
442 The International Arab Journal of Information Technology, Vol. 14, No. 4, July 2017

A New Way of Accelerating Web by Compressing

Data with Back Reference-Prefer Geflochtener

Kushwaha Singh
1
, Challa Krishna

2
, and Saini Kumar

1

1
Department of Computer Science and Engineering, Rajasthan Technical University, India

2
Department of Computer Science and Engineering, Panjab University, India

Abstract: This research focused on the synthesis of an iterative approach to improve speed of the web and also learning the

new methodology to compress the large data with enhanced backward reference preference. In addition, observations on the

outcomes obtained from experimentation, group-benchmarks compressions, and time splays for transmissions, the proposed

system have been analysed. This resulted in improving the compression of textual data in the Web pages and with this it also

gains an interest in hardening the cryptanalysis of the data by maximum reducing the redundancies. This removes unnecessary

redundancies with 70% efficiency and compress pages with the 23.75-35% compression ratio.

Keywords: Backward references, shortest path technique, HTTP, iterative compression, web, LZSS and LZ77.

Received April 25, 2014; accepted August 13, 2014

1. Introduction

Compression is the reduction in data size of

information to save space and bandwidth. This can be

done on Web data or the entire page including the

header. Data compression is a technique of removing

white spaces, inserting a single repeater for the repeated

bytes and replace smaller bits for frequent characters

Data Compression (DC) is not only the cost effective

technique due to its small size for data storage but it

also increases the data transfer rate in data

communication [2].

Compression held in two categories: lossless

compression and lossy compression [3, 4]. Lossless

compression reforms a compressed file similar to its

original form. On the other hand, lossy compression

removes the unnecessary data but can‟t be reproduced

exactly. There exist many old and new algorithms for

lossless compression which are to be studied e.g., LZ77

[16], LZSS [16], Zopfli [14].

2. Literature Survey

In this section, existing LZ77 variants and compression

algorithms are studied.

2.1. LZ77 Compression

In LZ77, the data is changed with the location to single

copy in the uncompressed ingressed stream. A match in

lookaheadBuffer is to be fixed by the length-distance

pairs. To discontinue such matches, the compressor

stores recent data in window. With this window begin

to fall at the end and progress backward as the

compression is preponderated and the window will

conclude it‟s sliding.

Algorithm 1: LZ77 Compression

if a sufficient length is matched or it may correlate better with

next input.

While (! empty lookaheadBuffer)

{

get a remission (position, length) to longer match from search

buffer;

if (length>0)

{

Output (position, length, nextsymbol);

transpose the window length+1 position along;

}

else

{

Output (0, 0, first symbol in lookaheadBuffer);

transpose the window 1 position along;

}

}

Recently matched encoded characters are stored in

search buffer [16] and remaining part in

LookAheadBuffer [1]. But performance declines when

the character repeated are larger than the search

buffer.

2.2. LZSS Compression

LZSS is based on the dictionary encoding technique.

In comparing to LZ77, LZSS omits such references

where the dictionary references may be longer than the

search buffer. Besides addition of one-bit flag

indicates whether the data is a literal (byte) or a

referral to an offset/length pair.

Algorithm 2: LZSS Compression.

While (! empty lookaheadBuffer)

{

get a pointer (position, match) to the longest match;

A New Way of Accelerating Web by Compressing Data with Back Reference-Prefer Geflochtener 443

if (length > MINIMUM_MATCH_LENGTH)

{

output (POINTER_FLAG, position, length);

transpose the window length characters along;

}

else

 {

output (SYMBOL_FLAG, first symbol of lookaheadBuffer);

transpose the window 1 character along;

}

}

This like LZSS yields a better performance over the

LZ77 compression by adding extra flag.

2.3. ItCompression

Following various compression techniques, the main

risks revealed in deciding the fine set of representative

rows. Reappearing with iterations, previous rows may

be relocated by newly represented tuples [13]. Though,

the representative rows keep changing, each iteration

monotonically improves the quality globally. Moreover,

each iteration requires a single scan over the data,

guiding to a fast compression scheme.

Algorithm 3: ItCompression.

Input: A table T, a user specified value k and an error tolerance

vector e.

