

[3]. The consumption of resources (β) is expressed in the

Equation (21) which represents the percentage of the

total number of resources available divided by the total

amount of resources allocated.

C

RA
 

Where, C refers to the total number of resources

allocated and RA refers to the total number of resources

available.

Figure 4 illustrates a comparison of resource usage

based on the number of iterations. Compared to

conventional methods, our proposed H2-GWOA

method used the most system resources. If iteration

number=10, when compared to existing techniques such

as IFFO, SWOA, and PSO, the resource usage is 0.085,

0.12, and 0.175 correspondingly, but the proposed H2-

GWOA resource usage is 0.185. If iteration number=20,

when compared to existing techniques such as IFFO,

SWOA, and PSO, the resource usage is 0.09, 0.14, and

0.1 correspondingly, but the proposed H2-GWOA

resource usage is 0.16. If iteration number=30, when

compared to existing techniques such as IFFO, SWOA,

and PSO, the resource usage is 0.01, 0.125, and 0.085

correspondingly, but the proposed H2-GWOA resource

usage is 0.15. If iteration number=40, when compared

to existing techniques such as IFFO, SWOA, and PSO,

the resource usage is 0.08, 0.1, and 0.075

correspondingly, but the proposed H2-GWOA resource

usage is 0.125. If iteration number=50, when compared

to existing techniques such as IFFO, SWOA, and PSO,

the resource usage is 0.07, 0.125, and 0.15,

correspondingly, but the proposed H2-GWOA resource

usage is 0.175.

Figure 4. Resources consumption vs. no. of iterations.

4.4. Memory Consumption

Memory consumption (Mcon) deals with allocating

memory to the data nodes where the data is transferred

from the cloud user to the resource manager for

computation in virtual machines. This proposed

scheduler reduces the memory utilization based on

priority task execution, dynamic workloads

computation, and even with a huge amount of data

transfer on the cloud environment [10]. Memory

consumption is defined as the ratio of the amount of

memory needed to perform an assignment to the total

amount of memory available in the cloud, as calculated

by the Equation (22),

1

sy p
Mcon

qp p

 
  
 

  

Where, sp denotes the task required the use of memory

and qp shows the total amount of memory that is

available.

Figure 5 depicts a comparison of memory usage

based on the number of iterations performed. This graph

shows that the proposed H2-GWOA technique used the

most RAM compared to conventional methods. If

iteration number=10, when compared to existing

techniques such as IFFO, SWOA, and PSO, the memory

usage is 0.03, 0.07, and 0.14 correspondingly, but the

proposed H2-GWOA memory usage is 0.18. If iteration

(21)

(22)

A Novel Resource Scheduler for Resource Allocation and Scheduling in Big Data ... 871

number=20, when compared to existing techniques such

as IFFO, SWOA, and PSO, the memory usage is 0.04,

0.08, and 0.09 correspondingly, but the proposed H2-

GWOA memory usage is 0.12. If iteration number=30,

when compared to existing techniques such as IFFO,

SWOA, and PSO, the memory usage is 0.01, 0.02, and

0.03 correspondingly, but the proposed H2-GWOA

memory usage is 0.15.

Figure 5. Memory consumption vs. no. of iterations.

If iteration number=40, when compared to existing

techniques such as IFFO, SWOA, and PSO, the memory

usage is 0.02, 0.165, and 0.18 correspondingly, but the

proposed H2-GWOA memory usage is 0.25. If iteration

number=50, when compared to existing techniques such

as IFFO, SWOA, and PSO, the memory usage is 0.12,

0.155, and 0.17 correspondingly, but the proposed H2-

GWOA memory usage is 0.265.

4.5. Skewness

The different number of iterations for various workload

combinations helps to improve the resource utilization

that minimizes the skewness (pn). This proposed

algorithm restricts the over-utilized resources gradually

and saves the server energy. Equation (23) states that it

is the measure used to detect the cloud server's uneven

resource usage,

2

1 2
Q

P
n Q

n

 
  
 
 

Where, Q is denoted random variable and Qn is denoted

as a number of variables in distribution.

Figure 6 shows a performance comparison of

skewness with the number of repetitions. This graph

shows that the proposed H2-GWOA technique has the

least skewness among the conventional methods. If

iteration number=10, when compared to existing

techniques such as IFFO, SWOA, and PSO, the

skewness is 0.11, 0.05, and 0.02 correspondingly, but

the proposed H2-GWOA skewness is 0.01. If iteration

number=20, when compared to existing techniques such

as IFFO, SWOA, and PSO, the skewness is 0.05, 0.01,

and 0.009 correspondingly, but the proposed H2-

GWOA skewness is 0.005. If iteration number=30,

when compared to existing techniques such as IFFO,

SWOA, and PSO, the skewness is 0.015, 0.013, and

0.01 correspondingly, but the proposed H2-GWOA

skewness is 0.009. If iteration number=40, when

compared to existing techniques such as IFFO, SWOA,

and PSO, the skewness is 0.17, 0.02, and 0.01

correspondingly, but the proposed H2-GWOA skewness

is 0.008. If iteration number=50, when compared to

existing techniques such as IFFO, SWOA, and PSO, the

skewness is 0.15, 0.03, and 0.01 correspondingly, but

the proposed H2-GWOA skewness is 0.005.

