
The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023 841

An Effective Management Model for Data Caching

in MANET Environment

Amer Abu Salem

College of Information Technology, Zarqa University, Jordan

abusalem@zu.edu.jo

Abstract: A mobile Ad-hoc (MANET) network has the main challenge to provide the needed data for the desired mobile nodes.

An efficient on request routing protocol for MANET is Ad-hoc on-demand Distance Vector (AODV), which is based on two main

methods: route discovery and route maintenance. Route discovery is the process used to detect a route to the destination from

the packet source, while route maintenance is the process used to detect a link failure and repair it. Cooperative caching tends

improving data availability in mobile ad-hoc networks, the coordination of cache discovery and cache management strategies

is very significant in the cooperative caching of MANETs because requests for data and answers to requested data can be

reduced simply due to interference, network congestion, or when a forwarding node is out of reach and the route breaks down.

Cooperative cache management is much more complicated in cooperative caching because it also depends on neighbouring

nodes to decide what to cache. In this paper, three algorithms were proposed: (1) a combination algorithm for cache admission

control based on cache data and location of data to save space and reduce data redundancy, (2) a value-based policy for cache

placement and replacement instead of the more common least recently used strategy, depending on metrics that describe cached

items to increase the local cache hit ratio, and (3) a combined algorithm for cache consistency that includes time-to-live, pull,

and push policies to enhance data availability and system scalability. The proposed algorithm implemented by the NS3

simulation program; which used to create a network using the AODV protocol in several parameters and achieve better system

performance.

Keywords: MANET, NS3, admission control, replacement strategy, consistency strategy.

Received May 15, 2023; accepted September 25, 2023

https://doi.org/10.34028/iajit/20/6/1

1. Introduction

A Mobile Ad-hoc Network (MANET) is a type of

wireless network in which mobile devices, also called

nodes, communicate with each other without the need

for a central access point or infrastructure. MANETs are

widely used in military and civilian applications where

communication infrastructure is limited, unreliable or

unavailable, such as disaster relief and battlefield

communication systems. MANETs have several key

characteristics that differentiate them from other types

of networks. First, they are self-organizing, which

means that nodes communicate with each other and

dynamically establish communication paths without the

need for a pre-existing infrastructure. Second, they are

highly dynamic, which means that nodes can move

freely and unpredictably, making the network topology

constantly changing. Third, they are highly

decentralized, which means that there is no central

authority controlling the network, and each node has

equal importance in the network [13].

MANETs have several advantages over other types

of networks. First, they are highly flexible, allowing

communication in areas where other types of networks

cannot function, such as in remote areas or in disaster

scenarios. Second, they are highly scalable, which

means that they can easily adapt to changes in the

number of nodes in the network. Third, they are highly

reliable, as nodes can communicate with each other

through multiple paths, reducing the chances of network

failure. Despite their advantages, MANETs also face

several challenges. First, they are vulnerable to security

threats, as the lack of a central authority makes it

difficult to secure the network. Second, they face

challenges in routing, as the highly dynamic nature of

the network requires the use of complex routing

protocols to ensure efficient communication. Third,

they face challenges in quality of service, as the network

may experience congestion due to limited bandwidth

and the unpredictable movement of nodes [12].

Data caching is a technology which improves the

availability of data and access to any network

information. Wireless ad-hoc networks present a

number of special challenges to the issue of cooperative

caching compared to infrastructure-based networks. In

MANETs, the nodes always move, enter and leave the

network and therefore change the topology of the

network constantly. Mobile nodes are fully

decentralized with no single controlling entities; nodes

cannot communicate directly with each other usually,

have limited battery power, operate with the distance

between nodes, consume bandwidth and therefore

cannot to do complex tasks. These constraints and other

issues are motivation to study all the functions and sub-

https://doi.org/10.34028/iajit/20/6/1

842 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

procedures in the development of a cooperative caching

strategy, which enhances data availability and access

efficiency in MANET.

In the ad-hoc network, multi-hop wireless links

connect each other to the nodes, and each mobile node

plays as a router, receiving and forwarding data for the

others; this is a consequence of a deficiency of

infrastructure support. In many of the previous research

in ad-hoc networks, dynamic protocols have been

improved, allowing routes between two communication

nodes to be effectively detected. Although it is mainly

routing, the ad-hoc network's primary objective is to

support data-based mobile nodes. The cache is a small,

intelligent memory device that temporarily stores data.

The majority of the MANET data exchanged is

dynamic. Therefore the small cache space that is

available must be used efficiently. Almost all-dynamic

information is time-critical and after a certain period of

time cannot be used. This time we're talking about an

impasse, any data can be removed from the caching if

the impasse expires to make cache space easier to use.

The data server is a highly efficient data system that

keeps and manages data from mission-critical

transactional applications in real-time [6].

Cooperative caching in a MANET is a very

significant strategy, which allows the sharing and

coordination of cached data between mobile nodes for

future data server retrieval. When many mobile nodes

are seeking the same data on the same server, heavy

traffic near the data server is inevitable. This high load

is reduced on the data server with the aim of cooperative

caching [10]. This reduces network resource efficiency

such as bandwidth and power as well as reducing data

recovery from a remote data server. Many previous

types of research used this strategy to improve web

performance in wired networks. On the other side,

resource constraints and node mobility have limited the

application of this technique in ad-hoc networks.

The hybrid caching strategy is a combination of other

caching strategies and schemes. It faces two important

challenges in cooperative caching: firstly, how to

efficiently locate a cache within the entire cooperative

cache system that contains the desired data item (known

as cache discovery), and secondly, how to manage the

local cache to enhance the capabilities of the

collaborative caches (known as cache management).