 Output: A compressed table Tc and a set of representative

rows P = {P1,……..,Pk}

 Pick a random set of representative rows P

 While totalcov (P, T) is increasing do

{

For each row R in T, find Pmax (R)

 Recomputed each Pi in P as follow:

{

For each attribute XJ

Pi [XJ] = f v (XJ, G(Pi))

 }

}

In this each row R in T is assigned to a representative

row Pmax(R) that gives the most coverage among the

members of representative set P. Next, a new set of P is

computed. Here, the sliding window of size 2*ej is

moved along the sorted micro-intervals to find the

range that is most frequently matched. Hence, it is

found that by varying the representative rows

compression ratio improves but with the increment of

rows it reduces the CPU cycles. Hence, after

experimenting variations it is considered that it should

be limited to 100 for the best as it should neither

increase the time slices as well as nor decreasing the

compression for our proposed system.

3. Shortcoming

LZSS was introduced as search buffer is much longer

than LookAheadBuffer in LZ77 due to which the non-

matched pairs waste the space. While considering all

theories Google give a new heuristic zopfli. But it still

uses the previous length in its output and appends

every time the length and distance to the arrays even

when the length is less than the shortest matched string

that again waste the space. So the modifications are

proposed that save the space and use recent length for

better compression, which will be described in the

section 5.

4. Our Contribution

HTTP compression is the method of the Apache

server to provide the better bandwidth and advances

the hits over the web [15]. And the browsers

supporting mostly two types of encodings namely gzip

and deflate [10]. Both the schemes encode the content

using LZ77 algorithm. Recently Google gives a Zopfli

compression technique Vandevenne [6, 17].

Distinctly the proposed system that is conferred

below does not concern about the bareness in the

dictionary when the window slides over the data until

lookaheadBuffer is full. Therefore, <0, 0, store> is

assert to encode the characters in store that does not

match in dictionary [8].

On the other hand, lengthscore is introduced for

large lengths with the indexing purposes which is a

pair of length and distance. This directs the most

outstanding sequence from the biggest match for the

better proficiency compressing diminutive characters

before the bulky ones.

5. Proposed System

The projected system is found on iterative entropy

model and a shortest path search to find a low bit cost.

Hence, to overcome issues over length/distance in

Zopfli as mentioned in section 2.4, it is proposed to

evaluate the lengthscore itself in place of the earlier

lengths in tuple. Also, it considers only the single

perspective of LZ77 store for the huge matchless

characters to affix the length and distance to an array.

A compressor whose algorithm is discussed in

section 5.1 and a cleaner to flush the compressed

streams are proposed in the system. When the user

query, the server is being tried to lookup for pages and

collects the data without any additional setup. So

when these fetched pages are being prepared to answer

they pass through the proposed system where the data

being compressed in a format attuned to the browser

and then place over the Internet. Hence, when the

Internet acknowledged with the HTTP “OK” message,

the system decide to clean the storage. The complete

scenario is illustrated in Figure1.

444 The International Arab Journal of Information Technology, Vol. 14, No. 4, July 2017

Figure 1. Scenario of the proposed system.

5.1. Proposed BRP Geflochtener Compression

Algorithm 4: Proposed BRP Geflochtener.

for (i=instart; i< inend; i++)

{

 Maximum amount of blocks to split into 100;

 Update the sliding hash value;

 Find the longest matched cache;

 Gets a score of the length given the distance;

 if (lengthscore >= MIN_MATCH)

 {

Verifies if length and dist are indeed valid, assert;

output StoreLitLenDist(lengthscore, dist, store);

shift the window length characters along;

 }

Else

{

 output StoreLitLenDist(0, 0, store);

 shift the window 1 character along;

 }

}

In this algorithm, instart is the preliminary position of

the window, inend is the ending position of the window

size, Litlen contains the literal symbols or length values

i.e., literal per length, lengthscore is the length itself,

dist indicates the distance and MIN_MATCH is the

shortest distance in length. Literal symbols and the

distance both are about the equivalent size.

5.2. Compression Process

The Litlen distance producer transforms data into

literals with the particulars of their length and distance.

Next these literals and lengths exceed through scorer

where each literal get the score on the basis of the

distance. Now these would be authenticated before the

matching of the literals. When they authenticated then

they pass to the iterator where the bits are evaluated to

get the longest match from the backward references.

With this the longest matched bits are cached into a

Longest Matched Cache (LMC) and applying the

shortest paths technique with the best length first. Then,

the lengthscore is verified and clears the length. Now

swing the window slider for the next matches.

