
The International Arab Journal of Information Technology, Vol. 14, No. 4, July 2017 413

A Probabilistic Approach to Building Defect

Prediction Model for Platform-based Product Lines

Changkyun Jeon, Neunghoe Kim, and Hoh In

Department of Computer Science and Engineering, Korea University, Korea

Abstract: Determining when software testing should be begun and the resources that may be required to find and fix defects is

complicated. Being able to predict the number of defects for an upcoming software product given the current development

team enables the project managers to make better decisions. A majority of reported defects are managed and tracked using a

repository system, which tracks a defect throughout its lifetime. The Defect Life Cycle (DLC) begins when a defect is found and

ends when the resolution is verified and the defect is closed. Defects transition through different states according to the

evolution of the project, which involves testing, debugging, and verification. All of these defect transitions should be logged

using the Defect Tracking Systems (DTS). We construct a Markov chain theory-based defect prediction model for consecutive

software products using defect transition history. During model construction, the state of each defect is modelled using the

DLC states. The proposed model can predict the defect trends such as total number of defects and defect distribution states in

the consecutive products. The model is evaluated using an actual industrial mobile product software project and found to be

well suited for the selected domain.

Keywords: Defect prediction, defect life cycle, markov chain, product line engineering, software engineering.

Received June 12, 2014; accepted September 21, 2015

1. Introduction

The mobile industry increasingly requires high

performance, stability, and multi-functional features.

Strong demand and the need to launch various

specifications and features on time have been placing

substantial pressure on determining how to guarantee

expected quality level with given the limited budgets

and resources.

To overcome this pressure with regard to

requirements and features in consecutive products,

many mobile products have been developed using

Software Product Line (SPL) concepts. An SPL is a

proactive and systematic approach to the development

of software that allows for the creation of a variety of

products [8]. Most SPLs are designed using a platform

that serves as the basis for a family of products, and

they rely on an a priori architecture and artifacts from

other platform products. Members of a product line can

have substantial commonality in, for example,

requirements and characteristics, while also exhibiting

variability in requirements, design decisions, and

implementation details.

During consecutive product development, many

features are added, removed, and changed for various

reasons. Inevitably, many new defects are generated in

consecutive products as the software evolves. The

number of defects in such a software project has a

significant impact on project performance and hence is

an input to project planning [2, 22]. As the quality level

of the final product is set at the beginning of the project,

a large number of defects can result in project delays

and cost overruns [13]. Planning precision and

predictability is crucial for the any project in operation

[14].

All defects must be recorded, tracked, and managed

until the end of a project. It may be necessary to keep

histories for subsequent projects or for the evolution

of the software, for the efficiency of the testing

process, and to aid the common understanding of

multi-regional, distributed project members. The

Bugzilla [5], Git [10], and Jira [16] Defect Tracking

Systems (DTSs) are widely used for these purposes.

Thus, it is possible to analyze the historical trends in

DTSs, to use the resulting information to predict the

number of defects in upcoming software products, and

to obtain a concrete view of the life cycle of

potentially unreported defects.

In this paper, we propose a Defect Prediction

Model (DPM) for predicting the expected quality level

in an SPL. We believe that predicting the defect trend

in an SPL will provide project managers with better

understanding for making proactive decisions about

the arrangement of the development team and the

implementation of the early test phases considering

crucial schedules and limited resources. In addition, it

could provide metrics for evaluating the performance

of development teams and individual developers, such

as the number of unresolved defects that will remain

and the expected quality level at the end of a project.

Our model for predicting the life cycle of defects with

occurrence rates and severities within specific

domains could be used as a reference model for

414 The International Arab Journal of Information Technology, Vol. 14, No. 4, July 2017

evaluating development effectiveness for a platform-

based SPL.

This paper makes the following contributions:

 We present a DPM using defect state transition

histories after the analysis of repository data from a

DTS.

 We can predict the defect state distribution at a given

time and the defect closing rate for estimating the

total number of defects to help project managers

anticipate the quality level in a consecutive SPL.

The rest of the paper is organized as follows. Section 2

summarizes related work. Section 3 briefly introduces

background information on DTSs, the Markov Chain

(MC) and Software Reliability Growth (SRG) model.

Section 4 describes our proposed model in detail to

show how to calculate a transition matrix, obtain the

initial probability of predicting a product, and estimate

the total number of defects and defect distribution

states. For evaluating our proposed model, a case study

and results are described in sections 5 and 6 discusses

limitations of our study. We conclude in section 7 with

the future direction of our research.

