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Abstract: Computer vision and deep learning techniques are the most emerging technologies in this era. Both of these can 

greatly raise the rate at which defects on metal surfaces are identified while performing industrial quality checks. The 

identification of faults over metal surfaces can be viewed as a significant challenge since they are easily impacted by ambient 

factors including illumination and light reflections. This paper proposes novel metal surface defect detection network called as 

YOLOv-5s-FRN in response to the problems of ineffective detection brought by the conventional manual inspection system. The 

proposed system is developed through the integration of a novel architectural module called as Feature Recalibration Network 

(FRN) to the You Only Look Once-version-5 small network )YOLOv-5s(. In order to extract the global feature information from 

the provided image, FRN is able to evaluate the interdependencies between the channels. This improves the feature 

discrimination capability and prediction accuracy of the defect detection system. The incorporation of FRN structure makes 

YOLOv-5s architecture to selectively enhance the necessary features and discard the unwanted ones. Therefore, the proposed 

novel method will efficiently detect and classify the metal surface defects such as crazing, patches, inclusions, scratches, pitted 

surfaces and rolled in scale. North Eastern University surface defect database (NEU-DET) has been used to train and test the 

proposed architectural model. The suggested system has been compared with alternative models based on several performance 

matrices such as precision, recall and Mean Average Precision (mAP). It is observed that the proposed YOLOv-5s-FRN 

architecture provides significant performance improvement than state-of-the-art methods. The proposed system has been 

provided satisfactory results by means of improvement in mAP and time consumption. The proposed model has delivered value 

of mAP_0.5 as 98.05% and that of mAP_0.5:0.95 as 89.03%. 
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1. Introduction 

Examining the product's surface is a crucial stage in 

ensuring the quality and production effectiveness. It is 

necessary to identify and reject the defective one to 

maintain the overall quality. The traditional manual 

inspection will cause various negative effects such as 

reduction in accuracy, efficiency, lower sampling rate 

and high labor intensity. The undergoing trend to 

overcome these issues significantly is the automated 

defect detection. This technique can be based on 

machine vision [7, 21], which will be able to capture the 

image of the product surface and then apply an image 

analysis technique to identify the surface defect. 

In industrial applications, it is very common to 

appear the damages on textile, metallic and glass 

surfaces. Yet environmental elements like illumination, 

light reflection, etc., may readily influence the metal 

surfaces. The primary objective of the proposed system 

is to analyze the metal surfaces and identify flaws in 

them. The proposed method is concentrated to detect  

 

and classify the various metal surface defects called 

as crazing, patches, inclusions, scratches, pitted surfaces 

and rolled in scale as shown in Figure 1. The 

manufacturing systems can be equipped with computer 

vision algorithms to boost the production rate and 

reduce the error rates. The defect detection system must 

be able to provide the location of the defect in pixel level 

as well as the type of the defect. Only then the 

subsequent actions can be taken to raise the 

manufacturing quality. As a result, industries place a 

high priority on finding metal surface defects [26]. 

 

Figure 1. Various types of metal surface defects. 

mailto:mAP_0.5
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There are different image processing techniques such 

as thresholding-based method, segmentation-based 

method and edge detection-based method available. The 

feature-based methods along with the traditional 

machine learning techniques such as neural networks 

and Support Vector Machine (SVM) were used in the 

past decades for defect detection. Traditional image-

processing techniques were describing the defects on 

the surfaces through hand crafted features. Local Binary 

Pattern (LBP), Histogram Oriented Gradient (HOG), 

Gray Level Co-Concurrence Matrix (GLCM) etc., are 

the commonly used hand-crafted features. It is crucial to 

recognize the exact features for the representation of the 

defects on the surface. Therefore, it is not advisable to 

use typical image processing algorithms for defect 

identification since they need complex threshold 

settings. 

Deep learning techniques have recently gained 

popularity and it excels in a variety of applications. 

When compared to more traditional feature extraction 

techniques, they are effective at extracting features from 

the images. When it comes to recognizing defects or 

damages on metal surfaces, deep learning approaches 

are highly significant. You Only Look Once (YOLO) is 

one of the most prominent deep learning algorithms that 

is frequently utilized in industry. YOLO can be 

considered as a single stage target detection approach. It 

can be considered as one of the fastest algorithms, which 

exists today. YOLO is therefore suitable to situations 

where speed is a key factor without compromising 

accuracy and precision. Considering the advantages of 

the algorithm, the proposed system is developed on the 

basis of version 5 small network of YOLO (YOLOv-

5s). YOLO will divide the input image into grid of size 

SxS. Instead of detecting the complete image, it is 

feasible to do so based on the grids. Then the vectors 

will be encoded for each grid to describe a cell. A cell 

can be represented as shown in Equation (1). 

𝐶11 = (𝑃𝑐 , 𝐵𝑥, 𝐵𝑦, 𝐵𝑤, 𝐵ℎ, 𝐶1, 𝐶2) 

where, PC stands for the probability of the object class, 

BX and BY represent the center co-ordinates of the 

bounding box, Bw and Bh represent the width and height 

of the bounding box and C1 and C2 are the parameters 

that rely on the class of the object. The values of C1 and 

C2 can either be 0 or 1. Figure 2 shows an example of a 

cell, C3,2. 