Both these challenges encompass several issues,

procedures, and functions that work together to produce

significant improvements in terms of request success

ratio, cache hit ratio, and average query latency

compared to other caching strategies.

This study recommends making some modifications

and improvements to the existing algorithm to create a

new strategy model that can enhance data accessibility

and minimize the local cache miss ratio.

The following paper was organized as follows:

Section 2 provides an outline of the cache admission

control strategy, followed by section 3, which details the

cache placement and replacement strategy, including a

new model. Section 4 proposes a hybrid consistency

strategy that utilizes the Time-to-live algorithm in

combination with Pull and Push mechanisms. In section

5, the scenario simulation used to evaluate the

effectiveness of the proposed strategies in AODV is

described. Section 6 summarizes the results obtained

from the NS3 simulator and the case scenario

evaluation. Lastly, section 7 presents the conclusions of

the study.

2. Cache Admission Control Strategy

When a node receives the requested data, the cache

admission control is used to determine whether a data

item should be placed in the cache. The addition of a

data item to the cache may not always be positive

because the probability of cache hits may be reduced by

wrong judgment. For example, to add a data item for a

local cache which is limited storage leads to

replacement strategy, and replacing a data item

accessible sooner with an item which is not accessed

soon will reduce network performance [9].

2.1. Hybrid Cache Admission Control

Approach

In this paper, the hybrid cache admission control

algorithm allows a node to cache the data item or

location of data based on different criteria [15]. The

following criteria are:

 The distance between the requester and the source of

the requested data item, measured in terms of the

number of intermediate nodes or hops traversed, is

known as the hop count. (∆ hops).

 The size of a data item, denoted as (Sx), refers to the

amount of memory or storage space required to store

that particular data item. The size of a data item is an

important factor to consider in caching strategies, as

it affects the amount of storage space required for

caching and the efficiency of data retrieval.

 Time-to-live refers to the maximum amount of time

that a packet is allowed to remain in a network before

it is discarded. It is a field in the packet header that is

decremented by one at each hop and the packet is

discarded when the value reaches zero. This

mechanism is used to prevent packets from

circulating indefinitely within the network and to free

up network resources (TTLx).

The following heuristics are employed to determine

whether to cache or locate a particular data item:

 If the distance between the requesting node and the

data server is ∆ hops or less, then it is recommended

to follow the cache location strategy to conserve

cache space within the same cluster. This approach

can improve the cache hit ratio and reduce the

An Effective Management Model for Data Caching in MANET Environment 843

average query latency by minimizing the need to

search for data items in remote caches.

 Otherwise, if there is enough available space in the

cache, it is recommended to cache the data to

enhance system performance. However, if the

requested data item is already available within ∆ hops

from the requesting node, caching may be

unnecessary to avoid duplication of the same data

item in the same cluster. This is because the cached

data can be easily accessed by the nodes located

closely. Therefore, during simulation experiments,

this study replicated the same data item at least two

hops away to avoid unnecessary duplication within

the same cluster.

 If Sx is small, it is advisable to cache the data since

only a very small part of the cache is required for the

data item; otherwise, the cache location should be

used to save space. The threshold value for the data

size is Ts.

 If TTLx is small, the location of the cache is not the

best choice, as the data item may soon be invalid.

Using cache the location it may cause the wrong path

to be chased and resend the request to the data server.

In this situation, cache the data should be used. If

TTLx is large, you should cache the location. The

TTL threshold is a system parameter and is referred

to as Tttl.

2.2. Hybrid Packet Sniffing Approach

Wireless networks are characterized by the fact that any

device within range can intercept packets sent by others.

However, nodes that are not interested in the packets

will discard them. While this behavior can be

problematic for resource discovery in dynamic

networks, it can also be useful for caching certain

resources. For instance, intermediate nodes can cache

resource locations to help reduce the time required for

resource discovery.

In a dynamic network where wireless nodes

frequently move around, resource discovery can be

challenging, leading to long delays or even looping. By

caching resource locations, this issue can be alleviated.

The proposed approach in the referenced paper

leverages the packet-sniffing capability of wireless

networks to intercept reply return messages and cache

resource locations. This technique is particularly

effective in ad-hoc networks, where all nodes are

expected to be active most of the time in order to

participate in the network. As a result, sniffing passing

packets does not lead to additional power consumption

[4].

This paper applied a hybrid caching method in data

item locations called hit/miss caching strategy. This

caching method basically means using a Pre-request

table to cache the location for both source and requester

when a data reply is intercepted or cache the location of

a requester when a cache miss to predict possible

location if there is no cache requested data item. If a

cache miss entry is found with the possible sources, it

means that some time ago the same data item was

requested, and can predict if that data item could have

been transferred to the node requester. Now instead of

forwarding the request to Data-Clusterhead or next hop,

it may only send the request in the direction of that node

[14]. Figure 1 illustrates the proposed cache admission

control policy.

Figure 1. An algorithm of the proposed cache admission control.

2.3. An Illustrative Example

As shown in Figure 2, assume MN1 sends a request for

a data item, the UK map, and MN2, MN3, MN4 are

located along the route through which the request

reaches the MN5 server. Node MN1 requests the UK

map and sends a lookup message to its Data-Clusterhead

then to the next hop in the path to the data server, cache

miss status will be stored in Pre-Request cache table in

MN2, MN3, MN4 and their Data-Clusterheads.

Figure 2. Example of hybrid cache admission control, case 1.

Notation:

dx : ID of data item.

