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Abstract: Determining when software testing should be begun and the resources that may be required to find and fix defects is 

complicated. Being able to predict the number of defects for an upcoming software product given the current development 

team enables the project managers to make better decisions. A majority of reported defects are managed and tracked using a 

repository system, which tracks a defect throughout its lifetime. The Defect Life Cycle (DLC) begins when a defect is found and 

ends when the resolution is verified and the defect is closed. Defects transition through different states according to the 

evolution of the project, which involves testing, debugging, and verification. All of these defect transitions should be logged 

using the Defect Tracking Systems (DTS). We construct a Markov chain theory-based defect prediction model for consecutive 

software products using defect transition history. During model construction, the state of each defect is modelled using the 

DLC states. The proposed model can predict the defect trends such as total number of defects and defect distribution states in 

the consecutive products. The model is evaluated using an actual industrial mobile product software project and found to be 

well suited for the selected domain. 
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1. Introduction 

The mobile industry increasingly requires high 

performance, stability, and multi-functional features. 

Strong demand and the need to launch various 

specifications and features on time have been placing 

substantial pressure on determining how to guarantee 

expected quality level with given the limited budgets 

and resources. 

To overcome this pressure with regard to 

requirements and features in consecutive products, 

many mobile products have been developed using 

Software Product Line (SPL) concepts. An SPL is a 

proactive and systematic approach to the development 

of software that allows for the creation of a variety of 

products [8]. Most SPLs are designed using a platform 

that serves as the basis for a family of products, and 

they rely on an a priori architecture and artifacts from 

other platform products. Members of a product line can 

have substantial commonality in, for example, 

requirements and characteristics, while also exhibiting 

variability in requirements, design decisions, and 

implementation details.  

During consecutive product development, many 

features are added, removed, and changed for various 

reasons. Inevitably, many new defects are generated in 

consecutive products as the software evolves. The 

number of defects in such a software project has a 

significant impact on project performance and hence is 

an input to project planning [2, 22]. As the quality level 

of the final product is set at the beginning of the project, 

a large number of defects can result in project delays 

and cost overruns [13]. Planning precision and 

predictability is crucial for the any project in operation 

[14]. 

All defects must be recorded, tracked, and managed 

until the end of a project. It may be necessary to keep 

histories for subsequent projects or for the evolution 

of the software, for the efficiency of the testing 

process, and to aid the common understanding of 

multi-regional, distributed project members. The 

Bugzilla [5], Git [10], and Jira [16] Defect Tracking 

Systems (DTSs) are widely used for these purposes. 

Thus, it is possible to analyze the historical trends in 

DTSs, to use the resulting information to predict the 

number of defects in upcoming software products, and 

to obtain a concrete view of the life cycle of 

potentially unreported defects. 

In this paper, we propose a Defect Prediction 

Model (DPM) for predicting the expected quality level 

in an SPL. We believe that predicting the defect trend 

in an SPL will provide project managers with better 

understanding for making proactive decisions about 

the arrangement of the development team and the 

implementation of the early test phases considering 

crucial schedules and limited resources. In addition, it 

could provide metrics for evaluating the performance 

of development teams and individual developers, such 

as the number of unresolved defects that will remain 

and the expected quality level at the end of a project. 

Our model for predicting the life cycle of defects with 

occurrence rates and severities within specific 

domains could be used as a reference model for 
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evaluating development effectiveness for a platform-

based SPL. 

This paper makes the following contributions: 

 We present a DPM using defect state transition 

histories after the analysis of repository data from a 

DTS. 

 We can predict the defect state distribution at a given 

time and the defect closing rate for estimating the 

total number of defects to help project managers 

anticipate the quality level in a consecutive SPL. 

The rest of the paper is organized as follows. Section 2 

summarizes related work. Section 3 briefly introduces 

background information on DTSs, the Markov Chain 

(MC) and Software Reliability Growth (SRG) model. 

