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Abstract: Big Medical Data (BMD) is generated by cellular telephones, clinics, academics, suppliers, and organizations. 

Collecting, finding, analyzing, and managing the big data to make people's lives better, comprehending novel illnesses, and 

treatments, predicting results at initial phases, and making real-time choices are the actual issues in healthcare systems. Dealing 

with big medical data in resource scheduling is a major issue that aims to offer higher quality healthcare services. Hadoop 

MapReduce has been widely used for parallel processing of large data tasks and efficient job scheduling. The number of big 

data tasks is constantly growing; it is becoming more essential to minimize their energy usage to reduce the environmental effect 

and operating expenses. Hence to overcome these disadvantages, we propose a novel resource scheduler for big data using a 

Hybrid 2-GW Optimization Algorithm (H2-GWOA). We employ the Improved GlowWorm Swarm Optimization Algorithm 

(IGSOA) and Mean GreyWolf Optimization Algorithm (MGWOA) for optimizing the MapReduce framework in heterogeneous 

big data. The CloudSim platform was used for the simulations. The performance of the proposed scheduler is proved to be better 

than the conventional methods in terms of metrics like latency, makespan, resource utilization, skewness, and Central Processing 

Unit (CPU) consumption. 
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1. Introduction 

On-demand delivery of needed resources and services 

via high-speed computer systems is among the most 

significant advantages of cloud computing. It has shown 

improved results in servicing different types of large-

scale and complicated client activities due to continuous 

development, network technologies, and infrastructure 

improvements. Complex development systems and apps, 

cutting-edge virtualized and physical technology met 

heterogeneous customers' needs. Cloud technology and 

the Internet of Things (IoT) have become essential ideas 

in today's technological advances, setting new objectives 

for technology innovation. Resource scheduling is one 

of the most significant problems in the era of cloud 

technology. A Satisfactory Quality of Service (QoS) 

must be achieved using appropriate hardware 

architecture and techniques while conducting resource 

scheduling. In contemporary literature, a cloud 

infrastructure component known as the broker is 

responsible for mapping required end-user tasks to 

accessible virtualization equipment, often implemented 

in Virtual Machines (VMs) [14]. By performing the task 

scheduling, the broker conducts mapping. 

  
With the rise in the number of tasks submitted and the 

number of possible resources, mapping tasks to the 

suitable VMs for execution becomes more challenging. 

If an inefficient scheduling method is employed, certain 

VMs may cause over-utilized or under-utilized, resulting 

in cloud system performance deterioration. The resource 

scheduling issue falls under the NP (pseudo-random 

polynomial duration) categories of hard design 

problems. It is worth noting that the words task and 

cloudlet planning have been used in recent computer 

science research to describe the process of matching 

requested end-user tasks to available VMs.  

Classic algorithms for resource scheduling are 

employed in specific low-level applications and 

optimization methods are inefficient because 

deterministic methods cannot produce satisfactory, 

optimum, or near-optimal solutions for NP-hard 

problems in a reasonable amount of time. Classical 

methods cannot assess every viable solution from the 

dimensional search space in the polynomial period due 

to the random search complexity and increasing range of 

available solutions. Implementing meta-heuristics and 

heuristics-based methods [12] is among the most 

effective approaches to resource provisioning rather than 
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NP-hard methodology. While these approaches do not 

ensure discovering an optimum solution, they have been 

shown to produce satisfactory answers in polynomial 

time practice. The primary benefit of employing a 

resource allocation method in cloud computing is 

optimizing resource usage while lowering operational 

costs. In a cloud computing environment, the 

fundamental purpose of resource allocation is to 

efficiently optimize Physical Machines (PMs) or manage 

workloads in distributed PMs to decrease resource 

consumption, bottlenecks, and overloaded resource 

utilization [20]. The practice of distributing cloud 

resources to cloud apps over the network in a structured 

way is referred to as resource allocation. The solutions 

may not even be long-lasting if cloud solutions fail to 

provide a resource to consumers on request. This issue 

was addressed by allowing cloud providers to allocate 

resources individually at every module. As a result, the 

allocation of resources is emphasized as a component of 

the management framework, demonstrating that it is a 

cost-effective element in allocating resources. In the 

cloud architecture, allocation of resources is used to 

enhance customer satisfaction while decreasing 

processing time. Minimizing resource consumption 

guarantees cloud service quality, satisfaction for the 

service provider, and enhances the makespan and 

latency. The fundamental concept behind dynamic 

scheduling is allocating requests according to the time of 

program execution. 