2. Related Works

Software defect prediction has been a very active area

in software engineering research [12, 18, 26]. Many

effective new metrics and algorithms have been

proposed for predicting defect-proneness. Source code

metrics such as complexity and cohesion metrics are

widely used for defect prediction, since there is a

common understanding that complicated software may

yield more defects. For example, simple complexity

metrics such as Line Of Code (LOC) can be used to

predict defect-proneness of components. Basili et al.

[3] used Chidamber and Kemerer metrics, and Ohlsson

[21] used McCabe’s cyclomatic complexity for defect

prediction. In case of cohesion, Kuljit investigated the

design level class cohesion metrics [17]. However,

these published metrics related with defect prediction

are complex and disparate, and no up-to-date

comprehensive picture of the current state of defect

prediction exists [6, 9].

Change history based metrics also have been

proposed and widely used for defect prediction.

Nagappan et al. [20] proposed the code churn metric,

which is the amount of changed code, and showed that

code churn is very effective for defect prediction.

Moser et al. [19] used the number of revisions, authors,

past fixes, and age of a file as defect predictors. Hassan

[12] introduced entropy of changes, a measure of code

change complexity. Entropy of changes was compared

to number of changes and previous bugs and found

often to give better results. Kim et al. [18] proposed the

change classification technique, which involved

learning buggy change patterns from history and then

predicting whether a new code change would lead to

bugs. Zimmermann et al. [26] proposed a method for

predicting the defect proneness of a file from defect

information extracted from the Concurrent Versions

System (CVS)/Concurrent Versions Subversion

(SVN) repositories and for predicting the defect

proneness of a file. The distributions of defects over

modules of a large software project are also studied

[1].

Recently, much of the industry software

engineering research has been conducted using data

Mining of Software Repositories (MSR), such as

DTSs and version control systems. Therefore, some

researchers studied defect life cycles and triage

without using suggested metrics. Weib et al. [23]

studied the lifecycle of defects and presented a search-

based approach that can predict the defect-fixing effort.

Jeong et al. [15] found that half of defect reports for

Mozilla and Eclipse are re-assigned to other

developers.

Most of these studies have focused on the

classification model to analyze how the code or

behavior of a developer affects software quality and to

predict whether the resulting code will be buggy or

clean, however, these models cannot be used to

predict future defect trends for a consecutive product

level in the concept of SPLs. A new MC-based

prediction model for using SPL knowledge to predict

future defect trends is proposed in this paper to

overcome this limitation. We have also showed that

our proposed model is valid and effective for applying

in SPLs.

3. Background

3.1. Defect Life Cycle in Software Engineering

The Defect Life Cycle (DLC) is the cycle that a defect

passes through during its lifetime. The cycle starts

when a defect is found and ends when it has been

retested, resolved, and closed. Bugzilla [5], Git [10],

and Jira [16] are examples of DTSs in current use.

There are some minor differences between these

DTSs, but their major defect transition states,

identified by Zeller [25], are shown in Figure 1.

NEW ASSIGNED

If resolution is FIXED

UNCON

FIRMED

REOPENED

FIXED

OPENED

RESOLVEDVERIFIEDCLOSED

Figure 1. Defect Life Cycle [25].

The defects transition between the various states

during their life cycles. When a bug is found for the

A Probabilistic Approach to Building Defect Prediction Model for Platform-based Product Lines 415

first time, the tester needs to check to determine

whether it is a valid defect. After confirmation, the

defect is submitted to the DTS with the status, “New.”

Once the defect has been assigned to the correct

developer, it transitions to the “Assigned” state. The

defect is forwarded automatically or by a manager to

the designated person in the software development

team and he or she changes it to the “Opened” state to

indicate that action is being taken to find a solution.

When the developer has determined the root cause and

found a solution, the state is changed to “Resolved,”

and the software is released to the tester for verification.

If a defect is determined to be invalid according to the

intended design or an explanation from the

development team, its state is also changed to

“Resolved.” Once the solution has been “Verified” with

the resolution that the defect has been fixed, the tester

closes the defect by changing it to the “Closed” state.

However, in cases where the same defect reoccurs, or

closely related quality issues are discovered, the tester

reopens the bug and changes it to the “Reopened” state.

The italic-character states in Figure 1 are the main

focus of this paper. Usually, the “Reopened” state can

be combined with the “Assigned” state, because it can

normally be merged with that state.

3.2. MC Model

An MC [7] model is concerned with a sequence of

random variables (i.e., X1, X2, X3, ...) with the Markov

property, namely, that the state in a given time epoch

depends only on the state in the previous time epoch as

follows Equation 1:

1 1 1 0 0 1

(| , , ,) (|)
r n n n r n n n

P X x X x X x X x P X x X x
 
      

The possible values of Xi form a countable set S called

the state space of the chain. MCs are often described

using a directed graph, where the edges are labelled by

the probabilities of passing from one state to another

(e.g., finite state machine), as shown in Figure 2, in

which pij represents the probability of a transition from

state xi to state xj.