Section 4 describes our proposed model in detail to 

show how to calculate a transition matrix, obtain the 

initial probability of predicting a product, and estimate 

the total number of defects and defect distribution 

states. For evaluating our proposed model, a case study 

and results are described in sections 5 and 6 discusses 

limitations of our study. We conclude in section 7 with 

the future direction of our research. 

2. Related Works 

Software defect prediction has been a very active area 

in software engineering research [12, 18, 26]. Many 

effective new metrics and algorithms have been 

proposed for predicting defect-proneness. Source code 

metrics such as complexity and cohesion metrics are 

widely used for defect prediction, since there is a 

common understanding that complicated software may 

yield more defects. For example, simple complexity 

metrics such as Line Of Code (LOC) can be used to 

predict defect-proneness of components. Basili et al. 

[3] used Chidamber and Kemerer metrics, and Ohlsson 

[21] used McCabe’s cyclomatic complexity for defect 

prediction. In case of cohesion, Kuljit investigated the 

design level class cohesion metrics [17]. However, 

these published metrics related with defect prediction 

are complex and disparate, and no up-to-date 

comprehensive picture of the current state of defect 

prediction exists [6, 9]. 

Change history based metrics also have been 

proposed and widely used for defect prediction. 

Nagappan et al. [20] proposed the code churn metric, 

which is the amount of changed code, and showed that 

code churn is very effective for defect prediction. 

Moser et al. [19] used the number of revisions, authors, 

past fixes, and age of a file as defect predictors. Hassan 

[12] introduced entropy of changes, a measure of code 

change complexity. Entropy of changes was compared 

to number of changes and previous bugs and found 

often to give better results. Kim et al. [18] proposed the 

change classification technique, which involved 

learning buggy change patterns from history and then 

predicting whether a new code change would lead to 

bugs. Zimmermann et al. [26] proposed a method for 

predicting the defect proneness of a file from defect 

information extracted from the Concurrent Versions 

System (CVS)/Concurrent Versions Subversion 

(SVN) repositories and for predicting the defect 

proneness of a file. The distributions of defects over 

modules of a large software project are also studied 

[1]. 

Recently, much of the industry software 

engineering research has been conducted using data 

Mining of Software Repositories (MSR), such as 

DTSs and version control systems. Therefore, some 

researchers studied defect life cycles and triage 

without using suggested metrics. Weib et al. [23] 

studied the lifecycle of defects and presented a search-

based approach that can predict the defect-fixing effort. 

Jeong et al. [15] found that half of defect reports for 

Mozilla and Eclipse are re-assigned to other 

developers.  

Most of these studies have focused on the 

classification model to analyze how the code or 

behavior of a developer affects software quality and to 

predict whether the resulting code will be buggy or 

clean, however, these models cannot be used to 

predict future defect trends for a consecutive product 

level in the concept of SPLs. A new MC-based 

prediction model for using SPL knowledge to predict 

future defect trends is proposed in this paper to 

overcome this limitation. We have also showed that 

our proposed model is valid and effective for applying 

in SPLs. 

3. Background  

3.1. Defect Life Cycle in Software Engineering 

The Defect Life Cycle (DLC) is the cycle that a defect 

passes through during its lifetime. The cycle starts 

when a defect is found and ends when it has been 

retested, resolved, and closed. Bugzilla [5], Git [10], 

and Jira [16] are examples of DTSs in current use. 

There are some minor differences between these 

DTSs, but their major defect transition states, 

identified by Zeller [25], are shown in Figure 1. 

NEW ASSIGNED

If resolution is FIXED

UNCON

FIRMED

REOPENED

FIXED

OPENED

RESOLVEDVERIFIEDCLOSED

 

Figure 1. Defect Life Cycle [25]. 

The defects transition between the various states 

during their life cycles. When a bug is found for the 
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first time, the tester needs to check to determine 

whether it is a valid defect. After confirmation, the 

defect is submitted to the DTS with the status, “New.” 