Similarly, the matched pairs after traversing all the

paths pass on the matched phrases to the entropy

encoder which are similar to the Huffman tree bits to

value of symbols and acquire down to compressed

stream which will be spread over Internet with the

header bits situated to content encoding gzip.

5.3. Compression Strength

For detailed analysis, let us presume the input stream

as “0123456789” at very begin so it has not establish

any backward references. When the window slides the

next stream hits “0123456789” then it disperses the

distance and length as -10 where „-‟ illustrates the back

movement. Similarly when it hits with “0000056789”,

it has various choice for the references to encode 0‟s

with distance and length as -(1) -1 and 4 (2) -10 and 5

respectively. Next when “0003456789” comes into

follow then to encode „000‟ it gets back matched with

distance -8 and length 3; distance -9 and length 3 and

distance -10 and length 3 each with diverse probable

tuple. Likewise, the prime of distances are being

measured which is more probable statistically and

leads to smaller entropy.

5.4. Algorithmic Analysis

Proposed Geflochtener compresses the data by

encoding phrases from lookahead buffer as

references in sliding window so that the lookahead

buffer is laden with the symbols. Here, the current

bytes are tracked in instart and inend is used to keep

trail of the current byte writing to buffer of the

compressed data. While the longest matched cache

LMC identified to find longest match and revisit the

length of it. Now LMC places the offset subsequently

to the symbol in the look-ahead buffer immediately

behind the match. Considering the situation, the

window size is kept 32 KB concluding how far back

corresponding phrases is explored in the data and the

length limits to 258 that locate the undersize distances.

Hence, only 256 out of 259 are used for the handiness

of array which would make 3 longer. Generally it is

good scheme to search far back for matchings but it

must be balanced beside search time through sliding

window. Also, balance it against the space penalty by

using additional bits for offsets. However, when the

data has many repeated long phrases then choose

buffer size such that excessively diminutive marks in

multiple phrase tokens get just one. The network

function htonl is applied to convert the token in big-

endian format. This is the format required to store the

compressed data on top of uncompressed data.

Since our technique is based on shortest path, cost

model taking entropy into account and the iterations

for optimum search. To encode efficiently, we have

improved the Back Reference Prefer (BRP) as shown

in Figure 2 which is based on Huffman encodings.

Hence, BRP select bits cost of entropy encoding based

on given formulae:

 () 2 [()] - [()]BR pref log tot pref bits non_huffman pref (1)

A New Way of Accelerating Web by Compressing Data with Back Reference-Prefer Geflochtener 445

Figure 2. Mathematical model of BRP.

Where tot(pref) represents number of BR, log2

[tot(pref)] evaluate bit cost of entropy encoding and

bits[non_huffman(pref)] is number of non-entropy

encoded bits. The resulted BR(pref) selects the best

order to encode.

6. Implementation

The proposed algorithm does not require any update at

the client-side applications. It is a good approach and

viable tool for cutting the cost from heavy traffic

websites. The proposed system is employed in C with

the concern for its lenience and compatibility over the

different platforms. Here, for the sake of inbuilt

libraries, run it on Red Hat Enterprise Linux operating

system with kernel 2.6.18-128 (x86_64) on Intel

Pentium Dual core CPU E2160 at 1.80 GHz. Also the

complete source code has been compiled on GNU

Compiler Collection (GCC) version 4.6.3 with a single

walled output for the portability, so that it can be

directly used anywhere without any pre-configuration.

And the benchmarks are decided on the basis of their

contented characteristics as such Calgary composed of

collection of small text with some binary files and

Enwik8 which stores 100 million bytes of English

Wikipedia large content which are the best for our

testing reasons as they have all the essential content that

are always seen in websites while transmitting on the

HTTP. The only compression libraries are declared in

it, existing software can be used for their

decompression. This provides better functionality with

gzip, deflate and compatible with all browsers.

7. Outcomes of Experiment

All the backward offsets are tracked including even

those which has no backward references are there and

then choose from it that generates the shortest amount

of bits. Every length is gathered and finest sequence is

preferred by reverse traversal of the buffer according to

the given formula in section 5.4. To experimental

proving corpora‟s used: Calgary corpus [5], Canterbury

corpus [7] and enwik8 [9] which are illustrated in

Table 1.

Table 1. Comparison of compression by proposed BRP

Geflochtener with the existing compressors.