X1 X2 XN-1 XN

P12 Pij

Figure 2. Overview of MC [8].

We can also define the next state at time t+1 for the

state probability vector v at time t using the following

equations:

11 21 1 1 1

12 22 1 2 2

1 1 2 1 1 1 1

1 2 1

x , x,

x , x,

,x ,x x ,x x,x

,x ,x x,x x,x

p p p p

p p p p

P

p p p p

p p p p





    



 
 
 
 
 
 
 
 





    





1t t

P 

 

In order for the MC model to apply, state transitions

must satisfy the property that the next state depends

only on the current state. In addition, all of the

transitions in the DTS must be initiated by a developer

based only on the current state, rather than a previous

state. Therefore, the states of the defects can be

expressed using the Markov property, as it is normally

defined.

3.3. Software Reliability Growth Models

The Software Reliability Growth Models (SRGM) has

been used as the most important and successful

predictor of software quality. It attempts to correlated

defect detection data with estimated residual defects

and time. These models are grouped into concave and

S-shaped models on the basis of assumption about

failure occurrence pattern as shown in the Figure 3

[24].

Number

of

Defects

Time

Concave

Model

Number

of

Defects

Time

S-Shaped

Model

Residual

Defects

Figure 3. Concave and S-shaped SRGM [11].

In the concave shaped models, the increase in

failure intensity reaches a peak before a decrease in

failure pattern. Therefore, the concave models indicate

that the failure intensity is expected decrease

exponentially after a peak is reached. On the other

hand, the S-shaped model assumes that the occurrence

pattern of cumulative number of failures is S-shaped:

initially the testers are not familiar with the product,

then they become more familiar and hence there is a

slow increase in fault removing. As the tester’s skill

improves the rate of uncovering defects increases

quickly and then levels off as the residual defects

become more difficult to remove.

In this paper, we applied Goel-Okumoto (G-O) and

Confidence Interval (CI) model for applying it to

predict defect growth prediction because our case

studied follows the characteristic of concave model

[11]. The G-O model is one the commonly used

SRGM, which is defined as follow Equation 4:

 ((1) 0, 0btμ t) a e ,a b   

Where, μ(t) represent the cumulative number of defect

through time t, a is expected total of number of defects

and b is shape factor for representing the rates at

which failure rate decreases.

4. Proposed Defect Prediction Model

We propose a Defect Prediction Model (DPM) that is

able to predict the number of defects that will occur in

a series of products and the manner in which these

defects will transit through the various states. We hope

(1)

(2)

(3)

(4)

416 The International Arab Journal of Information Technology, Vol. 14, No. 4, July 2017

that this model can also be used, with additional

research, to evaluate the performance of the

development team or individual developers.

Figure 4 shows the overall structure of the DPM.

First, we must select a product that has a platform-

based model and a series of products. Second, we mine

and refine information from a history log of the DTS.

The log contains many types of information, such as

current and previous status, importance, currently

assigned developer, history of change times, and the

like. These refined logs (training datasets) can be

attached to the DLC states in accordance with their

transitions. Third, the transition probability matrix can

be modelled and tested with the test dataset for

correctness and validity.

Figure 4. Overall structure of DPM.

The procedures for building the proposed model are

as follows:

1. Select a software project that has a platform-based

model and a series of products.

2. Mine a recorded dataset from repositories for a

period of time for defect states (when, status)

information.

3. Build the transition probability matrix with initial

probability vector of test data.

4. Validate the matrix with test data.

5. Predict the total number of defects, the number of

instances of each state at specific times, and the

total number of closed defects.

Each rounded rectangle in Figure 4 is illustrated in

detail in the next section.

4.1. History Log of Software Repository

Rounded rectangle section 4.1 in Figure 4 shows the

platform-based product, the feature that changes in

consecutive products and the defect repositories

related to each product. Table 1 gives an example of a

history log from Bugzilla stored at the repositories.

The “Status” field keeps track of the defect state over

the time “When” the bold italic characters show the

transitions of the defect’s state. The example defect

was moved to the resolved state on November 19,

2012, reopened on December 1, 2012, reassigned on

December 3, 2012, and finally closed again on

December 4, 2012. In addition, the log contains

questions, such as why this defect was reopened and

why it took a day for the defect to be reassigned to the

correct developer.

Table 1. History log of Bugzilla defect (#394495).