Once the defect has been assigned to the correct 

developer, it transitions to the “Assigned” state. The 

defect is forwarded automatically or by a manager to 

the designated person in the software development 

team and he or she changes it to the “Opened” state to 

indicate that action is being taken to find a solution. 

When the developer has determined the root cause and 

found a solution, the state is changed to “Resolved,” 

and the software is released to the tester for verification. 

If a defect is determined to be invalid according to the 

intended design or an explanation from the 

development team, its state is also changed to 

“Resolved.” Once the solution has been “Verified” with 

the resolution that the defect has been fixed, the tester 

closes the defect by changing it to the “Closed” state. 

However, in cases where the same defect reoccurs, or 

closely related quality issues are discovered, the tester 

reopens the bug and changes it to the “Reopened” state. 

The italic-character states in Figure 1 are the main 

focus of this paper. Usually, the “Reopened” state can 

be combined with the “Assigned” state, because it can 

normally be merged with that state. 

3.2. MC Model  

An MC [7] model is concerned with a sequence of 

random variables (i.e., X1, X2, X3, ...) with the Markov 

property, namely, that the state in a given time epoch 

depends only on the state in the previous time epoch as 

follows Equation 1: 

          
1 1 1 0 0 1

( | , , , ) ( | )
r n n n r n n n

P X x X x X x X x P X x X x
 
        

The possible values of Xi form a countable set S called 

the state space of the chain. MCs are often described 

using a directed graph, where the edges are labelled by 

the probabilities of passing from one state to another 

(e.g., finite state machine), as shown in Figure 2, in 

which pij represents the probability of a transition from 

state xi to state xj. 

X1 X2 XN-1 XN

P12 Pij

 

Figure 2. Overview of MC [8]. 

We can also define the next state at time t+1 for the 

state probability vector v at time t using the following 

equations: 
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In order for the MC model to apply, state transitions 

must satisfy the property that the next state depends 

only on the current state. In addition, all of the 

transitions in the DTS must be initiated by a developer 

based only on the current state, rather than a previous 

state. Therefore, the states of the defects can be 

expressed using the Markov property, as it is normally 

defined.  

3.3. Software Reliability Growth Models 

The Software Reliability Growth Models (SRGM) has 

been used as the most important and successful 

predictor of software quality. It attempts to correlated 

defect detection data with estimated residual defects 

and time. These models are grouped into concave and 

S-shaped models on the basis of assumption about 

failure occurrence pattern as shown in the Figure 3 

[24]. 

Number 

of 

Defects

Time

Concave 

Model

Number 

of 

Defects

Time

S-Shaped

Model

Residual 

Defects

 
Figure 3. Concave and S-shaped SRGM [11]. 

In the concave shaped models, the increase in 

failure intensity reaches a peak before a decrease in 

failure pattern. Therefore, the concave models indicate 

that the failure intensity is expected decrease 

exponentially after a peak is reached. On the other 

hand, the S-shaped model assumes that the occurrence 

pattern of cumulative number of failures is S-shaped: 

initially the testers are not familiar with the product, 

then they become more familiar and hence there is a 

slow increase in fault removing. As the tester’s skill 

improves the rate of uncovering defects increases 

quickly and then levels off as the residual defects 

become more difficult to remove. 

In this paper, we applied Goel-Okumoto (G-O) and 

Confidence Interval (CI) model for applying it to 

predict defect growth prediction because our case 

studied follows the characteristic of concave model 

[11]. The G-O model is one the commonly used 

SRGM, which is defined as follow Equation 4: 

                     ( (1 ) 0, 0btμ t) a e ,a b     

Where, μ(t) represent the cumulative number of defect 

through time t, a is expected total of number of defects 

and b is shape factor for representing the rates at 

which failure rate decreases. 