Dx : The content of the data item dx .

MNi : Mobile node number i .

MNi
 : Set of one-hop neighbours of node MNi .

Sx : Size of data item dx .

Ts : Threshold value for data size.

TTLx : time-to-live of dx

TTTL : the threshold value TTL .

Pseudo code:

Admissin_control (dx,MNi)

 Begin

 When the data item Dx is obtained from MNj

 If (dx is requested by the current node MNi) then

 If (MNj MNi
) then // if MNj is not one-hop neighbour of MNi

 If (Sx < Ts or TTLx < TTTL) then // if Dx is a small size or has a small TTL

If there sufficient space to cache the item Dx then

Cache data item Dx and the source location MNj

Else Replacement_policy (Dx) // there is no free space for new item

Else

Cache the source location MNj

 Else

 Cache the source location MNj // if MNi is one-hop neighbour of MNi

 Else

 If (MNk MNi
 and MNk MNj

) then // if current node MNk is not two-hop neighbour of source and

requester

 If (Sx < Ts or TTLx < TTTL) then

If there sufficient space to cache the item Dx then

 Cache data item Dx and the location MNj and MNi

Else

 Cache the source and destination locations MNj and MNi

 End

MN

MN

MN MN

MN

D-C

D-C

D-C

D-C

UK M M MN
UK Map

UK M M MN UK M M MN

UK M M MN

UK M M MN

UK M M MN

UK M M MN

Request

Lookup

M : Miss

844 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

As shown in Figure 3, when node MN5 sends a reply

message with an identifier of location and request node

ID, nodes MN2, MN3, MN4 change the status of the

request from miss to hit in Pre-Request cache table and

send update message to their Data-Clusterhead.

Figure 3. Example of hybrid cache admission control, case 2.

In Figure 4, node MN4 has been moved far away from

MN5 so the connection was broken, so a new routing

path is initialized. MN5 will reply message to MN6 then

MN6 will cache the data ID and its locations MN1 and

MN5 in the Pre-Request table and forward back to

requester node MN1. At this moment cache miss in Pre-

Request on MN3, MN4 and their D-Clusterheads will be

useful to predict the location of the UK map as a data

item in the near future since MN1 has the UK map.

Figure 4. Example of hybrid cache admission control, case 3.

Next, Figure 5 illustrates the node MN3 cached the

data item, the UK map, while it data packet sniffing and

after it applied the cache admission control algorithm

that is used in overall strategy, because the data source

is not one hop neighbour away and the data item is small

enough in size that is available sufficient space to cache

the data itself.

Figure 5. Example of hybrid cache admission control, case 4.

3. Hybrid Cache Placement and

Replacement Approach

A cache replacement strategy is required if a mobile

node needs to cache a data item, but the local cache is

full. Consequently, a suitable subset of data items must

be found to be removed from the cache. In operating

systems, management of virtual memory and

management of database buffer, cache replacement

policy has been studied extensively. However, these

algorithms may not be suitable for ad-hoc networks for

several reasons:

 In ad-hoc situations, the data item size cannot be

fixed; the replacement strategy used must handle data

items of various sizes.

 The transfer time of the data item depends on the item

size and the number of hops between the requested

node and the data source or server. Therefore, the

cache hit ratio may not be the most correct quality

measurement for a cache replacement strategy.

 The replacement strategy should also take into

account cache consistency. In other words, data items

that are not consistent earlier must be replaced

earlier.

This paper presents how and where to place the data

item in cluster members when a node receives a data

item from the source and decides to cache it if there is

no enough space in its local cache, as follows:

 When a node MNi receives a data item and decides

to cache it, the node caches the data item if the local

cache space is sufficient after it has removed all

invalid data.

 Otherwise, MNi sends the D-Clusterhead message to

ask it to check its cluster members' cache space

available. If any cluster member's available cache

space is enough to store the data item, the MNi node

transmits the data.

MN

MN

MN MN

MN

D-C

D-C

D-C

D-C

UK M H
MN

MN
UK Map

UK M H
MN

MN
UK M H

MN

MN

UK M H
MN

MN

UK M H
MN

MN

UK M H
MN

MN

UK M H
MN

MN

UK Map

Data reply

Update

H : Hit

MN

MN

MN

MN

D-C

D-C

D-C

D-C

UK M H
MN

MN

UK Map

UK M M MN

UK M H
MN

MN

UK M M MN

UK M M MN

UK M H
MN

MN

M : Miss

MN

UK M M MN

UK M H
MN

MN

MN

Data reply

Update

H : Hit

UK Map

MN

MN

MN MN

MN

D-C

D-C

D-C

D-C

UK M H

MN

MN

MN

UK Map

UK M H
MN

MN

UK M H

MN

MN

MN

UK M H

MN

MN

MN

UK M H
MN

MN

UK M H

MN

MN

MN

UK Map

Data reply

Update

H : Hit

UK Map

An Effective Management Model for Data Caching in MANET Environment 845

 If the cache space available for each cluster member

is not sufficient to cache the received data element,

MNi Executes a value-based cache replacement

strategy, where data items with the smallest value are

those removed from the local cache. To implement a

value-based cache replacement strategy, four factors

are taken into account when calculating the value of

a data item at a node [11].

 Popularity: this factor indicates how frequently nodes

access a particular data item. To replace an item in

the cache, the item with the lowest probability of

access is selected. To determine the probability of

access (Px) for each data item (dx), a node maintains

a PreReq table. Initially, Px for each item is set to

zero. As nodes request items, the corresponding Px

values are incremented accordingly. This allows the

node to track the popularity of each data item over

time and make informed decisions about cache

replacement.