Who When What Removed Added

daniel_megert

@ch.ibm.com

2012-11-19

06:57:25

Status New Resolved

CC
daniel_megert@c

h.ibm.com

Resolution --- WorksForme

Summary

can’t open editor

from “find

references” search

result

[search] can’t

open editor from

“find references”

search result

eclipse.rc@gm

ail.com

2012-12-01

19:47:13

Status Resolved Reopened

Resolution WorksForme ---

daniel_megert

@ch.ibm.com

2012-12-03

02:59:46

Keywords needinfo

Status Reopened Assigned

daniel_megert

@ch.ibm.com

2012-12-04

03:30:48

Status Assigned Closed

Resolution --- Duplicate

For the model proposed in this paper, we need to

collect data related to states and to the timings of

transitions from one state to another (“When”,

“Status”).

4.2. Graph Model for DLC

The transitions in each log can be mapped into the

graph model based on the predefined time period. The

time base can be adjusted after considering the

number of history logs and total development periods

of the product. Figure 5 describes the defect state

transition graph that maps the states in the DLC to the

Markov graph model. We used the same naming

conventions for the states as for the names in Figure 1.

However, some states in Figure 1 were reorganized

and combined during the mapping process, because

they are not intended to be predicted, or because some

states, such as “Reopened,” can be considered to be

the same as other states. Each of the defect states has a

state label with a series of sequential numbers. The

arrows between pairs of states represent transition

probabilities from previous states to next states.

A Probabilistic Approach to Building Defect Prediction Model for Platform-based Product Lines 417

s1
New

t12

s2
Assigned

s3
Opened

t23

s4
Resolved

t34

s5
Verified

s6
Closed

t56

t45

t22

t61

t53

t46

t11

t43

t66

t33

Figure 5. Defect states expressed with graph model.

For example, the transition t34 signifies that the

developer found a solution and changed the state from

“Opened” to “Resolved.” If another defect is found

related to the current solution, the state returns to

“Opened” as t43. In addition, the arrow returning to

itself signifies that the new state is the same state as the

previous state over the predefined time period, after

checking “When” information in Table 1. The

transition t22 signifies that the defect was not assigned

to the correct developer and has been reassigned to

another developer or to more than one developer. Some

arrows can also point back to previous states or skip the

next state. t53 represents situations where defects have

not been resolved completely, such as situations where

the defect still exists, reoccurs, or leads to other closely

related defects.

The states and transitions are as follows:

 s1: the new state is the state for newly reported

defects.

 s2: the assigned state is the state in which a developer

has been assigned to check a defect.

 s3: the opened state is the state in which a developer

has confirmed a defect.

 s4: the resolved state is the state in which a developer

has found a solution.

 s5: the verified state is the state in which a solution is

undergoing verification.

 s6: the closed state is the final state in the DLC.

 t11, t33, t66: the defect stays in the same state for

longer than the predefined time period.

 t22: the defect is assigned to a developer and then is

reassigned to another developer.

 t46: the defect transitions directly from resolved to

closed. This can occur when the defect is not a real

defect. This can be due to misunderstanding of the

intended behaviour or concept on the part of the

tester.

 t53: the defect is still alive. This can occur if the

tester finds that the issue has not been fixed, or if the

tester finds another way to recreate the issue.

 t61: the original defect is closed, but another defect

is found while testing the solution for the original

defect.

Based on this graph model, we can say that if S is a set

of defect states and T is occurrence data of defect

transitions, then S and T can be defined as follows:

1 2 11 12 61 62

{ , , , }, { , , , , , , }
n nn

S s s s T t t t t t   

4.3. Building the Proposed DPM

The state transition probability matrix for rounded

rectangle section 4.3 in Figure 4 is a square matrix

describing the probabilities of passing from one defect

state to another. To obtain the transition matrix, the

following steps are performed:

 Step 1. Define State and Build Transition Matrix:

the defect states are listed by mapping the transition

occurrence data of each defect state to another state.

The matrix is constructed by counting the number

of steps from one defect state to another. The state

transition probability matrix (rounded rectangle 3 in

Figure 4 can be expressed as:

























nnnn

n

n

platform

ttt

ttt

ttt

P









11

22221

11211

 1 2
1 1 1

1, 1, , 1
n n n

j j nj
j j j

t t t
  

    

In each row, the probabilities of moving from the state

represented by that row to the other states are shown.

Thus, the rows of a transition matrix each add up to

one.

 Step 2. Obtain Initial Probability of Predicting

Product: to obtain the initial probability vector

representing the occurrence probability of each

defect state being in the initial state, the recent

defect state occurrence data in the predicting

product are used, which can be divided by the unit

of time such as week, month or year depend on the

applied domain’s characteristics. For example, the

domain that the numbers of defect are quite lots,

and the defect transitions are changed actively, can

be divided by weekly basis. The initial probability

vector is calculated using Equation 8, satisfying

condition 9.