4. Proposed Defect Prediction Model 

We propose a Defect Prediction Model (DPM) that is 

able to predict the number of defects that will occur in 

a series of products and the manner in which these 

defects will transit through the various states. We hope 

(1) 

(2) 

(3) 

(4) 
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that this model can also be used, with additional 

research, to evaluate the performance of the 

development team or individual developers. 

Figure 4 shows the overall structure of the DPM. 

First, we must select a product that has a platform-

based model and a series of products. Second, we mine 

and refine information from a history log of the DTS. 

The log contains many types of information, such as 

current and previous status, importance, currently 

assigned developer, history of change times, and the 

like. These refined logs (training datasets) can be 

attached to the DLC states in accordance with their 

transitions. Third, the transition probability matrix can 

be modelled and tested with the test dataset for 

correctness and validity. 

 
 

Figure 4. Overall structure of DPM. 

 

The procedures for building the proposed model are 

as follows: 

1. Select a software project that has a platform-based 

model and a series of products. 

2. Mine a recorded dataset from repositories for a 

period of time for defect states (when, status) 

information. 

3. Build the transition probability matrix with initial 

probability vector of test data. 

4. Validate the matrix with test data. 

5. Predict the total number of defects, the number of 

instances of each state at specific times, and the 

total number of closed defects. 

Each rounded rectangle in Figure 4 is illustrated in 

detail in the next section. 

4.1. History Log of Software Repository 

Rounded rectangle section 4.1 in Figure 4 shows the 

platform-based product, the feature that changes in 

consecutive products and the defect repositories 

related to each product. Table 1 gives an example of a 

history log from Bugzilla stored at the repositories. 

The “Status” field keeps track of the defect state over 

the time “When” the bold italic characters show the 

transitions of the defect’s state. The example defect 

was moved to the resolved state on November 19, 

2012, reopened on December 1, 2012, reassigned on 

December 3, 2012, and finally closed again on 

December 4, 2012. In addition, the log contains 

questions, such as why this defect was reopened and 

why it took a day for the defect to be reassigned to the 

correct developer. 

Table 1. History log of Bugzilla defect (#394495). 

Who When What Removed Added 

daniel_megert

@ch.ibm.com 

2012-11-19 

06:57:25 

Status New Resolved 

CC  
daniel_megert@c

h.ibm.com 

Resolution --- WorksForme 

Summary 

can’t open editor 

from “find 

references” search 

result 

[search] can’t 

open editor from 

“find references” 

search result 

eclipse.rc@gm

ail.com 

2012-12-01 

19:47:13 

Status Resolved Reopened 

Resolution WorksForme --- 

daniel_megert

@ch.ibm.com 

2012-12-03 

02:59:46 

Keywords  needinfo 

Status Reopened Assigned 

daniel_megert

@ch.ibm.com 

2012-12-04 

03:30:48 

Status Assigned Closed 

Resolution --- Duplicate 

For the model proposed in this paper, we need to 

collect data related to states and to the timings of 

transitions from one state to another (“When”, 

“Status”). 

4.2. Graph Model for DLC 

The transitions in each log can be mapped into the 

graph model based on the predefined time period. The 

time base can be adjusted after considering the 

number of history logs and total development periods 

of the product. Figure 5 describes the defect state 

transition graph that maps the states in the DLC to the 

Markov graph model. We used the same naming 

conventions for the states as for the names in Figure 1. 

However, some states in Figure 1 were reorganized 

and combined during the mapping process, because 

they are not intended to be predicted, or because some 

states, such as “Reopened,” can be considered to be 

the same as other states. Each of the defect states has a 

state label with a series of sequential numbers. The 

arrows between pairs of states represent transition 

probabilities from previous states to next states.  
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Figure 5. Defect states expressed with graph model. 