 Distance: this factor is based on the number of

intermediate nodes between the requested node and

the server or data source that provides the data item.

Distance is integrated into the cache replacement

selection process as an important factor. When

considering distance in cache replacement, data items

that save bandwidth by being cached further away

and reduce latency for later requests are given higher

value. Therefore, if two data items have similar

popularity, the item that is farther away but still

within a reasonable distance may be selected for

replacement over a closer but less useful item.

 Coherency: it is determined using the Time-To-Live

(TTL) field for each data item, which specifies the

period for which the item remains valid. For cache

replacement, an item with a shorter TTL should be

selected as it is closer to expiration. This factor

ensures that cached data items remain coherent with

the original source, preventing stale or outdated data

from being served. When an item's TTL has expired,

the cache should discard it and fetch a fresh copy

from the original source. By selecting data items with

shorter TTLs for replacement, the cache can maintain

data coherency and reduce the probability of serving

outdated data.

 Size: for replacement, a data item with the larger size

Sx should be preferred as the cache may contain

additional data items and respond to further data

requests.

On the basis of the above about residual access

popularity, distance, coherency and data size, it is

obvious that a data item dx is the appropriate data item

subset to remove from the cache if its Px is the lowest,

its Dx is the lowest, its TTLxremain is the smallest, and its

Sx is the largest. In other words, a node with the smallest

weight is the best selection of data item to remove when

these four factors combine together as the weight, these

metrics have different units, as:

 The popularity can theoretically vary between one

and number of nodes N, a normalized translation is

needed. One way to do it is:

𝑃 →
𝑃

𝑁

 The distance can theoretically vary between 1 and N-

1, a normalized translation is needed. One way to do

it is:

𝐷 →
𝐷

𝑁−1

 The theoretical coherence can vary between 0 and

TTL 's initial value is set to δ, a normalized translation

is needed. One way to do it is:

𝑇𝑇𝐿𝑟𝑒𝑚𝑎𝑖𝑛 →
𝑇𝑇𝐿𝑟𝑒𝑚𝑎𝑖𝑛

𝛿

 The data size can theoretically vary between 1 and

maximum data size Smax, a normalized translation is

needed. One simple way to do it is:

𝑆 →
𝑆

𝑆𝑚𝑎𝑥

Using the result from the above, the combined weight

Wx for each cache data item x is,

𝐻𝑦𝐶𝐶_𝑟𝑒𝑝𝑣𝑎𝑙 = 𝑤1 ∙
𝑃𝑥

𝑁
+ 𝑤2 ∙

𝐷𝑥

𝑁−1
+ 𝑤3 ∙

𝑇𝑇𝐿𝑟𝑒𝑚𝑎𝑖𝑛

𝛿
+ 𝑤4/

𝑆

𝑆𝑚𝑎𝑥

Where w1, w2, w3, w4 are weight factors such that ∑j=1

wj=1 and 0 ≤ wj ≤1. And x is the ID number of the cache

data item. For replacement, a data item with the lowest

value of this function is considered. The nodal block

diagram as Figure 6 is based on the above description.

The decisions of each node are based on the cache

information from the cache state table in the local cache.

Figure 6. Block diagram for the cache manager.

The proposed cache placement and replacement

algorithm is demonstrated in Figure 7.

(2)

(3)

(4)

(5)

(1)

846 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

Figure 7. The proposed cache placement and replacement strategy.

4. Cache Consistency Strategy

Cooperative caching is a very significant strategy; this

covers the sharing and coordination between multiple

nodes of the cached data and may be used for improved

data availability and system scalability, as well as to

reduce demand for wireless bandwidth and mobile node

battery power. One of the critical problems in

cooperative caching is how to maintain caching

consistency, namely the coherence between the original

data of the server node and the replicated data received

from the caching nodes.

The consistency strategy of the cache should be

covered to certify that nodes only access valid data

states. In many other systems, such as multi-processor

architectures, distributed database systems, distributed

shared memory and client-server systems, cache

consistency problems have been investigated. Two

consistency models have generally been used: The weak

consistency and the strong consistency model [7]. In the

weak consistency model, invalid data can be sent to the

node. In a strong consistency model, no old copy of the

modified data item will be sent to the node after an

update is completed.

One of the goals of developing a cooperative caching

scheme is to preserve the determined level of

consistency at the minimum possible cost. Algorithms

for the maintenance of cache consistency can be

categorized into two primary classes: Stateless and

stateful on the basis of maintaining the cache status in

the data node [5].

Existing MANET consistency maintenance

processes are generally stateless, where the node of the

data server does not know the cached data status. The

server node basically depends on the transmission

mechanism for the diffusion of data updates which will

necessarily generate a great deal of redundant data

updates.

The data server node keeps cache status (TTL value)

of each cached copy in stateful constancy maintenance

algorithms. Therefore, the data server node can transmit

data updates selectively to the cache nodes that need

updates on the basis of the maintained cache status. In

other words, cache nodes with a cached copy presently

expire. In comparison with stateless algorithms, stately

algorithms importantly reduce maintenance costs of

consistency by selectively broadcasting cache-based

data updates. The stateful procedures are therefore more

appropriate for MANETs because data transmission

power consumption for the broadcast of data updates is

considerably higher than the power consumption of

wireless node local cache status maintenance

calculations [8].

In this section, this paper proposed a stateful cache

consistency maintenance approach to achieving a weak

consistency in cooperative caching in MANETs. Where

the cache query rates and the time to live value for every

cache are maintained in the data server node.