Benchmarks
Corpus

Size (KB)

Gzip-9

(KB)
7Zip (KB) Kzip(KB)

Proposed BRP

Geflochtener (KB)

Calgary 3141622 1017624 980674 978993 974067

Canterbury 2818976 730732 675163 674321 668456

Enwik8 100000000 36445248 35102976 35025767 34986660

The results are evaluated in terms of compression

percentage as per formulae: compression percentage

(CP) 100
LO LC

LO


 

, where LO: Length of Original

text and LC: Length of Compressed text.

On the converse, it is also estimated Compression

Gain (cg) which can be defined as the amount of space

recovered as a result of compression and can be

calculated by:

100 100

compressedfilesize
cg

originalfilesize
  

Where original file size and compressed file size

should be in same unit (bits, bytes, Kbytes, Mbytes,

etc.,) as shown in Figure 3. Hereby, it is clear that

proposed BRP Geflochtener although crossholding to

conventional Kzip and 7-zip compressors but it yields

better compression gain than Gzip-9 which is mostly

supported by present day browsers for content-

encoding. As from the Table 1, it is depicted that the

proposed Geflochtener has eliminated about 69%

redundancy in Calgary which is 1.6% greater than that

of gzip-9; likewise for Canterbury it removes 76.22%

which is 2.2% better and for English Wikipedia 65%

which is 1.5 % greater than that of gzip-9. This yields

an outstanding change in compression by removing

the redundancies of data about an average of 70%.

Figure 3. Effect on compression gain using the proposed system in

Web traffic.

Based on the above formulae the performance

calculated is shown by graphically in Figure 4 in

which lowest blue line of Geflochtener proves the

highest compressibility among the existing

compressors.

(2)

446 The International Arab Journal of Information Technology, Vol. 14, No. 4, July 2017

Figure 4. Effect on compression using proposed system in the Web.

As discussed, after compressing the data it is needed

to send it over Internet whose transmission time(s) are

recorded (while transmitting the compressed Web data

over 10 MBps speed connection) in Table 2 based on

which it proves the effect of proposed Geflochtener in

accelerating transmission graphically in Figure 5.

Table 2. Transmission time of proposed BRP Geflochtener over

existing compressors.

Benchmarks Gzip-9(ms) 7Zip(ms) Kzip(ms) Proposed BRP Geflochtener(ms)

Calgary 99.4 95.8 95.6 95.2

Canterbury 71.4 65.9 65.9 65.3

Enwik8 3559.1 3428 3420.5 3417.6

Figure 5. Effect on throughput using the proposed system in web

traffic.

8. Results and Discussion

Frequently preceding lengths are taken into account

while obtaining the length scores, this removes the

overhead of deciding the length from where it starts

next comparison. And the output fabricated is 4.0-

8.52% smaller than that of gzip-9 and save the space on

server with the deprivation of 514 to 9086 bytes.

Over 10 Mbps speed connection, the proposed

Geflochtener (with the improvement) transmit Enwik8

content over web in 3 second, Calgary content in 95

milliseconds, and Canterbury content in 65milliseconds

which is much significant in accelerating our web

traffic.

The proposed system‟s strength for binary blobs that

changes infrequently, if ever, or are downloaded with

enough frequency to increase download speed. This

also helps in reducing battery usage in mobile networks

and less strain on subscriber‟s data plan. Not only this,

but it also proved its worth by implementing a stand-in

in IDE to create a compact distributable APK files for

the users.

As the redundancy brings the vulnerability for

cryptanalysis, our Geflochtener compression makes

such cryptanalysis harder by reducing the

redundancies densely which would be a great benefit

while transmitting the encrypted confidential contents

after compression over Internet like in Email services.

Henceforth, it is proven to be better phenomenon

with a little more compression in not only wired

network but also in common wireless spectrum where

the mobile data transfers lead to raising the cost to

implementation levels. This can further be improved

by implementing threading in program to run

concurrently [11, 12] and also scope of making it

purely online. Also it needs to decide when the cleaner

should run which will still remains the question of

discussion.