For example, the transition t34 signifies that the 

developer found a solution and changed the state from 

“Opened” to “Resolved.” If another defect is found 

related to the current solution, the state returns to 

“Opened” as t43. In addition, the arrow returning to 

itself signifies that the new state is the same state as the 

previous state over the predefined time period, after 

checking “When” information in Table 1. The 

transition t22 signifies that the defect was not assigned 

to the correct developer and has been reassigned to 

another developer or to more than one developer. Some 

arrows can also point back to previous states or skip the 

next state. t53 represents situations where defects have 

not been resolved completely, such as situations where 

the defect still exists, reoccurs, or leads to other closely 

related defects. 

The states and transitions are as follows: 

 s1: the new state is the state for newly reported 

defects.  

 s2: the assigned state is the state in which a developer 

has been assigned to check a defect. 

 s3: the opened state is the state in which a developer 

has confirmed a defect. 

 s4: the resolved state is the state in which a developer 

has found a solution. 

 s5: the verified state is the state in which a solution is 

undergoing verification. 

 s6: the closed state is the final state in the DLC. 

 t11, t33, t66: the defect stays in the same state for 

longer than the predefined time period. 

 t22: the defect is assigned to a developer and then is 

reassigned to another developer. 

 t46: the defect transitions directly from resolved to 

closed. This can occur when the defect is not a real 

defect. This can be due to misunderstanding of the 

intended behaviour or concept on the part of the 

tester. 

 t53: the defect is still alive. This can occur if the 

tester finds that the issue has not been fixed, or if the 

tester finds another way to recreate the issue. 

 t61: the original defect is closed, but another defect 

is found while testing the solution for the original 

defect. 

Based on this graph model, we can say that if S is a set 

of defect states and T is occurrence data of defect 

transitions, then S and T can be defined as follows: 

                   
1 2 11 12 61 62

{ , , , }, { , , , , , , }
n nn

S s s s T t t t t t           

4.3. Building the Proposed DPM 

The state transition probability matrix for rounded 

rectangle section 4.3 in Figure 4 is a square matrix 

describing the probabilities of passing from one defect 

state to another. To obtain the transition matrix, the 

following steps are performed: 

 Step 1.  Define State and Build Transition Matrix: 

the defect states are listed by mapping the transition 

occurrence data of each defect state to another state. 

The matrix is constructed by counting the number 

of steps from one defect state to another. The state 

transition probability matrix (rounded rectangle 3 in 

Figure 4 can be expressed as: 

                      


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In each row, the probabilities of moving from the state 

represented by that row to the other states are shown. 

Thus, the rows of a transition matrix each add up to 

one.  

 Step 2. Obtain Initial Probability of Predicting 

Product: to obtain the initial probability vector 

representing the occurrence probability of each 

defect state being in the initial state, the recent 

defect state occurrence data in the predicting 

product are used, which can be divided by the unit 

of time such as week, month or year depend on the 

applied domain’s characteristics. For example, the 

domain that the numbers of defect are quite lots, 

and the defect transitions are changed actively, can 

be divided by weekly basis. The initial probability 

vector is calculated using Equation 8, satisfying 

condition 9. 

 
1 2

( , , , ) , , ,
initial n initial

P s s s P
F F F

   
  

 
   

      
1

n

i
i

F f   


        

Where α, β, and γ represent the number of transitions 

for each state s1, s2, through sn, can be denoted as fi, i 

(5) 

(6) 

(7) 

(8) 

(9) 
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represent each states. Therefore, F can be the sum of all 

transition number during the time unit.  

The initial probability Pinitial(si) for each state si 

satisfies the Equation 10 because the sum of initial 

probabilities must be one. 

                                
1

( ) 1
n

initial i
i

P s


                             

 Step 3.  Prediction of Defect State Distribution: the 

probability of defect transition is estimated, 

predicting the defect in the consecutive product line, 

using the transition matrix created in step 1 and 

initial probability vector created using the 

consecutive SPL in step 2. 