Depending on cache status, the data server can

choose which cache copies to broadcast or will soon be

invalid so all data updates are therefore required for

each update. If data update receivers have been

determined, the proposed cache consistency strategy

applies a specific approach to broadcast the data update

among the selected caching nodes, which gives up

consistency in order to reduce the cost and query delay.

Advance nodes also refresh a cached data item and its

TTL if a fresh copy of the same data is passed through

using a sniffing mechanism [1].

Also, cache consistency in both data caching and data

caching due to the expiry of TTL; certain cached data or

location may be invalidated. In general, the cache

removes invalid data. Invalid data can be helpful

sometimes. Since the node cached this data, this shows

that the node is interested in these data. If a node

transmits a data element and finds that an invalid copy

of that data is in the cache, the data are updated to be

used in future. In the proposed model, to save space,

when the cached data item expires, it is removed from

the cache while its ID is maintained as an invalid state

as an indication of the value of the node in the PreReq

table. Surely, the interest of a node may change, and the

expired position of data should not be kept in a table

forever. If the location of the expired database item has

not been replaced during the duration of TTL, it is

removed from the table.

The proposed cache consistency algorithm used in

the model assumes a commonly used system model.

Each data item is connected to a single node it is able to

modify the source data, and that node is mentioned as

the node of the data server. A group of nodes called

caching nodes can cache each data item. The caching

nodes hold copies of the data items are named cache

copies. Two fundamental mechanisms of cache

An Effective Management Model for Data Caching in MANET Environment 847

consistency are provided: push procedure and pull

procedure. The server node pushes the cache nodes to

update the data. The cache node sends a query to the

data server using pull to assure whether the cache copies

are up-to-date or not.

We proposed a hybrid consistency strategy based on

Time to live algorithm with Pull and Push mechanisms

[2] as follow:

 Time-To-Live (TTL): each cached copy is matched

to one timeout value TTL in this mechanism. The

initial value of TTL is set to δ. The caching node can

directly reply to a requested data from its local cache

when TTL is unexpired that is when TTL greater than

0.

 Pull-Strategy: when the application requests a data

item which is invalid, First, the cache node pulls the

server in order to the cache copy updating and renew

the TTL to δ. After that, the cache node is able to

respond immediately to the requesting node with the

requested data from its local cache. This approach

ensures that the difference between the cached copy

and data from the source is not exceeded over δ by

matching a TTL value with each cached copy.

Although the pull guarantee with the TTL algorithm

is not cost-efficient usually, it is due to the pull

mechanism's round trip maintenance costs. This

investigation uses a stable selective push mechanism

to economize on maintaining consistency.

 Push-Strategy: the server node changes the caching

nodes for the data update with the push mechanism,

it only entails unidirectional maintenance costs

(traffic overhead, query latency, etc.,). It is therefore

effective to use the principles of the design of the

push mechanism to reduce the cost of maintenance of

consistency, but should only be pushed if it is

expected that the cache will serve the requests and

push if no other update is probably available. With

regard to the cache status of a cache node, as shown

in Figure 8 the original data update at tu and through

push or pull mechanism the TTL of this cached copy

was refreshed at time t0. Hence, the remaining TTL

of this caching node at time tu is TTLremain = t0 + δ –

tu and the TTL refreshed is TTLrefresh = tu - t0.

Figure 8. Cache status on one caching node.

The procedure of the cache consistency algorithm

depends on the following functions:

The data server node detects the caching nodes to be

updated in one push set.

1. The data server node determines how data updates are

broadcast among the cache nodes selected.

2. Broadcast the push message containing the update of

the data item and the push- set members ' IDs to all

push- set caching nodes.

3. The data server unicasts the push message to the

push- set's closest caching node.

4. The caching node receiving the push message

removes its identification from the push- set.

5. The receiver node answers the sender with a message

of acknowledgement.

6. The receiver node resends the push message to the

closest caching node in the push-set.

7. This procedure is repeated until the push-set is empty.

8. The last caching node sends a message of

acknowledgement to the data server node initiating

the push message broadcast procedure.

9. If a recognition message is not received by the sender

of a push message, it will wait t seconds. The push

message will then be sent to the other in the push- set

or the acknowledgement message will be sent to the

data server node.

10. Once the data server node receives the

acknowledgement message, will detect the time

duration of the push message broadcast process. The

caching nodes that the push message has received are

also acknowledged.

11. The data server node determines the TTL values of

all cache copies that receive the push message as δ -

the duration of the push message broadcast process.

The data server node can, therefore, more perfectly

maintain the TTL values of each cached copy,

considering the time delay in the broadcasting

transmission of the push message.

 On the data server node

Upon each data update source

1. Create the push-set by adding the caching nodes into

the push set.

2. Send a push message with the source data update and

the push-set information to the closest caching node

in the push-set.

Upon each push message receiver

3. Determine all caching nodes receiving the push

message and the push process duration.

4. Update the TTL of the nodes receiving the push

message by setting TTL= δ – duration time of push

message process.

 On a caching node

Upon cache request receiver

848 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

1. If (TTL=0) update the cache copy and TTL from the

data source node.

2. Process the cache request.

Upon push message receiver

3. Reply with acknowledgement of the push message.

4. Remove its ID from the push-set.

5. If (push-set size > 0) resend the push message to the

push-set's closest caching node.

6. Else, send the acknowledgement message to the data

server node.

7. Send the acknowledgement message to the data

server node, if no push message is received within the

time period.

Figure 9. Description of the cache consistency strategy.