2. Related Works 

Cloud computing has evolved into a new computing 

paradigm with enormous corporate and commercial 

possibilities in this real-world [11]. In a world with finite 

energy supplies and an ever-increasing need for greater 

processing capacity, green cloud computing is becoming 

more essential, must handle resources correctly, and 

virtual machines must assign suitable host nodes to 

conduct computations to optimize utilization and reduce 

the total cost of cloud computing infrastructure and 

application maintenance. We proposed a novel resource 

allocation scheduler based on the QoS-aware VMs 

consolidation technique for cloud settings and efficient 

resource allocation that uses the mechanism of virtual 

machine resource usage for performance analysis to 

allocate virtual servers on the public cloud [8]. We have 

used the CloudSim simulator to develop and test the 

proposed methods. Chen et al. [4] presents a system for 

self-adaptive resource allocation that is made up of 

feedback loops that are performed independently using 

our constructed: 

a) Iterative QoS prediction model. 

b) Particle Swarm Optimization (PSO)-based runtime 

decision method.  

Unlike earlier QoS prediction algorithms that predicted 

a QoS value once and for all, our method improves the 

anticipated QoS value over time until it reaches the 

greatest possible value. [7] In the first step, we conduct 

resource provisioning while taking into consideration 

resource prices, quality of service violations, and cloud-

based root server redirection, as well as QoS restrictions 

and limited cloud site resources. In the second step, 

cloud site assignment is performed, in which expenses 

associated with QoS violations and cloud-based root 

server redirection are avoided or decreased by utilizing 

three distinct proposed methods for fixed assigned 

resources. The challenge of cloud-based computation 

requires MapReduce (MR) computations that are 

abstracted as a dynamic optimization problem [23]. To 

solve this issue, an event-driven resource provisioning 

system is proposed. Experiments compared this new 

event-driven framework to the commonly used static 

resource provisioning framework and periodic resource 

provisioning techniques.  

 Virtualized technology [16] manages resources in the 

cloud environment to enhance the energy efficiency, and 

virtual machines often host applications. QVMS, a QoS-

aware VM scheduling technique for energy saving in 

cloud-based CPS with QoS standards, has been 

developed in response to this issue. Stanik et al. [18] 

proposed an orchestrating and federating heterogeneous 

networks in API-based system software architecture that 

allows for QoS-aware network resource settings in a 

single cloud datacenter's infrastructure, as well as 

federated networking across various SDN-based cloud 

networks beyond the information edge networks. 

Additionally, this architecture employs a Service Level 

Agreement (SLA) protocol, language to disclose Key 

Performance Indicators (KPI) and to negotiate suitable 

QoS constraints that are applied to the virtualized 

network substrate [9]. The study [17] also seeks to 

investigate the function of virtualization in efficiently 

delivering resources depending on customers' needs. It 

also looked at how virtualization may improve network 

speed, save money by decreasing the number of physical 

machines in the datacenter, balance load, reduce server 

energy, and distribute resources dynamically while 

meeting customers' needs. This provides [13] a 

Reinforcement Learning (RL)-based resource allocation 

system, which enables the cloud to choose whether to 

approve a request and exactly how many resources to 

provide in response. The dynamic resource allocation 

technique [24] and the energy conservation method are 

the two approaches, we considered for our proposed 

work. To test the proposed method with live virtual 

machine migration, we first built an infrastructure 

architecture based on OpenStack VMs. Second, we 

developed an energy-saving proposed method for 

assigning the dynamic resources. Finally, we discovered 

in the tests that the proposed methods could efficiently 

use VM resources and save energy on datacenters. Tong 

et al. [21] used the Fog Radio Access Network (F-RAN) 

model in which content transmission and cooperative 

caching methods are optimized together. To obtain an 
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ultra-low latency for the model F-RAN, they constructed 

a mixed-integer nonlinear programming problem. In 

response to this issue [22], a dynamic resource allocation 

strategy for balancing load in fog environments was 

provided. The load-balance assessment for various 

computing hubs is presented first, followed by a fog 

computing system design. Then, to establish a load 

balancing for fog computing systems, a matching 

allocation of resource technique in the environment of 

fog is developed using the allocation of resources for the 

static method and service migration for the dynamic 

method. The categorization of big data types in 

healthcare-associated analytical methods [6], generated 

value for stakeholders, platforms, tools for managing 

large health data, and future elements of the client are 

discussed. 