            
1 2 1 2

( , , , ) ( , , , )
n initial n platform

P s s s P s s s P    

where n is the number of states for representing DLC 

states, Pintiial(sn) is the initial probability for the 

consecutive product line, Pplatform is the state transition 

probability matrix calculated using Equation 6 and 

P(sn) is the next probability of defect transition. We can 

also calculate a specific defect transition state using 

Equation 12. 

                               
1

( ) ( )
n

k i ik
i

P s P s P


   

Where k is a specific defect state, such as “Closed” Pik 

is element of the transition matrix for specific defect 

state.  

 Step 4.  Prediction of Total Number at Defect States: 

to predict the total number defect at each state such 

as closed states at a future time, we need to estimate 

the number of defects at each time over the entire 

development period. With defects newly reported at 

every time, d(t), representing the number of defects 

at time t, can be represented as follows 

                             (1), (2), , ( ), ,d d d t   

The total number of defect at each time, d(t), is 

represented as a series, which cumulative number of all 

of previous number. 

(1), (1) (2), (1) (2) ( )d d d d d d t     

Thus, we can represent the total number of defects in 

the end of time as a series that describes the growth of 

defects over time. 

 TotalNumberofDefect 
1

( )
t

i

d t


  

To predict growth of defect over time, we adopt the 

Goel-Okumoto (G-O) model. We can predict the 

number of defects at each state using Equations 4 and 

11 as follows: 

                               
1 1t t

M P 
 
                       

Where P represents defect state probability vector and 

the μ is the total number of defects at time t+1. M is 

vector representing the number of defects at each state 

at time t+1. 

5. A Case Study 

5.1. Background 

As a case study, we evaluated the proposed DPM 

using three consecutive mobile products that were 

based on one platform and included two diversified 

products. Each of these products had been developed 

over the course of a year. The platform product 

consists of full-featured mobile devices. The first 

product project was established with value-

engineering concepts to reduce the cost value. Some 

software-related components were changed or 

removed. Accordingly, quite a few common parts 

became variable parts with the software product-line 

method. In contrast, the second product had exactly 

the same common parts as the platform product, but 

with some features added and User Experience Design 

(UXD) concepts changed. All of the products had 

been developed in that manner by the same 

development team. 

Figure 6 shows the actual defect distribution ratio 

for the series of products on a month-by-month basis. 

The defect distribution is slightly different for each 

consecutive product. For example, the test team takes 

a while to report defects of the platform product, and 

further defects remain undiscovered for some time 

owing to software instability. At some point, the 

defects peak and then decrease over two months, 

approaching zero. In contrast, many of the first 

product’s defects remain, as compared with those of 

the platform product, owing to changes in 

commonality and removal of features. The second 

product’s defects were normally distributed, similarly 

to the platform product’s, over the entire development 

period. 

 
Figure 6. Monthly actual defect distribution for case study. 

A dataset was gathered using an in-house DTS. We 

used this dataset to build the proposed model and 

validate it by comparing the actual and predicted 

results. 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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5.2. Predicting Defect State Transitions 

The graph model of the platform product is as shown in 

Figure 5. To gather information about the defect states 

for each product, we collected and refined the defect 

transition state data from DTS. 

 Step 1. After counting the number of transitions 

between states for each month, we calculated the 

total number of transitions for the entire 

development period. Using this number, we 

determined the transition probability matrix for the 

platform product. The state transition probability 

matrix, Pplatform, for our case study is calculated as 

follows. 

   

.07 .93 0 0 0 0

0 .48 .52 0 0 0

0 0 .21 .79 0 0

0 0 .05 0 .87 .08

0 0 .26 0 0 .74

.16 0 0 0 0 .84

platform
P

 
 
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 
 
 

 

The entries in the transition matrix must satisfy 

condition 6, that each must sum to one. 

 Step 2. The most recent transition data, those for one 

week unit in this study, are used to calculate the 

initial probabilities for the first product. The most 

recent transition count is shown during a first week. 