The next algorithm in Figure 9 illustrates the pseudo-

code of the cache consistency algorithm use.

5. Experimental Evaluation

The NS3 simulator was used to conduct this study, as it

is a suitable tool for networking research and education,

allowing for protocol design, comparison, and traffic

evaluation. To implement the MANET routing protocol,

the ad-hoc On-Demand Distance Vector (AODV) was

selected from the options available in the NS3 simulator

[3]. The simulation area was assumed to be a fixed size

of 500m×2000m, with a density of 80 to 120 nodes and

a transmission range of 250m. The area was divided into

equal-sized square clusters of 3 by 12 (X-axis by Y-

axis) grids, with each cluster identified by a column-

wise numbering system from 0 to 35. The size of each

cluster was set to be less than or equal to r/sqrt (2),

where r is the transmission range, ensuring one-hop

communication between cluster nodes. The wireless

bandwidth was set at 2 Mbps, with other parameters

being similar to those used in previous studies. The

Table 1 below summarizes the significant simulation

parameters, which were modified during the simulation

to analyse their effects.

Table 1. Topology of area, mobility node and model traffic.

Parameter Default value Range

Simulation area 500m×2000m

Number of nodes 100 nodes [80,120] nodes

Number of clusters 36 (3×12) clusters

Node cache size 800 kB [200 ,1200] KB

Mobility pattern random way point

Node speed 0-2 m/s [2 ,20] m/s

Bandwidth 2 Mpbs

Database size 2000 items

smin 1 kB

smax 10 kB

Pause time 250 s [60-300] s

TTL 2000 s [500 ,5000] s

Mean request

generate time
5 s [2 ,50] s

Transmission range 250m

Simulation time 60000 seconds [40000,80000] s

6. Results and Discussion

The paper evaluates the efficiency of cache

management by measuring two performance

parameters: Cache hit ratio and average hop count.

 Cache hit ratio: is calculated to measure the

efficiency of cache management. The cache hit is

classified into four categories: local cache hit, cluster

cache hit, remote cache hit, and location hit. The

local cache hit occurs when the requested data item

is found in the local cache. The cluster cache hit

occurs when the requested data item is found in the

cache of one cluster member when the request is sent

to the D-clusterhead. The remote cache hit occurs

when the requested data item is found in one

intermediate node, and the location hit is also

considered a remote cache hit since the data is

collected from remote nodes. The cache hit ratio is

defined as the ratio of the number of data items

retrieved from the cache to the total number of

requested data items. Here cache hit ratio (hit)

includes local cache hit (hitlocal), cluster cache hit

(hitcluster) and remote cache hit (hitremote). If nlocal,

ncluster and nremote denote the number of local hits,

cluster hits and remote hits respectively, and reqsuc

denotes the number of successfully received data

items, then hitlocal, hitcluster, hitremote and Hit are

expressed as:

ℎ𝑖𝑡𝑙𝑜𝑐𝑎𝑙 =
𝑛𝑙𝑜𝑐𝑎𝑙

𝑛𝑙𝑜𝑐𝑎𝑙+𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟+𝑛𝑟𝑒𝑚𝑜𝑡𝑒
× 100%

ℎ𝑖𝑡𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =
𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑛𝑙𝑜𝑐𝑎𝑙 + 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝑛𝑟𝑒𝑚𝑜𝑡𝑒
× 100%

ℎ𝑖𝑡𝑟𝑒𝑚𝑜𝑡𝑒 =
𝑛𝑟𝑒𝑚𝑜𝑡𝑒

𝑛𝑙𝑜𝑐𝑎𝑙 + 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝑛𝑟𝑒𝑚𝑜𝑡𝑒
× 100%

𝐻𝑖𝑡 =
𝑛𝑙𝑜𝑐𝑎𝑙 + 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝑛𝑟𝑒𝑚𝑜𝑡𝑒

𝑟𝑒𝑞𝑠𝑢𝑐
× 100%

(6)

An Effective Management Model for Data Caching in MANET Environment 849

 Average hop counts: used to reflect the time delay

for the cooperative caching system, instead of

calculating the time latency directly. For the same

case parameters, different routing protocols can

result in different time latencies, thus making the

time delay unstable and routing protocol problems

are beyond the scope of this research, which focuses

on the number of covered Hops through data requests

that generally depend on where the requested item is

found. The hops count between the caching node and

the requester is expressed as:

As shown in Figure 10, there is no obvious relationship

between item size and cache hit ratio for Cache-

Location strategy. If the item size is a small one, Cache-

Data performs better than the proposed strategy,

because Cache-Data has a higher cluster and remote

cache hit ratio since it caches data for other nodes.

Particularly when the size of the data item is small, more

data can be cached in Cache-Data strategy and its cache

hit ratio is significantly higher than that of the proposed

strategy which depends on item size and TTL values to

cache the data item. When the item size is large, the

hybrid proposed strategy could cache more data items

and locations for other nodes. This leads to achieving a

high cache hit ratio. As a result of the high overall cache

hit ratio, in comparison with Cache-Data, the proposed

strategy achieves best results with an average

improvement of 9.7%.

Figure 10. Plot of cache hit ratio versus different item size.

This shows, in particular, the strength of the strategy

as it offers the best performance simultaneously. The

proposed strategy works better than other strategies

because of the high cache-hit ratio, as shown in Figure

11 when the cache item is small; Cache-Data has higher

average hop count because its local cache and cache of

cluster members contribute to reducing hop average.