Improved Fruit Fly Optimization (IFFO) algorithm is 

used for optimizing complex scenarios with multiple 

workflows scheduling over the cloud that helps to reduce 

the cost and makespan in the minimal amount of time 

[1]. The Sunflower Whale Optimization Algorithm 

(SWOA) achieves effective resource allocation based on 

the execution of the selected task where every 

application handles different tasks that improves the 

efficiency of the cloud model [19]. PSO algorithm dealt 

with optimizing the cloud resources. A scheduler model 

for efficient allocation of resources for data processing, 

as well as a [5] PSO-based scheduling algorithm named 

PSO-COGENT not only optimizes execution cost and 

time but also reduces the energy consumption of cloud 

datacenters while keeping the deadline in mind. It 

monitors the virtual machine placement to identify the 

optimal resource mapping. The sequence of mapping is 

carried out between PMs and VMs concerning particles 

for optimization. 

3. Proposed Methodology 

Big data task, MapReduce, and its open-source 

implementation have received significant popularity. 

There have been several efforts to enhance existing MR 

schedulers and build more efficient techniques or 

algorithms. Because the number of such big data jobs is 

always expanding, minimizing their energy use is crucial 

to save the environmental and operational expenditures. 

We proposed a new resource scheduler for big medical 

data utilizing the hybrid 2-GW optimization algorithm to 

tackle these challenges. Here, the term 2-GW refers to 

the combination of techniques GreyWolf and 

GlowWorm. The flow of the proposed approach is 

described in this section which is shown schematically 

in Figure 1. Resource management's job is to distribute 

resources to service providers based on their needs and 

limitations. A service provider's goal is to follow its SLA 

with clients. We propose a hybrid 2-GW optimization 

algorithm to optimize the MapReduce framework and 

heterogeneous workloads in handling large datasets. The 

main elements of the proposed approach are described in 

detail. 

a) Cloud Portal: it gives you a single point of entry to a 

cloud-based distributed application that helps to find 

and manage cloud resources. This module is in 

charge of converting user requests into Resource 

Specification Language (RSL), a cloud-friendly 

language. The final product is initially sent to the 

cloud portal, which then sends it to the users. 

b) Enforcement of the SLA: the various cloud 

computing models and levels should be considered 

while deploying SLA in the cloud since the 

measurements and needs of QoS specified in SLAs 

vary with each model and every level. Throughout 

the contractual process, service terms and levels, as 

well as QoS requirements, are created, including 

SLA metrics that will be expressed and monitored to 

ensure that the SLA agreement is fulfilled. 

c) Migration Monitoring: it monitors VM migration, 

which refers to the transfer of VMs from one resource 

to another, such as from one physical host to another 

physical host. One of automated migration tools, the 

VMware vSphere Distributed Resource Scheduler, 

makes use of vMotion to enhance virtual machine 

performance across virtual clusters. 

d) Resource Scheduling: the MR class schedule is the 

heart of cloud computational resources scheduled, 

and it implements the logical step. This approach will 

handle all scheduling schemes. Concurrent analysis, 

fault-tolerant handling, and load-balancing issues are 

handled while managing the resources.  

e) Resource Pool: it also helps with centralized resource 

delivery and management by recording resource 

information such as resource type, quantity, and 

resource location. 

f) Workload Analyzer: the workload analyzer is the 

component in charge of producing request arrival rate 

estimations. This data is utilized to calculate the 

precise number of application instances. It notifies 

the load predictor and efficiency modeler when the 

service request rate is anticipated to vary, in addition 

to the specific technique for estimating future load. 

This warning must be sent before the expected time 

for the arrival rate to change, giving enough time for 

the load predictor and performance modeler to 

compute system modifications and the applications 

provisionary for enough time to release or deploy the 

necessary VMs. 

g) MapReduce AppMaster: it coordinates the set of MR 

tasks running in the cluster. Each application has a 

dedicated AppMaster who is responsible for 

managing the containers and collaborating with the 

node managers to execute and monitor the tasks. 