1 2 3 4 5 6
7, 9, 28, 17, 0.5, 0.5, 62f f f f f f F        

The initial probabilities of products are calculated as 

follows. 

   
7 9 28 17 0.5 0.5

0.11 0.15 0.45 0.27 0.01 0.01
62 62 62 62 62 62

 
  
 

first

initial
P  

 Step 3. Based on results 17 and 18, the next month’s 

defect state distribution can be estimated using the 

probability transition matrix and the initial 

probability, as follows. 

      0.0093 0.1743 0.1886 0.3555 0.2349 0.0374firstP   

 Step 4. From these results, the first product’s 

probabilities of closed and resolved states in the next 

week are 0.0374 and 0.3555, respectively. To 

estimate the number of closed defects in the next 

week, the closed defect number of the platform 

product was counted as 2,784 for C(Sk). 

                 
2 6 6

( ) ( )( ) 0.0374 2784 104   
platform

d P s C s t  

The closed defect number in the next week can be 

predicted as approximately 104.  

With predicted the distribution of defects at each 

states, we predict the total number of defects by 

applying the growth of defect numbers. By building G-

O models with Equations 4 and 16 using Matlab over 

weekly basis, we can estimate the total number of 

closed defects for the product line during the 

development period. 
 

5.3. Results 

Figure 7 shows the predicted and actual defect 

distributions for all states in the second month for the 

first product. For example, the rates of new and closed 

defects were predicted to be 1% and 3%, respectively, 

but the actual rates were 5% and 9%, respectively. 

Similarly, Figure 8 shows the predicted and actual 

defect distributions for all states in the second month 

for the second product. The actual and predicted new 

defect results are similar, and the gap in the closed 

rates is also reasonable. 

 

Figure 7. Defect distribution states for first product in next month. 

 

Figure 8. Defect distribution states for second product in next 

month. 

Next, we evaluate the effectiveness of using the 

probability matrix with the platform product defect 

history to predict the future number of closed defects. 

Figures 9 and 10 show the distributions in the number 

of actual and predicted closed defects for the first and 

second products, respectively. Clearly, the predicted 

results for the first product are not as good as those for 

the second product, as compared with the actual 

results. In case study, we predicted only the closed 

states, because the numbers of closed states are 

expected to be the same as the numbers of new states, 

which should be closed at the end from the software 

quality point of view. 

The results in this case study show that the 

proposed model is suitable for the second product, but 

not necessarily for the first. The proposed prediction 

model can be applied to SPLs that possess 

commonalities. The gaps between the actual and 

predicted results are likely to be relatively high for the 

first product. As we mentioned, quite a few common 

(17) 

(18) 

(19) 

(20) 
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aspects of the first product are changed to variability, as 

compared with the second product, resulting in gaps in 

the defect prediction results for the first product. One of 

the big changes with regard to variability comparing 

with the platform product is resolution changing of 

display. It drives some commonality to variability such 

as system software, usability experience evaluation and 

design of user interface. Hence, it made lot of 

duplicated, invalid defects related with hardware 

components in actual early defect reports. 

In case of second product, whole of hardware 

components are exactly same as platform product. 

Although, there are some difference ratios for some 

states comparing with actual result, the prediction 

results are promising in that the proposed model can 

predict defect states for the second product, which has 

commonalities with the platform product. If the 

predicted product lacks sufficient commonality, or the 

development team differs from that of the platform 

product, the proposed model fails to predict potential 

defects. 

 

Figure 9. Actual and predicted closed defect number for first 

product. 

 

Figure 10. Actual and predicted closed defect number for second 

product. 

5.4. Discussions 

To measure the precision sensitivity of proposed model 

with respect to the variability in SPL, we derive some 

metric to evaluate the variability degree of case study. 

It is desirable to measure the degree of variability, 

important factor for reusability in SPL, to figure out the 

relevance between variability change and precision of 

the proposed prediction model. Recently, the metrics 

for evaluating SPL architecture are discussed in several 

publications. One of them, Berger [4] investigated the 

assessment of product variants to extract a product 

line and propose a set of metrics that enable the 

software architects and project managers to estimate 

the variability. 