1 2

(, , ,) , , ,
initial n initial

P s s s P
F F F

   
  

 
 

1

n

i
i

F f   


     

Where α, β, and γ represent the number of transitions

for each state s1, s2, through sn, can be denoted as fi, i

(5)

(6)

(7)

(8)

(9)

418 The International Arab Journal of Information Technology, Vol. 14, No. 4, July 2017

represent each states. Therefore, F can be the sum of all

transition number during the time unit.

The initial probability Pinitial(si) for each state si

satisfies the Equation 10 because the sum of initial

probabilities must be one.

1

() 1
n

initial i
i

P s




 Step 3. Prediction of Defect State Distribution: the

probability of defect transition is estimated,

predicting the defect in the consecutive product line,

using the transition matrix created in step 1 and

initial probability vector created using the

consecutive SPL in step 2.

1 2 1 2

(, , ,) (, , ,)
n initial n platform

P s s s P s s s P  

where n is the number of states for representing DLC

states, Pintiial(sn) is the initial probability for the

consecutive product line, Pplatform is the state transition

probability matrix calculated using Equation 6 and

P(sn) is the next probability of defect transition. We can

also calculate a specific defect transition state using

Equation 12.

1

() ()
n

k i ik
i

P s P s P




Where k is a specific defect state, such as “Closed” Pik

is element of the transition matrix for specific defect

state.

 Step 4. Prediction of Total Number at Defect States:

to predict the total number defect at each state such

as closed states at a future time, we need to estimate

the number of defects at each time over the entire

development period. With defects newly reported at

every time, d(t), representing the number of defects

at time t, can be represented as follows

 (1), (2), , (), ,d d d t 

The total number of defect at each time, d(t), is

represented as a series, which cumulative number of all

of previous number.

(1), (1) (2), (1) (2) ()d d d d d d t   

Thus, we can represent the total number of defects in

the end of time as a series that describes the growth of

defects over time.

 TotalNumberofDefect
1

()
t

i

d t




To predict growth of defect over time, we adopt the

Goel-Okumoto (G-O) model. We can predict the

number of defects at each state using Equations 4 and

11 as follows:

1 1t t

M P 
 
 

Where P represents defect state probability vector and

the μ is the total number of defects at time t+1. M is

vector representing the number of defects at each state

at time t+1.

5. A Case Study

5.1. Background

As a case study, we evaluated the proposed DPM

using three consecutive mobile products that were

based on one platform and included two diversified

products. Each of these products had been developed

over the course of a year. The platform product

consists of full-featured mobile devices. The first

product project was established with value-

engineering concepts to reduce the cost value. Some

software-related components were changed or

removed. Accordingly, quite a few common parts

became variable parts with the software product-line

method. In contrast, the second product had exactly

the same common parts as the platform product, but

with some features added and User Experience Design

(UXD) concepts changed. All of the products had

been developed in that manner by the same

development team.

Figure 6 shows the actual defect distribution ratio

for the series of products on a month-by-month basis.

The defect distribution is slightly different for each

consecutive product. For example, the test team takes

a while to report defects of the platform product, and

further defects remain undiscovered for some time

owing to software instability. At some point, the

defects peak and then decrease over two months,

approaching zero. In contrast, many of the first

product’s defects remain, as compared with those of

the platform product, owing to changes in

commonality and removal of features. The second

product’s defects were normally distributed, similarly

to the platform product’s, over the entire development

period.

Figure 6. Monthly actual defect distribution for case study.

A dataset was gathered using an in-house DTS. We

used this dataset to build the proposed model and

validate it by comparing the actual and predicted

results.

(10)

(11)

(12)

(13)

(14)

(15)

(16)

A Probabilistic Approach to Building Defect Prediction Model for Platform-based Product Lines 419

5.2. Predicting Defect State Transitions

The graph model of the platform product is as shown in

Figure 5. To gather information about the defect states

for each product, we collected and refined the defect

transition state data from DTS.

 Step 1. After counting the number of transitions

between states for each month, we calculated the

total number of transitions for the entire

development period. Using this number, we

determined the transition probability matrix for the

platform product. The state transition probability

matrix, Pplatform, for our case study is calculated as

follows.

.07 .93 0 0 0 0

0 .48 .52 0 0 0

0 0 .21 .79 0 0

0 0 .05 0 .87 .08

0 0 .26 0 0 .74

.16 0 0 0 0 .84

platform
P

 
 
 
 

  
 
 
 
 
 

The entries in the transition matrix must satisfy

condition 6, that each must sum to one.