The cloud users are categorized into administrative staff, 

patients, doctors and clinical staff who request the set of 

services to execute the jobs through cloud portal. The 

workload analyzer performs the healthcare analysis such 

as electronic health records, patient health data and 
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clinical data are integrated for the personalized exact 

treatment methodology. The resource manager allocates 

the desired resources for the exact VM depend on the 

type and size of the healthcare data through the node 

manager. It maintains the SLA with cloud service 

providers for the live VM migration if it is over-utilized 

by the set of resources. The node manager maintains the 

container for task allocation and MR Application Master 

(AppMaster) allows the user to get the status of the 

requested healthcare service through resource manager 

3.1. Hybrid 2-GW Optimization Algorithm 

The GreyWolf and GlowWorm techniques are combined 

with the queuing theory to boost cloud performance by 

decreasing overall application execution time via 

optimized resource scheduling. It uses preemptive 

scheduling, which reschedules jobs that have been 

waiting in line for a long time. This utilizes the join 

procedure to stop a thread from running. The proposed 

2GW hybrid optimization Algorithm (1) provides a 

better performance analysis of the five scheduling 

metrics with enhanced QoS scheduling techniques which 

is derived below, along with a glossary of terminology

 
Figure 1. Schematic representation of the proposed method. 

Algorithm 1: Hybrid 2-GW Optimization Algorithm 

SET task Tk to ready queue q 

INIT accessible resources to nodes N 

COMPUTE each completed job at different metrics on N 

ASSIGN current status of the job as CS 

  FOR each task Tk has a deadline TD 

  CALCULATE arrival time for Tk 

DETERMINE probability mass function to arrival time 

  END FOR 

CALCULATE resource capacity as rc along with waiting time on TD 

 FOR Tk on different metrics 

  GET minimal arrival time as D from TD 

   IF D is minimum than rc then  

DETERMINE resource to Tk 

 ELSE 

DETERMINE resource rescheduling Tk with  

D on CS that maximize TD 

 END 

IF arrival time is greater than executing tasks in q include 

waiting time then 

SCHEDULE required job from q with  minimal TD 

 END 

 END FOR 
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The tasks Tk to be completed and will be queued in the 

ready queue ‘q’. The variable ‘D’ denotes the virtual 

machines. A similar set of jobs is categorized into 

different categories that represent ‘C’ from 1 to m 

resources. The variable rc is the average number of tasks 

performed by ‘D’ in a given amount of time and CS 

represents the task's current status. The combination of 

available resources and processing time is used to 

calculate the Task Deadline (TD). To calculate the 

waiting period, the arrival time of each job is taken into 

consideration. The set of task arrival times is calculated 

using the probability mass function. Because the arrival 

time of jobs is unknown, it is considered to be stochastic. 

The continuous-time sequences for the tasks are handled 

by the Markov process that is used to determine the 

arrival time. The exact solution space in VM is identified 

to schedule the resources to execute the set of MR jobs.  

3.2. Mean GreyWolf Optimization Algorithm 

The mean greywolf optimization method improves the 

GWO method's performance and accuracy. The 

surrounding and hunting equations have been changed in 

this proposed approach. The processes for the following 

equations are identical to the GWO algorithm as a whole. 

The primary goal of this method is to increase the 

efficiency of each wolf's mobility and find the best route 

for each wolf in the search region. The following are the 

divisions of the MGWOA:  

a. Surrounding the prey: the following Equations (1), 

(2), (3), and (4) are used to create a hunt where grey 

wolves surround the prey. 

    . .M F Y ci Y ci
q

   

   1 .Y ci Y ci B M
q

    

Where,  .F Y ciq represents the vector of prey's 

location, ci represents the current iteration, and  Y ci

represents the vector of grey wolf location. The vectors 

are denoted as,  

2 .
1 1 2

B b s b   

2.
2

M s  

It has reduced the element b from 2 to 0 and the vectors 

2,1b b each take a random value among [0,1].  

b. Hunting: the three best and optimum design 

parameters are designated by ρ, μ, δ, and the grey 

wolf vector solution is derived by  1Y ci . By 

computing the mean of the locations, each wolf's 

location in the search space area has been improved 

by using the below Equations (5), (6), (7), (8), (9), 

(10), and (11).  

 . .
1

M F Y Y ci
 
   

 . .
2

M F Y Y ci
 
   

 . .
3

M F Y Y ci
 
   

.
1 1

Y Y B M
 

    
 

 

.
2 2

Y Y B M
 

    
 

 

 .
3 3

Y Y B M
 

   

  1 2 31
3

Y Y Y
Y ci

 
   

3.3. Improved GlowWorm Swarm Optimization 

Algorithm 

The Glowworm Swarm Optimization Algorithm 

(GSOA) is an excellent candidate for parallel processing 

due to its clustering nature. We used the MapReduce 

framework in conjunction with the sequential 

glowworm optimization technique. 