When the cache item is large, the proposed strategy

performs better than others because it has higher cache

hit ratio due to the hop count of local data hit is 0 and

the average hop count of a remote cache hit is lower than

that of other strategies. Comparing these three

strategies, you can see that proposed strategy performs

much better than Cache-Data or Cache-Location

because both different schemes apply; data cache and

location cache to different data items, taking advantage

of both, with an average improvement of 2.5% as shown

in Figure 11.

Figure 11. Plot of average hop count versus different item size.

From Figure 12, you can see that the proposed

replacement policy based on calculated value for each

cached item performs much better than Least Recently

Used policy (LRU). As the cache size increases more

data can be found in local and cluster caches, the need

to access the remote and global cache has therefore been

relieved. The hop number of the cluster data hit is one

and lower than the average hop number of the remote

data hit, so the cache hit increases. Since the cache size

is large enough, most data items from the local and

cluster cache can be accessed by mobile nodes. So it

increases the cache hit and reduces the request latency.

Comparing these two policies, the proposed approach

when based on calculated value performs much better

than when based on LRU. Due to the high hit ratio,

value-based makes the best performance in comparison

to LRU at all cache sizes and with an average

improvement of 22%. The simulation varies between 80

and 120 mobile nodes in the area of the network to study

performance in various node densities. As demonstrated

in Figure 13, the value-based replacement has a better

local hit ratio than the LRU policy at all the node

densities. The number of mobile nodes in a cooperation

cluster increases when the node density is high, this

leads to an improvement in the cache cluster hit ratio

and remote hit ratio. Value-based also performs better

than LRU in terms of cluster and remote hit under

different node densities. This can be explained by the

fact that value-based considers various factors to make

a more intelligent replacement decision.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 5 10 15 20

C
ac

h
e

h
it

 r
at

io

Item size(KB)

CacheLocation

CacheData

Hybrid (Proposed)

0

1

2

3

4

5

6

7

8

1 2 5 10 15 20

A
ve

ra
ge

 h
o

p
 c

o
u

n
t

Item size(KB)

CacheLocation

CacheData

Hybrid (Proposed)

suc

avg

req

reqsuccesslengthhop
Hop

___ (7)

850 The International Arab Journal of Information Technology, Vol. 20, No. 6, November 2023

Figure 12. Plot of a cache hit ratio versus different cache size.

Figure 13. Plot of a cache hit ratio versus a different number of

nodes.

The data server node by push modifies the cache

nodes for the data update, which only impose

unidirectional maintenance costs as overhead traffic and

latency requests. The proposed approach, therefore,

presented an effective push mechanism to reduce

consistency maintenance costs. The data server node

selects the caching nodes, which should be updated in

one set. This experiment compares the Stateless

Synchronous based approach (SS) with the proposed

strategy. In the SS approach, the server periodically

broadcasts invalidation reports to all the nodes in its

access range. From the evaluation results, as shown in

Figure 14, it finds that, even in comparison with the

proposed consistency strategy, the SS strategy is more

cost-effective, particularly when there are a large

number of cache nodes. As the number of nodes

increases, the caching node increases and the strategy's

performance degrades. The selective push mechanism

which presented in the proposed model that better

performance is achieved based on cache status accounts

in terms of average hop count which leads to better

message overhead.

Figure 14. The average number of hops per update versus the

different number of nodes.

7. Conclusions

In conclusion, the paper presents a hybrid cooperative

caching strategy in MANETs that acts as a middleware

layer between application layer and routing layer

protocols to efficiently share cached data items among

various ad-hoc mobile nodes. The proposed cache

admission control algorithm assists in deciding which

data items or location of data item can be cached for

future use and helps in discovering and returning the

requested data items from the neighbouring nodes of the

requesting node. The evaluation of the proposed model

shows promising results in terms of cache hit ratio and

average hop count, which indicates the effectiveness of

the proposed approach.

Overall, this research addresses a critical problem of

cache management strategies in MANETs, and it is

expected to contribute to the development of efficient

caching strategies to improve the performance of

MANETs. Future research can focus on the

development of new caching strategies and the

assessment of other protocols with important functions

in MANETs. This will help in further improving the

performance of MANETs and making them suitable for

various real-world applications.

As a future work, it is recommended to develop and

evaluate new caching strategies that take into account

additional factors such as energy consumption, node

mobility, and network topology to improve cache

performance in MANETs.

References

[1] Abdullah A., Ozen E., and Bayramoglu H.,

“Enhanced-AODV Routing Protocol to Improve

Route Stability of MANETs,” The International

Arab Journal of Information Technology, vol. 19,

no. 5, pp. 736-746, 2022.

https://doi.org/10.34028/iajit/19/5/5

[2] Cao J., Zhang Y., Cao G., and Xie L., “Data

Consistency for Cooperative Caching in Mobile

0

0.1

0.2

0.3

0.4

0.5

0.6

200 400 600 800 1000 1200

C
ac

h
e

h
it

 r
at

io

Cache size(KB)

HyCC-LRU

HyCC-Value

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

80 90 100 110 120

C
ac

h
e

h
it

 r
at

io

Number of nodes

HyCC-LRU

HyCC-Value

0

100

200

300

400

500

600

80 90 100 110 120

A
ve

ra
ge

 h
o

p
 c

o
u

n
t

p
er

 u
p

d
at

e

Number of nodes

SS

HyCC-Push

An Effective Management Model for Data Caching in MANET Environment 851

Environments,” Computer, vol. 40, no. 4 pp. 60-

66, 2007. DOI: 10.1109/MC.2007.123

[3] Chandan R., Kushwaha B., and Mishra P.,

“Performance Evaluation of AODV, DSDV,

OLSR Routing Protocols Using NS-3 Simulator,”

International Journal of Computer Network and

Information Security, vol. 10, no. 7, pp. 59-65,

2018. DOI:10.5815/ijcnis.2018.07.07

[4] Chang N. and Liu M., “Revisiting the TTL-based

Controlled Flooding Search: Optimality and

Randomization,” in Proceedings of the 10th

Annual International Conference on Mobile

Computing and Networking, Philadelphia, pp. 85-

99, 2004.

https://doi.org/10.1145/1023720.1023730

[5] Chauhan N., Awasthi L., and Chand N., “Global

Cooperative Caching for Wireless Sensor

Networks,” in Proceedings of the World Congress

on Information and Communication

Technologies, Mumbai, pp. 235-239, 2011.