 Step 2. The most recent transition data, those for one

week unit in this study, are used to calculate the

initial probabilities for the first product. The most

recent transition count is shown during a first week.

1 2 3 4 5 6
7, 9, 28, 17, 0.5, 0.5, 62f f f f f f F      

The initial probabilities of products are calculated as

follows.

  
7 9 28 17 0.5 0.5

0.11 0.15 0.45 0.27 0.01 0.01
62 62 62 62 62 62

 
  
 

first

initial
P

 Step 3. Based on results 17 and 18, the next month’s

defect state distribution can be estimated using the

probability transition matrix and the initial

probability, as follows.

  0.0093 0.1743 0.1886 0.3555 0.2349 0.0374firstP 

 Step 4. From these results, the first product’s

probabilities of closed and resolved states in the next

week are 0.0374 and 0.3555, respectively. To

estimate the number of closed defects in the next

week, the closed defect number of the platform

product was counted as 2,784 for C(Sk).

2 6 6

() ()() 0.0374 2784 104   
platform

d P s C s t

The closed defect number in the next week can be

predicted as approximately 104.

With predicted the distribution of defects at each

states, we predict the total number of defects by

applying the growth of defect numbers. By building G-

O models with Equations 4 and 16 using Matlab over

weekly basis, we can estimate the total number of

closed defects for the product line during the

development period.

5.3. Results

Figure 7 shows the predicted and actual defect

distributions for all states in the second month for the

first product. For example, the rates of new and closed

defects were predicted to be 1% and 3%, respectively,

but the actual rates were 5% and 9%, respectively.

Similarly, Figure 8 shows the predicted and actual

defect distributions for all states in the second month

for the second product. The actual and predicted new

defect results are similar, and the gap in the closed

rates is also reasonable.

Figure 7. Defect distribution states for first product in next month.

Figure 8. Defect distribution states for second product in next

month.

Next, we evaluate the effectiveness of using the

probability matrix with the platform product defect

history to predict the future number of closed defects.

Figures 9 and 10 show the distributions in the number

of actual and predicted closed defects for the first and

second products, respectively. Clearly, the predicted

results for the first product are not as good as those for

the second product, as compared with the actual

results. In case study, we predicted only the closed

states, because the numbers of closed states are

expected to be the same as the numbers of new states,

which should be closed at the end from the software

quality point of view.

The results in this case study show that the

proposed model is suitable for the second product, but

not necessarily for the first. The proposed prediction

model can be applied to SPLs that possess

commonalities. The gaps between the actual and

predicted results are likely to be relatively high for the

first product. As we mentioned, quite a few common

(17)

(18)

(19)

(20)

420 The International Arab Journal of Information Technology, Vol. 14, No. 4, July 2017

aspects of the first product are changed to variability, as

compared with the second product, resulting in gaps in

the defect prediction results for the first product. One of

the big changes with regard to variability comparing

with the platform product is resolution changing of

display. It drives some commonality to variability such

as system software, usability experience evaluation and

design of user interface. Hence, it made lot of

duplicated, invalid defects related with hardware

components in actual early defect reports.

In case of second product, whole of hardware

components are exactly same as platform product.

Although, there are some difference ratios for some

states comparing with actual result, the prediction

results are promising in that the proposed model can

predict defect states for the second product, which has

commonalities with the platform product. If the

predicted product lacks sufficient commonality, or the

development team differs from that of the platform

product, the proposed model fails to predict potential

defects.

Figure 9. Actual and predicted closed defect number for first

product.

Figure 10. Actual and predicted closed defect number for second

product.

5.4. Discussions

To measure the precision sensitivity of proposed model

with respect to the variability in SPL, we derive some

metric to evaluate the variability degree of case study.

It is desirable to measure the degree of variability,

important factor for reusability in SPL, to figure out the

relevance between variability change and precision of

the proposed prediction model. Recently, the metrics

for evaluating SPL architecture are discussed in several

publications. One of them, Berger [4] investigated the

assessment of product variants to extract a product

line and propose a set of metrics that enable the

software architects and project managers to estimate

the variability.

To measure the variability of an experimented case

study, we select metrics such as Product-related

Reusability (PrR), Impact of Product-related

Reusability (IPrR), Individualization Ratio (IR),

Reusability Benefit (RB) and Relationship Ratio (RR).

Table 2 shows the results of metrics for the case

studied products.

Table 2. Results of metrics for the case study.