 The initialization phase and the MapReduce phase 

are the two major stages of improved GSOA. An initial 

glowworm swarm is generated during the startup 

process. Within the specified search space, regular 

randomized produces a random location vector (Yj) for 

every glowworm ‘j’ which explores its own 

neighborhood region; ‘t’ is the current iteration; ‘s’ 

refers to the luciferin decay constant (s∊(0,1)) and β is 

the luciferin enhancement fraction. The Yj vector is then 

used to assess the objective function I(Yj). After that, 

using the starting luciferin level LL0, I(Yj), and other 

specified variables, (12) is used to determine the 

Luciferin Level (LLj).  

       LL t 1 s L t 1 βI Y t
j j j

 
     

 

 

The MR task in the MapReduce phase uses the first 

saved file as its input. Step two of MR-Glowworm 

Swarm Optimization (MR-GSO) involves an iterative 

sequence of MapReduce tasks, with each MapReduce 

task representing glowworm swarm optimization 

iteration. Each MR task produces an upgraded 

glowworm swarm with updated data, subsequently fed 

into the next MR operation. The method uses the 

MapReduce model's power to speed up the time-

consuming phases of luciferin level updating and 

glowworm movements at every MapReduce operation. 

For each glowworm, an objective function I(Yj) uses 

(13) to identify the neighbor group NGj(t) during the 

movement step, which necessitates distance 

computations and luciferin levels (LLi and LLj) 

comparison between every glowworm and other 

swarming members. 

       i NG t  iff d qd t  and LL t LL t
j ji j i

<
j

   

(1) 

(2) 

(3) 

(4) 

(8) 

(7) 

(6) 

(5) 

(9) 

(10) 

(11) 

(12) 
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Where ‘i’ is one of the closer glowworms to glowworm 

‘j’; dji is the Euclidean distance between glowworm ‘j’ 

and glowworm ‘i’; qd is the radial sensor range that is 

initialized with the same value q0. This procedure is 

repeated N2 times, where N is the size of the swarm. 

The map function, which is part of a MapReduce task, 

is responsible for identifying neighbor groups. A 

duplicate of the saved glowworm swarm is obtained 

from the distributed environment. The functionality 

offered by the MR framework for file storage before the 

neighbor group discovery procedure is done in the map 

phase. To identify the best neighbor (14) using the 

roulette wheel selection technique, the neighbor 

probabilities are computed.  

    

     

LL t LL t
i j

prb
ji LL t LL tm NG t m jj




 

 

The reduce function receives glowworm ID ‘j’, 

including its value and glowworm ID ‘j’ with the chosen 

neighbor position vector (Yj) from the map phase after 

the map operations. The mapped function's produced 

intermediary outputs are divided using the standard 

partitioner by allocating the glowworms to the removers 

depending on the IDs using the modulus hashing 

algorithm as an intermediate stage in the MapReduce 

process. The MR Job’s reducer is in charge of upgrading 

the luciferin level LLm, which is the most costly step in 

the glowworm optimization since the optimization 

problem is assessed for the current glowworm location 

at this point. When the controller gets the key, a list of 

values from the map function, where the key is the 

glowworm ID, and the list of values includes the 

glowworm values and its best neighbor location, the 

luciferin level upgrading process starts (Yj). The reduce 

function retrieves the glowworm data Yj, I(Yj), LLj, and 

qdj, as well as the neighbor position vector. After that, 

(15) is used to update the glowworm position vector.  

   
   Y t Y t

i j
Y t Y t 1 q

j j d
ji



  
 

Following that, the goal function is calculated using the 

new glowworm location vector Yj(t), and the luciferin 

level is adjusted using Equation (12) and at the end of 

the IGSO iteration, the local decision range Equation 

(16) is used to adjust qdj. Finally, the reduce function 

outputs the glowworm ID ‘j’, which contains the freshly 

modified glowworm data. The glowworm swarming 

replaced the previous swarm in the distributed system, 

which is utilized after the next MapReduce task.  

       qd t min qs,max 0,qd t 1 γ mt M t 1j jj
     
  

 

Where, qdj(t-1) is the previous iteration of qdj. qs is the 

radial sensor range constant, γ is a model constant, mt is 

a constant parameter used to restrict the neighborhood 

set size, and  M tj is the actual neighborhood set size. 

GreyWolf optimizer helps to schedule workflow 

tasks in a cloud environment, which helps to minimize 

task completion time and VM usage cost, and to 

maximize resource throughput. It identifies the exact 

block pool in the available solution space (i.e., 

appropriate virtual machine selection) to execute the set 

of jobs based on their priority, size and resource type. 