DOI: 10.1109/WICT.2011.6141250

[6] Du Y. and Gupta S., “COOP-A Cooperative

Caching Service in MANETs,” in Proceedings of

the Joint International Conference on Autonomic

and Autonomous Systems and International

Conference on Networking and Services-(icas-

isns' 05), Papeete, 2005. DOI: 10.1109/ICAS-

ICNS.2005.37

[7] Dziyauddin R., Niyato D., Luong N., Atan A.,

Izhar M., Azmi M., and Daud S., “Computation

Offloading and Content Caching and Delivery in

Vehicular Edge Network: A Survey,” Computer

Networks, vol. 197, pp. 108228, 2021.

https://doi.org/10.1016/j.comnet.2021.108228

[8] Gunasekaran R., Divya V., and Uthariaraj V.,

“Mitigating Channel Usage in Cooperative

Caching for Mobile Ad Hoc Networks,”

International Journal of Ad Hoc and Ubiquitous

Computing, vol. 7, no. 2, pp. 87-99, 2011.

https://doi.org/10.1504/IJAHUC.2011.038995

[9] Gupta S. and Sharma T., “Cooperative Data

Caching in MANETs and WSNs: A Survey,” in

Proceedings of the International Conference on

Intelligent Computing, Instrumentation and

Control Technologies, Kerala, 2017.

10.1109/ICICICT1.2017.8342787

[10] Jain D., Sharma S., Yadav S., and Singh J., “A

Detailed Survey and Comparative Study of

Cooperative Caching Methods for Mobile Ad Hoc

Networks,” International Journal of Sensors

Wireless Communications and Control, vol. 9, no.

3, pp. 314-329, 2019.

10.2174/2210327908666181120103838

[11] Joy P. and Jacob K., “A Key Based Cache

Replacement Policy for Cooperative Caching in

Mobile Ad Hoc Networks,” in Proceedings of the

3rd IEEE International Advance Computing

Conference, Ghaziabad, 2013.

DOI: 10.1109/IAdCC.2013.6514255

[12] Mohseni S., Hassan R., Patel A., and Razali R.,

“Comparative Review Study of Reactive and

Proactive Routing Protocols in MANETs,” in

Proceedings of the 4th IEEE International

Conference on Digital Ecosystems and

Technologies, Dubai, 2010.

DOI: 10.1109/DEST.2010.5610631

[13] Ramphull D., Mungur A., Armoogum S., and

Pudaruth S., “A Review of Mobile Ad Hoc

NETwork (MANET) Protocols and their

Applications,” in Proceedings of the 5th

International Conference on Intelligent

Computing and Control Systems, Madurai, 2021.

DOI: 10.1109/ICICCS51141.2021.9432258

[14] Salem A., Alhmiedat T., and Samara G., “Cache

Discovery Policies of MANET,” World of

Computer Science and Information Technology

Journal, vol. 3, no. 8, pp. 135-143, 2013.

[15] Zhou X., Zou Z., Song R., Wang Y., and Yu Z.,

“Cooperative Caching Strategies for Mobile Peer-

To-Peer Networks: A Survey,” Information

Science and Applications, pp. 279-287, 2016.

Amer Abu Salem holds a B.E, M.E

and Ph.D. in Computer Science. He

has 22+ years of teaching experience

and is currently working in a dual role

as a Director of Computer Center/

Associate Professor of Department of

Computer Science, Zarqa University.

His research interest includes Wireless and Mobile

Computing, Cloud Computing, Information Security,

Data Science and Artificial Intelligence, He has

published 20+ papers in peer reviewed journals and

conferences. He is a life member of many professional

societies.

https://doi.org/10.1109/MC.2007.123
http://dx.doi.org/10.5815/ijcnis.2018.07.07
https://doi.org/10.1145/1023720.1023730
https://doi.org/10.1109/WICT.2011.6141250
https://doi.org/10.1109/ICAS-ICNS.2005.37
https://doi.org/10.1109/ICAS-ICNS.2005.37
https://doi.org/10.1016/j.comnet.2021.108228
https://doi.org/10.1504/IJAHUC.2011.038995
https://doi.org/10.1109/ICICICT1.2017.8342787
javascript:void(0)
javascript:void(0)
javascript:void(0)
http://dx.doi.org/10.2174/2210327908666181120103838
https://doi.org/10.1109/IAdCC.2013.6514255
https://ieeexplore.ieee.org/author/37300831600
https://ieeexplore.ieee.org/author/37544633100
https://ieeexplore.ieee.org/author/37532194800
https://doi.org/10.1109/DEST.2010.5610631
https://ieeexplore.ieee.org/author/37846853100
https://ieeexplore.ieee.org/author/37567585600
https://ieeexplore.ieee.org/author/37698268700
https://doi.org/10.1109/ICICCS51141.2021.9432258