To measure the variability of an experimented case 

study, we select metrics such as Product-related 

Reusability (PrR), Impact of Product-related 

Reusability (IPrR), Individualization Ratio (IR), 

Reusability Benefit (RB) and Relationship Ratio (RR). 

Table 2 shows the results of metrics for the case 

studied products. 

Table 2. Results of metrics for the case study. 

 Platform 

Product 

First 

Product 

Second 

Product 

Platform 

/First 

Platform 

/Second 

PrR 0.94 0.54 0.87  

IPrR 0.12 0.61 0.32 

IR  0 0.76 0.21 

RB  0.87 0.43 

RR 0.65 0.91 

The Impact of Commonality (IoC) metric has a 

value of 0.76 which means that the studied products 

have many shared common components. The platform 

product has highest PrR, it has a baseline of 

consecutive products and makes contribution for 

building probability transition matrix. The IPrR is 

highest at the first product, it mean the impact of all 

commonly share components by first product is not 

greater. The ratio IR second product has smaller than 

first product; it means the second product is similar 

with platform product. The RB of platform and second 

product is the smaller than first product. In case of RR, 

they have higher value which means they share the 

common components between platform based and 

second product. So, we can guess the precision of 

proposed model depend on the variability degree level 

comparing with platform product used for building 

transition probability matrix. 

6. Limitations 

We have identified the following limitations: 

6.1. Non-Platform based or Small-Scale 

Software Projects  

We intentionally chose as a case study a platform-

based project with common parts. In addition, the 

number of defects must be high, and the defect 

transitions must be changed actively, to ensure the 

accuracy of the prediction model. The validity of the 

transition probability matrix is difficult to guarantee 

for small non-platform software projects. The 

proposed prediction model can work well, when 

sufficient data are available in an organization’s 

software repository to support it. 

6.2. Not Applicable in Case of Team Change  

The model we proposed works only if one 
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development team is involved. If team members are 

changed, transitions from opened to resolved states are 

especially prone to differ from those of the team that 

initially built the prediction model. We need to conduct 

a sensitivity analysis against development team change 

to evaluate the sensitivity of our prediction model in the 

future. 

6.3. Interference in the Repository Data 

In a DTS, there are some transitions that do not follow 

the DLC. While preparing the input for the proposed 

model, we found that transitions from new to closed 

were direct. These took place as a result of removing a 

feature or changing UXD concepts. If those defects are 

not filtered, the accuracy of the prediction model might 

be affected. 

7. Conclusions 

In this paper, we proposed a DPM that predicts how 

many defects will occur during the development of 

consecutive software products. The MC and SRG 

model that were used in our study has been used widely 

and has proven to be effective for various kinds of 

information processing. The experimental results 

demonstrate the effectiveness of the proposed model. 

Defect prediction can be used to improve the 

management of software development efforts. One of 

the most visible advantages of using defect prediction is 

the ability to predict trends and directions of defect 

cycles in software projects. Therefore, we believe that 

the proposed model can enable managers and project 

leaders to detect defect trends and to anticipate 

problems under uncertainty, thereby controlling 

resources more effectively, gaining insight into the 

likely quality to be achieved from development efforts, 

and ensuring the success of development objectives, 

such as time to market and software quality. 

In our next study, we intend to eliminate the 

statistical inferences in the repository data. The 

inferences exist in all of the data and they can lead to 

incorrect results when building the MC model. Also, we 

aim to investigate some of the states, such as 

“Reopened” and “Verified,” to evaluate and estimate 

developers’ and testers’ performance and effectiveness. 

In addition, the sensitivity analysis between the 

precision of proposed model and the variability degree 

in SPL is also needed to clarify the validity of 

applicable SPL. 
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