The GlowWorm optimizer uses evolutionary 

computation and quantum strategies to identify the 

neighbourhood tasks that achieve more efficient task 

scheduling with minimal costs. Each glowworm is 

obligated to move towards the outstanding individuals 

within its selection solution range until the ideal value 

is discovered by the proposed algorithm to be optimally 

solved. A pre-scheduling strategy helps to improve the 

resource scheduling in the execution of large dataset. 

The two main parameters of the medical data are the 

set of tasks or jobs and the resources needed to 

accomplish the task. First initialize the parameters and 

resource population to compute the fitness of every 

single job in the VM. Secondly, our proposed algorithm 

generates the random population to calculate the target 

value of the corresponding scheduling strategy for each 

individual block in the VM. Then provide judgement by 

performing iterations and mutations that guarantees the 

exact solution space in that required population. Local 

and boundary searches are performed for the evaluation 

of the target value. Finally, the solution space is updated 

to find the optimal solution in the targeted VM for 

resource scheduling. The GreyWolf technique lacks 

poor exploration, a prematurely low convergence rate, 

and imbalanced exploitation to find the exact optimal 

solution. The GlowWorm technique has a few 

drawbacks, such as poor stability, low solution 

precision, and slow convergence. The main purpose of 

the proposed hybrid technique is to increase the 

efficiency of the motion to access the block of resources 

from the resource pool and the suitable path for each 

task present in the desired virtual machine. It reduces 

the replicated computation, identifies dependencies 

among the virtual machines, and accelerates the 

convergence rate depending on the resource type that 

provides the optimal solution. 

4. Result Analysis 

The CloudSim framework [2], a simulation tool for 

modeling cloud systems, was employed for the 

experimental investigation. The hardware configuration 

for the proposed implementation is windows 10 OS on 

64-bit with the Intel (R) Core (TM) i5, 6 GB ram, 4 CPU 

cores as 40 number of virtual machines with 925 tasks, 

number of datacenter is 1 with the network bandwidth of 

2800 Mbps, SLA policy by the cloud provider on VM is 

Time_Shared and the number of resources is assumed to 

be 75. Although the cloud environment is thought to 

(14) 

(15) 
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(20) 

contain an infinite amount of resources, we must restrict 

the number of resources to arrive at an ideal solution. 

The enhancement in our proposed algorithm is analyzed 

with the diabetes prediction dataset from Kaggle as the 

single resource request for the simulation entity. The size 

of the parent population is 500, number of iterations is 

50 with the fitness extraction value of 0.4 and Luciferin 

volatilization factor is 0.2. Based on five scheduling 

goals such as latency, makespan, resource utilization, 

memory consumption, and skewness, the proposed 

hybrid 2-GW optimization algorithm is compared and 

analyzed against IFFO, SWOA, and PSO, which provide 

better performances in resource scheduling on given 

metrics. The experimental findings are shown in Figures 

2 to 6 as graphs and the performance of the proposed 

scheduler is improved by 20% to 30%, which is higher 

than the existing scheduling methodologies. 

4.1. Latency 

The latency u(t) is the measurement of the delay that 

occurred between the cloud user request and the 

response from the service provider. The average delay 

for the computation tasks plays an important role in 

resources allocation as well as improving resource 

utilization (17),  

           ,  ,     ,  u t f t u t u t t u t Rd    

Where, delay τ>0 is a constant, t denotes time, u(t) 

denotes error rate, delay τ (t)≥0 is a given function and d 

is the matrix calculated for each delay R. 

 

Figure 2. Latency vs. no. of iterations. 

Figure 2 demonstrates that our proposed approach 

results in achieved low latency vs. the number of 

iterations compared to existing methods. If iteration 

number=10, when compared to existing techniques such 

as IFFO, SWOA, and PSO, the latency is 0.19, 0.15, and 

0.12 correspondingly, but the proposed H2-GWOA 

latency is 0.11. If iteration number=20, when compared 

to existing techniques such as IFFO, SWOA, and PSO, 

the latency is 0.17, 0.14, and 0.10 correspondingly, but 

the proposed H2-GWOA latency is 0.08. If iteration 

number=30, when compared to existing techniques such 

as IFFO, SWOA, and PSO, the latency is 0.15, 0.12, and 

0.08 correspondingly, but the proposed H2-GWOA 

latency is 0.06. If iteration number=40, when compared 

to existing techniques such as IFFO, SWOA, and PSO, 

the latency is 0.13, 0.10, and 0.07 correspondingly, but 

the proposed H2-GWOA latency is 0.04. If iteration 

number=50, when compared to existing techniques such 

as IFFO, SWOA, and PSO, the latency is 0.11, 0.08, and 

0.04 correspondingly, but the proposed H2-GWOA 

latency is 0.02. 