Figure 6. Skewness vs. no. of iterations.

References

[1] Aggarwal A., Dimri P., Agarwal A., Verma M.,

and Alhumyani H., “IFFO: An Improved Fruit Fly

Optimization Algorithm for Multiple Workflow

Scheduling Minimizing Cost and Makespan in

Cloud Computing Environments,” Mathematical

Problems in Engineering, vol. 2021, pp. 1-9, 2021.
https://doi.org/10.1155/2021/5205530

[2] Calheiros R., Ranjan R., Beloglazov A., Rose C.,

and Buyya R., “Cloudsim: A Toolkit for Modeling

and Simulation of Cloud Computing

Environments and Evaluation of Resource

Provisioning Algorithms,” Software Practice and

Experience, vol. 41, no. 1, pp. 23-50, 2011.
https://doi.org/10.1002/spe.995

[3] Cao B., Wang K., Xu J., Hou C., and Fan J.,

“Dynamic Pricing for Resource Consumption in

Cloud Service,” Wireless Communications and

Mobile Computing, vol. 2018, pp. 1-11, 2018.

Https://Doi.Org/10.1155/2018/4263831

[4] Chen X., Wang H., Ma Y., Zheng X., and Guo L.,

“Self-Adaptive Resource Allocation for Cloud-

Based Software Services Based on Iterative Qos

Prediction Model,” Future Generation Computer

Systems, vol. 105, pp. 287-296, 2020.
https://doi.org/10.1016/j.future.2019.12.005

[5] Chou L., Chen H., Tseng F., Chao H., and Chang

(23)

https://doi.org/10.1155/2021/5205530
https://doi.org/10.1002/spe.995
https://doi.org/10.1155/2018/4263831
https://doi.org/10.1016/j.future.2019.12.005

872 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

Y., “DPRA: Dynamic Power-Saving Resource

Allocation for Cloud Data Center Using Particle

Swarm Optimization,” IEEE Systems Journal,

vol. 12, no. 2, pp. 1554-1565, 2018. doi:

10.1109/JSYST.2016.2596299.

[6] Galetsi P., Katsaliaki K., and Kumar S., “Big Data

Analytics in Health Sector: Theoretical

Framework, Techniques and Prospects,”

International Journal of Information

Management, vol. 50, pp. 206-216, 2020.
https://doi.org/10.1016/j.ijinfomgt.2019.05.003

[7] Haghighi A., Heydari S., and Shahbazpanahi S.,

“Dynamic Qos-Aware Resource Assignment in

Cloud-Based Content-Delivery Networks,” IEEE

Access, vol. 6, pp. 2298-2309, 2018. doi:

10.1109/ACCESS.2017.2782776.

[8] Horri A., Mozafari M., and Dastghaibyfard G.,

“Novel Resource Allocation Algorithms to

Performance and Energy Efficiency in Cloud

Computing,” The Journal of Supercomputing, vol.

69, no. 3, pp. 1445-1461, 2014.
https://doi.org/10.1007/s11227-014-1224-8

[9] Kumar M. and Sharma S., “PSO-COGENT: Cost

and Energy Efficient Scheduling in Cloud

Environment with Deadline Constraint,”

Sustainable Computing: Informatics and Systems,

vol. 19, pp. 147-164, 2018.
https://doi.org/10.1016/j.suscom.2018.06.002

[10] Lakkadwala P. and Kanungo P., “Memory

Utilization Techniques for Cloud Resource

Management in Cloud Computing Environment:

A Survey,” International Conference on

Computing Communication and Automation,

Greater Noida, pp. 1-5, 2018. doi:

10.1109/CCAA.2018.8777457

[11] Lee H., Jeong Y., and Jang H., “Performance

Analysis Based Resource Allocation for Green

Cloud Computing,” The Journal of

Supercomputing, vol. 69, no. 3, pp. 1013-1026,

2014. https://doi.org/10.1007/s11227-013-1020-x

[12] Lim A., Ma H., Rodrigues B., Tan S., and Xiao F.,

“New Meta-Heuristics for the Resource-

Constrained Project Scheduling Problem,”
Flexible Services and Manufacturing Journal, vol.

25, no. 1-2, pp. 48-73, 2013.

https://doi.org/10.1007/s10696-011-9133-0

[13] Liu H., Liu S., and Zheng K., “A Reinforcement

Learning-Based Resource Allocation Scheme for

Cloud Robotics,” IEEE Access, vol. 6, pp. 17215-

17222, 2018.

[14] Mishra M., Das A., Kulkarni P., and Sahoo A.,

“Dynamic Resource Management Using Virtual

Machine Migrations,” IEEE Communication

Magazine, vol. 50, no. 9, pp. 34-40, 2012.
10.1109/MCOM.2012.6295709

[15] Peng Z., Barzegar B., Yarahmadi M., Motameni

H., and Pirouzmand P., “Energy-Aware

Scheduling of Workflow Using a Heuristic

Method on Green Cloud,” Scientific

Programming, vol. 2020, pp. 1-14, 2020.