 Platform

Product

First

Product

Second

Product

Platform

/First

Platform

/Second

PrR 0.94 0.54 0.87

IPrR 0.12 0.61 0.32

IR 0 0.76 0.21

RB 0.87 0.43

RR 0.65 0.91

The Impact of Commonality (IoC) metric has a

value of 0.76 which means that the studied products

have many shared common components. The platform

product has highest PrR, it has a baseline of

consecutive products and makes contribution for

building probability transition matrix. The IPrR is

highest at the first product, it mean the impact of all

commonly share components by first product is not

greater. The ratio IR second product has smaller than

first product; it means the second product is similar

with platform product. The RB of platform and second

product is the smaller than first product. In case of RR,

they have higher value which means they share the

common components between platform based and

second product. So, we can guess the precision of

proposed model depend on the variability degree level

comparing with platform product used for building

transition probability matrix.

6. Limitations

We have identified the following limitations:

6.1. Non-Platform based or Small-Scale

Software Projects

We intentionally chose as a case study a platform-

based project with common parts. In addition, the

number of defects must be high, and the defect

transitions must be changed actively, to ensure the

accuracy of the prediction model. The validity of the

transition probability matrix is difficult to guarantee

for small non-platform software projects. The

proposed prediction model can work well, when

sufficient data are available in an organization’s

software repository to support it.

6.2. Not Applicable in Case of Team Change

The model we proposed works only if one

A Probabilistic Approach to Building Defect Prediction Model for Platform-based Product Lines 421

development team is involved. If team members are

changed, transitions from opened to resolved states are

especially prone to differ from those of the team that

initially built the prediction model. We need to conduct

a sensitivity analysis against development team change

to evaluate the sensitivity of our prediction model in the

future.

6.3. Interference in the Repository Data

In a DTS, there are some transitions that do not follow

the DLC. While preparing the input for the proposed

model, we found that transitions from new to closed

were direct. These took place as a result of removing a

feature or changing UXD concepts. If those defects are

not filtered, the accuracy of the prediction model might

be affected.

7. Conclusions

In this paper, we proposed a DPM that predicts how

many defects will occur during the development of

consecutive software products. The MC and SRG

model that were used in our study has been used widely

and has proven to be effective for various kinds of

information processing. The experimental results

demonstrate the effectiveness of the proposed model.

Defect prediction can be used to improve the

management of software development efforts. One of

the most visible advantages of using defect prediction is

the ability to predict trends and directions of defect

cycles in software projects. Therefore, we believe that

the proposed model can enable managers and project

leaders to detect defect trends and to anticipate

problems under uncertainty, thereby controlling

resources more effectively, gaining insight into the

likely quality to be achieved from development efforts,

and ensuring the success of development objectives,

such as time to market and software quality.

In our next study, we intend to eliminate the

statistical inferences in the repository data. The

inferences exist in all of the data and they can lead to

incorrect results when building the MC model. Also, we

aim to investigate some of the states, such as

“Reopened” and “Verified,” to evaluate and estimate

developers’ and testers’ performance and effectiveness.

In addition, the sensitivity analysis between the

precision of proposed model and the variability degree

in SPL is also needed to clarify the validity of

applicable SPL.

Acknowledgements

This research was supported by the Next-Generation

Information Computing Development Program through

the National Research Foundation of Korea (NRF)

funded by the Ministry of Science, ICT & Future

Planning (2012M3C4A7033345).

References

[1] Andersson C. and Runeson P., “A Replicated

Quantitative Analysis of Fault Distributions in

Complex Software Systems,” IEEE Transactions

on Software Engineering, vol. 33, no. 5, pp. 273-

286, 2007.

[2] Bach J., “Good Enough Quality: Beyond the

Buzzword,” IEEE Computer Society, vol. 30, no.

8, pp. 96-98, 1997.

[3] Basili V., Briand L., and Melo W., “A

Validation of Object-Oriented Design Metrics as

Quality Indicators,” IEEE Transactions on

Software Engineering, vol. 22, no. 10, pp. 751-

761, 1996.

[4] Berger C., Rendel H., and Rumpe B.,

“Measuring the Ability to Form a Product Line

from Existing Products,” in Proceeding of the

Fourth International Workshop on Variability

Modelling of Software-intensive Systems, Linz,

pp. 151-154, 2010.

[5] Bugzilla, http://www.bugzilla.org/, Last Visited

2013.

[6] Catal C. and Diri B., “A Systematic Review of

Software Fault Prediction Studies,” Expert

Systems with Applications, vol. 36, no. 4, pp.

7346-7354, 2009.

[7] Ching W. and Ng M., Markov Chains: Models,

Algorithms and Applications, Springer Science,

2006.

[8] Clements P. and Northrop L., Software Product

Lines: Practices and Patterns, Addison-Wesley,

2001.

[9] Fenton N. and Neil M., “A Critique of Software

Defect Prediction Models,” IEEE Transactions

on Software Engineering, vol. 25, no. 5, pp. 675-

689, 1999.