4.2. Makespan 

Makespan can be defined as the maximum completion 

time of all tasks consumed by any virtual machine. The 

minimization of makespan improves the performance 

by allocating the exact resources on the specific node. If 

the desired node is determined, then the energy 

consumption per node can also be measured. The 

makespan is an important factor to be considered for 

cloud users and resource manager [15]. By selecting the 

suitable collection of jobs to allocate to VMs, the goal 

is to minimize the makespan to the bare essentials. Let 

(1, 2, 3, ... Xab, y, n, y=1, 2, 3,..., n) be the efficient 

implementation for running the bth task on the ath VM; 

Here, ‘a’ indicates the quantity of VMs, and ‘b’ 

represents the variety of tasks. The execution time (19) 

of jth VM is based on the decision variable Xab that is 

denoted (18),  

}X {1 T VM | 2 T VM
ab i j i j

if if   

Where the set of all tasks, Ti = {T1, T2, T3, T4,…..,Tn}. 

  * /

1

n
ET X lh ps

y ab b a
y

 


 

Where, lhb=Length of the bth task, psa=Processing 

speed of the ath virtual machine. The makespan's (MS) 

fitness value is calculated (20),  

  ,     is   MS max ET for all tasks T mapped to VM
y i j

  

 

Figure 3. Makespan vs. no. of iterations. 

(18) 

(19) 
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Figure 3 illustrates a comparison of makespan based 

on the number of iterations. When compared to existing 

methods, our proposed method H2-GWOA is better. If 

iteration number=10, when compared to existing 

techniques such as IFFO, SWOA, and PSO, the 

makespan is 0.21, 0.17, and 0.16 correspondingly, but 

the proposed H2-GWOA makespan is 0.13. If iteration 

number=20, when compared to existing techniques such 

as IFFO, SWOA, and PSO, the makespan is 0.19, 0.16, 

and 0.14 correspondingly, but the proposed H2-GWOA 

makespan is 0.11. If iteration number=30, when 

compared to existing techniques such as IFFO, SWOA, 

and PSO, the makespan is 0.17, 0.14, and 0.10 

correspondingly, but the proposed H2-GWOA 

makespan is 0.08. If iteration number=40, when 

compared to existing techniques such as IFFO, SWOA, 

and PSO, the makespan is 0.15, 0.13, and 0.10 

correspondingly, but the proposed H2-GWOA 

makespan is 0.07. If iteration number=50, when 

compared to existing techniques such as IFFO, SWOA, 

and PSO, the makespan is 0.12, 0.10, and 0.07 

correspondingly, but the proposed H2-GWOA 

makespan is 0.05. 

4.3. Resource Consumption 

The resource consumption is unstable with the use of 

smart devices, so the dynamic pricing quoted in the SLA 

is mandatory for both cloud users and service providers. 

The concurrent usage of resource consumption by cloud 

users deals with the efficiency in handling the cloud 

resources. The increased pricing on resource 

consumption has occurred for the service providers due 

to the maximum utilization of the same cloud resources 

[3]. The consumption of resources (β) is expressed in the 

Equation (21) which represents the percentage of the 

total number of resources available divided by the total 

amount of resources allocated.  

C

RA
   

Where, C refers to the total number of resources 

allocated and RA refers to the total number of resources 

available. 

Figure 4 illustrates a comparison of resource usage 

based on the number of iterations. Compared to 

conventional methods, our proposed H2-GWOA 

method used the most system resources. If iteration 

number=10, when compared to existing techniques such 

as IFFO, SWOA, and PSO, the resource usage is 0.085, 

0.12, and 0.175 correspondingly, but the proposed H2-

GWOA resource usage is 0.185. If iteration number=20, 

when compared to existing techniques such as IFFO, 

SWOA, and PSO, the resource usage is 0.09, 0.14, and 

0.1 correspondingly, but the proposed H2-GWOA 

resource usage is 0.16. If iteration number=30, when 

compared to existing techniques such as IFFO, SWOA, 

and PSO, the resource usage is 0.01, 0.125, and 0.085 

correspondingly, but the proposed H2-GWOA resource 

usage is 0.15. If iteration number=40, when compared 

to existing techniques such as IFFO, SWOA, and PSO, 

the resource usage is 0.08, 0.1, and 0.075 

correspondingly, but the proposed H2-GWOA resource 

usage is 0.125. If iteration number=50, when compared 

to existing techniques such as IFFO, SWOA, and PSO, 

the resource usage is 0.07, 0.125, and 0.15, 

correspondingly, but the proposed H2-GWOA resource 

usage is 0.175. 