[16] Qi L., Chen Y., Yuan Y., Fu S., Zhang X., and Xu

X., “A Qos-Aware Virtual Machine Scheduling

Method for Energy Conservation in Cloud-Based

Cyber-Physical Systems,” World Wide Web, vol.

23, no. 2, pp. 1275-1297, 2020.
https://doi.org/10.1007/s11280-019-00684-y

[17] Shukur H., Zeebaree S., Zebari R., Zeebaree D.,

Ahmed O., and Salih A., “Cloud Computing

Virtualization of Resources Allocation for

Distributed Systems,” JASTT, vol. 1, no. 3, pp. 98-

105, 2020.

[18] Stanik A., Koerner M., and Lymberopoulos L.,

“SLA-driven Federated Cloud Networking:

Quality of Service for Cloud-Based Software

Defined Networks,” Procedia Computer Science,

vol. 34, pp. 655-660, 2014.

https://doi.org/10.1016/j.procs.2014.07.093

[19] Subhash L. and Udayakumar R., “Sunflower

Whale Optimization Algorithm for Resource

Allocation Strategy in Cloud Computing

Platform,” Wireless Personal Communications,

vol. 116, no. 4, pp. 3061-3080, 2021.
https://doi.org/10.1007/s11277-020-07835-9

[20] Tian W., He M., Guo W., Huang W., and Shi X.,

“On Minimizing Total Energy Consumption in the

Scheduling of Virtual Machine Reservations,”

Journal of Network and Computer Applications,

vol. 113, pp. 64-74, 2018.

https://doi.org/10.1016/j.jnca.2018.03.033

[21] Tong S., Liu Y., Cho H., Chiang H., and Zhang Z.,

“Joint Radio Resource Allocation in Fog Radio

Access Network for Healthcare,” Peer-to-Peer

Networking and Applications, vol. 12, no. 5, pp.

1277-1288, 2019. https://doi.org/10.1007/s12083-

018-0707-4

[22] Xu X., Tang M., and Tian Y., “Qos-Guaranteed

Resource Provisioning for Cloud-Based

Mapreduce in Dynamical Environments,” Future

Generation Computer Systems, vol. 78, pp. 18-30,

2018.
https://doi.org/10.1016/j.future.2017.08.005

[23] Xu X., Fu S., Cai Q., Tian W. and Liu W.,

“Dynamic Resource Allocation for Load

Balancing in Fog Environment,” Wireless

Communications and Mobile Computing, vol.

2018, pp. 1-15, 2018.

https://doi.org/10.1155/2018/6421607

[24] Yang C., Chen S., Liu J., Chan Y., Chen C., and

Verma V., “An Energy-Efficient Cloud System

with Novel Dynamic Resource Allocation

Methods,” Journal of Supercomput, vol. 75, no. 8,

pp. 4408-4429, 2019.
https://doi.org/10.1007/s11227-019-02794-w

https://doi.org/10.1016/j.ijinfomgt.2019.05.003
https://link.springer.com/journal/11227
https://doi.org/10.1016/j.suscom.2018.06.002
https://link.springer.com/journal/11227
https://link.springer.com/journal/11227
https://link.springer.com/journal/10696
https://doi.org/10.1016/j.procs.2014.07.093
https://doi.org/10.1016/j.jnca.2018.03.033
https://doi.org/10.1016/j.future.2017.08.005
https://doi.org/10.1155/2018/6421607
https://doi.org/10.1007/s11227-019-02794-w

A Novel Resource Scheduler for Resource Allocation and Scheduling in Big Data ... 873

Aarthee Selvaraj is a research scholar

in the Dept. of EEE at UCE, BIT

Campus, Anna University, Trichy, TN,

India. She has completed M.C.A. and

M.E. (CSE) at Anna University,

Chennai. Her research interests include

cloud computing, energy-aware

computing, data mining, distributed

systems, and big data analytics.

Prabakaran Rajendran received his

B.E. (E&I) and M.Tech. (Embedded

Systems) from Sastra University,

Thanjavur, TN, India, between 2000 and

2005, respectively. He has also

completed his Ph.D. from Anna

University, Chennai. He has been

working as an Assistant Professor in the

Dept. of EEE, UCE, BIT Campus, Anna University, Trichy,

TN, India, since 2007. His area of specialization includes

embedded systems, microprocessor and microcontroller

based systems, WSN, renewable energy, and fiber optics.

Kanimozhi Rajangam completed her

M.E. and Ph.D. from Anna University,

Chennai. She has 20 years of teaching

experience and is currently working as

the Assistant Professor in the Dept. of

EEE, UCE, BIT Campus, Anna

University, Trichy, TN, India. Her area

of specialization includes

microprocessor and microcontroller, power systems,

optimization techniques in electrical engineering, and

renewable energy.