References

[1] Arya G., Singh A., Painuly R., Bhadri S., and

Maurya S., “LZ squeezer A Compression

Technique based on LZ77 and LZ78,” The SIJ

Transactions on Computer Science Engineering

and its Applications, vol. 1, no. 1, pp. 29- 32,

2013.
[2] Akman I., Bayindir H., Ozleme S., Akin Z., and

Misra S., “Lossless Text Compression

Technique Using Syllable Based Morphology,”
The International Arab Journal of Information

Technology, vol. 8, no. 1, pp. 66-74, 2011.

[3] Awan F. and Mukherjee A., “LIPT: A Lossless

Text Transform to Improve Compression,” in

Proceeding of International Conference on

Information Technology: Coding and

Computing, Las Vegas, pp. 452-460, 2001.

[4] Burrows M. and Wheeler D., A Block-Sorting

Lossless Data Compression Algorithm, Digital

Systems Research Centre, 1994.
[5] Calgary corpus, http://www.data-

compression.info/Corpora/CalgaryCorpus/index.

htm, Last Visited 2014.

[6] Vandevenne L.,

http://googledevelopers.blogspot.in/2013/02/com

press-data-more-densely-with-zopfli.html

Googledevelopers.blogspot.com, Last

Visited 2014.

[7] Canterbury Corpus.,

http://corpus.canterbury.ac.nz/resources/cantrbry

.zip, Last Visited 2014.

[8] Data Compression the Dictionary Way,

http://www.i-programmer.info/babbages-

bag/515-data-compression-the-dictionary-

way.html?start=1, Last Visited 2014.

[9] Enwik8 Corpus,

http://mattmahoney.net/dc/enwik8.zip, Last

Visited 2014.

A New Way of Accelerating Web by Compressing Data with Back Reference-Prefer Geflochtener 447

[10] Fielding R., Gettys J., Mogul J., Frystyk H.,

Masinter L., Leach P., and Berners-Lee T.,

“RFC2616-Hypertext Transfer Protocol-

HTTP/1.1,” 1999.

[11] Gilchrist J. and Cuhadar A., “Parallel Lossless

Data Compression using on the Burrows-Wheeler

Transform,” International Journal of Web and

Grid Services, vol. 4, no. 1, pp. 117-135, 2008.

[12] Gilchrist J. and Cuhadar A., “Parallel Lossless

Data Compression Based on the Burrows-

Wheeler Transform,” in Proceeding of Advanced

Information Networking and Applications,

Niagara Falls, pp. 877-884, 2007.

[13] Jagadish H., Ng R., Ooi B., and Tung A.,

“ItCompress: an Iterative Semantic Compression

Algorithm, Data Engineering,” in Proceeding of

20
th
 International Conference on Data

Engineering, Boston, pp. 646-657, 2004.

[14] Jyrki A. and Lode V., Data compression using

Zopfli,

https://zopfli.googlecode.com/files/Data_compres

sion_using_Zopfli.pdf , Last Visited 2014.

[15] Microsoft Corporation,

http://www.microsoft.com/technet/prodtechnol/W

indowsServer2003/Library/IIS/d52ff289-94d3-

4085-bc4e-24eb4f312e0e.mspx?mfr=true, Last

Visited 2014.

[16] Shanmugasundaram S. and Robert L., “A

Comparative Study of Text compression

Algorithms,” International Journal of Wisdom

Based Computing, vol. 1, no. 3, pp. 68-76, 2011.

[17] Zopfli Compression Algorithm-Google Project

Hosting,

https://code.google.com/p/zopfli/downloads/list,

Last Visited 2014.

Satpal Kushwaha is an Associate

Professor, at MITRC, Alwar

(Rajasthan). He has done his

M.Tech. from RTU, Kota, B.E.

from University of Rajasthan,

Jaipur. He has 8 years of teaching

and research experience. His

research interests are Information Security, Network

Security and Big Data.

Rama Challa is Professor, at

NITTTR, Chandigarh. He has done

his Ph.D. from IIT Kharagpur,

M.Tech. from CUSAT, Cochin and

B. Tech from JNTU, Hyderabad. He

has 18 years of teaching and

research experience. His research

interests are Wireless Networks, Distributed

Computing, Cryptography, and Network Security.

Hemant Saini is pursuing M. Tech

in Computer Science and

Engineering from Rajasthan

Technical University, Kota. He is a

Red hat Certified Engineer. He has

completed his B. Tech in

Information Technology from MLV

Government Textile and Engineering College. He is

having 2 years of industrial experience and one year of

academic experience. His research interests are

Computer Network and Security, Wireless Networks.