 

Figure 4. Resources consumption vs. no. of iterations. 

4.4. Memory Consumption 

Memory consumption (Mcon) deals with allocating 

memory to the data nodes where the data is transferred 

from the cloud user to the resource manager for 

computation in virtual machines. This proposed 

scheduler reduces the memory utilization based on 

priority task execution, dynamic workloads 

computation, and even with a huge amount of data 

transfer on the cloud environment [10]. Memory 

consumption is defined as the ratio of the amount of 

memory needed to perform an assignment to the total 

amount of memory available in the cloud, as calculated 

by the Equation (22), 

1

sy p
Mcon

qp p

 
  
 

  

 

Where, sp denotes the task required the use of memory 

and qp shows the total amount of memory that is 

available.  

Figure 5 depicts a comparison of memory usage 

based on the number of iterations performed. This graph 

shows that the proposed H2-GWOA technique used the 

most RAM compared to conventional methods. If 

iteration number=10, when compared to existing 

techniques such as IFFO, SWOA, and PSO, the memory 

usage is 0.03, 0.07, and 0.14 correspondingly, but the 

proposed H2-GWOA memory usage is 0.18. If iteration 

(21) 

(22) 
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number=20, when compared to existing techniques such 

as IFFO, SWOA, and PSO, the memory usage is 0.04, 

0.08, and 0.09 correspondingly, but the proposed H2-

GWOA memory usage is 0.12. If iteration number=30, 

when compared to existing techniques such as IFFO, 

SWOA, and PSO, the memory usage is 0.01, 0.02, and 

0.03 correspondingly, but the proposed H2-GWOA 

memory usage is 0.15. 

 

Figure 5. Memory consumption vs. no. of iterations. 

If iteration number=40, when compared to existing 

techniques such as IFFO, SWOA, and PSO, the memory 

usage is 0.02, 0.165, and 0.18 correspondingly, but the 

proposed H2-GWOA memory usage is 0.25. If iteration 

number=50, when compared to existing techniques such 

as IFFO, SWOA, and PSO, the memory usage is 0.12, 

0.155, and 0.17 correspondingly, but the proposed H2-

GWOA memory usage is 0.265. 

4.5. Skewness 

The different number of iterations for various workload 

combinations helps to improve the resource utilization 

that minimizes the skewness (pn). This proposed 

algorithm restricts the over-utilized resources gradually 

and saves the server energy. Equation (23) states that it 

is the measure used to detect the cloud server's uneven 

resource usage, 

2

1 2
Q

P
n Q

n

 
  
 
 

 

Where, Q is denoted random variable and Qn is denoted 

as a number of variables in distribution.  

Figure 6 shows a performance comparison of 

skewness with the number of repetitions. This graph 

shows that the proposed H2-GWOA technique has the 

least skewness among the conventional methods. If 

iteration number=10, when compared to existing 

techniques such as IFFO, SWOA, and PSO, the 

skewness is 0.11, 0.05, and 0.02 correspondingly, but 

the proposed H2-GWOA skewness is 0.01. If iteration 

number=20, when compared to existing techniques such 

as IFFO, SWOA, and PSO, the skewness is 0.05, 0.01, 

and 0.009 correspondingly, but the proposed H2-

GWOA skewness is 0.005. If iteration number=30, 

when compared to existing techniques such as IFFO, 

SWOA, and PSO, the skewness is 0.015, 0.013, and 

0.01 correspondingly, but the proposed H2-GWOA 

skewness is 0.009. If iteration number=40, when 

compared to existing techniques such as IFFO, SWOA, 

and PSO, the skewness is 0.17, 0.02, and 0.01 

correspondingly, but the proposed H2-GWOA skewness 

is 0.008. If iteration number=50, when compared to 

existing techniques such as IFFO, SWOA, and PSO, the 

skewness is 0.15, 0.03, and 0.01 correspondingly, but 

the proposed H2-GWOA skewness is 0.005. 

 

Figure 6. Skewness vs. no. of iterations. 
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