[10] Git, http://git-scm.com/, Last Visited 2013.

[11] Goel A. and Okumoto K., “Time-Dependent

Error-Detection Model for Software Reliability

and other Performance Measures,” IEEE

Transactions on Reliability, vol. R-28, no. 3, pp.

206-211, 1979.

[12] Hassan A., “Predicting Faults using the

Complexity of Code Changes,” in Proceeding of

ICSE, Washington, pp. 78-88, 2009.

[13] Hribar L., Bogovac S., and Marincic Z.,

“Implementation of Fault Slip Through in

Design Phase of the Project,” in Proceeding of

the 31
st
 International Convention on Information

and Communication Technology, Electronics

and Microelectronics, Opatija, pp. 134-138,

2008.

[14] Hribar L., “Usage of Weibull and other Models

for Software Faults Prediction in AXE,” in

Proceeding of the 16
th
 International Conference

on Software, Telecommunications and Computer

Networks, Dubrovnik, pp. 157-162, 2008.

http://www.bugzilla.org/
http://git-scm.com/

422 The International Arab Journal of Information Technology, Vol. 14, No. 4, July 2017

[15] Jeong G., Kim S., and Zimmermann T.,

“Improving Bug Triage with Bug Tossing

Graphs,” in Proceeding of ESEC/FSE '09,

Amsterdam, pp. 111-120, 2009.

[16] Jira, http://jira.dspace.org, Last Visited 2013.

[17] Kaur K. and Singh H., “An Investigation of

Desing Level Class Cohesion Metrics,” The

International Arab Journal of Information

Technology, vol. 9, no. 1, pp. 66-73, 2012.

[18] Kim S., Jr J., and Zhang Y., “Classifying

Software Changes: Clean or Buggy?,” IEEE

Transactions on Software Engineering, vol. 34,

no. 2, pp. 181-196, 2008.

[19] Moser R., Pedrycz W., and Succi G., “A

Comparative Analysis of the Efficiency of

Change Metrics and Static Code Attributes for

Defect Prediction,” in Proceeding of the 30
th

International Conference on Software

Engineering, Leipzig, pp. 181-190, 2008.

[20] Nagappan N., Ball T., and Zeller A., “Mining

Metrics to Predict Component Failures,” in

Proceeding of the 28
th
 International Conference

on Software Engineering ICSE '06, Shanghai, pp.

452-461, 2006.

[21] Ohlsson N. and Alberg H., “Predicting Fault-

Prone Software Modules in Telephone Switches,”

IEEE Transactions on Software Engineering, vol.

22, no. 12, pp. 886-894, 1996.

[22] Staron M. and Meding W., “Predicting Short-

Term Defect Inflow in Large Software Projects-

an Initial Evaluation,” in Proceeding of the 11
th

International Conference on Evaluation and

Assessment in Software Engineering EASE,

Swindon, pp. 33-42, 2007.

[23] Weib C., Premraj R., Zimmermann T., and Zeller

A., “How Long will it Take to Fix this Bug?,” in

Proceeding of the 4
th
 International Workshop on

Mining Software Repositories MSR, Washington,

pp. 308-318, 2007.

[24] Wood A., “Software Reliability Growth Models,”

Technical Report, 1996.

[25] Zeller A., Why Programs Fail: A Guide to

Systematic Debugging, Morgan Kaufmann, 2005.

[26] Zimmermann T., Premraj R., and Zeller A.,

“Predicting Defects for Eclipse,” in Proceeding of

the International Workshop on Predictor Models

in Software Engineering, San Francisco, pp. 91-

97, 2007.

Chang-Kyun Jeon received his

Ph.D. degree in the College of

Information and Communications at

Korea University and also is a

principal engineer at Samsung

Electronics. His interests include

software product lines, defect

prediction, and embedded software engineering. He

received his M.S. degree in Control and

Instrumentation Engineering from Kwangwoon

University in Seoul, South Korea.

Neung-Hoe Kim is a Ph.D.

candidate in the College of

Information and Communications at

Korea University. His interests

include requirements engineering,

value-based software engineering,

software engineering economics,

and embedded software engineering. He received his

M.S. degree in Computer Science from Korea

University in Seoul, South Korea.

Hoh In is a professor in the College

of Information and Communications

at Korea University. His primary

research interests are embedded

software engineering, social media

platform and service, and software

security management. He has

published over 100 research papers and earned the

most influential paper for 10 years award at ICRE

2006. Prof. In was an Assistant Professor at Texas

A&M University. He received his Ph.D. in Computer

Science from the University of Southern California

(USC).

http://jira.dspace.org/