 

Figure 2. Representation of a cell. 

In the proposed system, YOLOv-5s network is 

equipped with a novel architectural module called as 

called as Feature Recalibration Network (FRN) for 

enhancing the informative features and to suppress the 

unwanted ones. The FRN module will recalibrate the 

feature maps in order to get all of the global data from 

the image in order to do this. Therefore, the proposed 

YOLOv-5s-FRN can generate a noticeable performance 

boost with minimal computational expenses. 

This paper is structured as follows: Section 2 

describes problem statement and section 3 explains 

related works. Section 4 outlines the methodology of the 

proposed approach. Experimental results are described 

in section 5, where implementation details, performance 

analysis and comparison analysis of the proposed 

system has been explained. Following to this the 

conclusion as well as the future research scope have 

been explained. 

2. Problem Statement 

Though there are enormous researches and 

developments evolved in the domain of defect detection 

systems based on deep learning, achieving best value of 

accuracy and reduced time consumption is one of the 

challenges. Deep learning algorithms may not be able to 

provide satisfying performance parameters when the 

target defects are small and complex in nature. 

Developing a system which is able to extract important 

information from the given image can be a solution to 

the aforementioned issues. Such system has been 

proposed in this paper based on YOLOv-5s network 

with the development and integration of a new 

architectural module called as FRN. 

3. Related Works 

The implementation of deep learning techniques has 

yielded remarkable outcomes in industrial applications, 

and as a result, various innovative approaches for 

automated surface defect detection have been emerged. 

This section explains several existing techniques and 

architectures related to defect and object detection based 

on the application of deep learning. 

Paper [30] proposes a method based on YOLOX for 

overcoming the issues in current detection methods like 

complex environment and defect morphology. The 

system has been provided mean average precision value 

as 78.45%. A Selective Prototype Network (SPNet) has 

been explained in [33] for improving the segmentation 

performance. It utilizes attention mechanism to train the 

model to understand novel surface classes with few 

labelled samples. An image processing-based technique 

has been presented in [25] for the development of smart 

farming system. In this, segmentation and feature 

extraction methods have been used to detect the 

diseased part of the plant and growth process of 

cultivations. The developed method is also capable to 
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identify the soil quality and atmospheric conditions.  

A metal surface defect detection model is described 

in [27], where a Deep Encoder Representation from 

Transformers (DERT) model has been modified by 

introducing Span-sensitive Texture Fusion (STF 

structure). This technique places more emphasis on 

jump points as well as loss data recovery. As a result, the 

performance of defect identification will improve. In 

[29], author has presented a model for metal surface 

damage identification using modified YOLOv4. 

Enhancement of YOLOv4 is done by incorporating a 

Self-dependent Attentive Fusion (SAF) block, a 

Component Randomized Mosaic Augmentation 

(CRMA) scheme and a Perturbation Agnostic (PA) label 

smoothing method. A comprehensive assessment score 

is proposed in [12] for saving the time spent for training 

deep networks using datasets. The given method will 

assess the defect detection capability of deep models 

like YOLO, Single Shot multibox Detector (SSD) and 

Faster Region-based Convolutional Neural Network 

(Faster R-CNN) without training them using datasets.  

An augmentation method for the detection of defects 

over small-scale images is explained in [32]. This 

approach consists of two parts: the generation part and 

augmentation component. For this, two pairs of 

generators and discriminators are utilized. Defect areas 

and background area of image will be generated in first 

part. The generated defect images and real defect 

images get concatenated in augmentation part. A defect 

detection system based on YOLOv4 is explained in [28]. 

It does feature map fusion to produce a real-time mask 

map through Generative Adversarial Networks (GANs). 

The experimental results indicate that 1% improvement 

in recognition accuracy without compromising 

execution speed. A multilabel classification technique 

based on deep learning methods has been proposed in 

[9]. In this different deep learning models like 

DenseNet121, MobileNet-V2 and ResNet-50 are 

trained using various dataset. The weighted F1 score 

was initially determined to be 91%, and after utilizing 

the weighted loss approach, it was determined to be 

92%. A deep learning technique for implementing 

defect detection in smart factory is explained in [20]. 

Open dataset of steel defects is used for the study. The 

training process was completed with a 96% accuracy 

rate. 

A deep artificial neural network has been developed 

for the purpose of identifying metal surface defects and 

is described in [1]. The given method has combined 

several convolutional methods with GAN. It will 

produce an output indicating the defect's class and 

location with 5.8% increase in average precision. A 

unique detection method based on a compact 

Convolutional Neural Network (CNN) has been 

described in [35] to confirm the existence of defects in 

the target region. Comparing with the traditional image 

processing methods, the given method has achieved 

8.57x speed up and the detection kernel finished in 7ms 

per picture. An unsupervised learning method has been 

explained in [23] for detecting cavities over the surfaces 

and cavity lookalikes. In the first step, this method will 

locate the Region Of Interest (ROI), and then the ROIs 

will be analyzed using a depth estimator. The developed 

methods are experimented using real world dataset. 

Gyimah et al. [3] explains a method to extract 

resilient features by combining Non-Local (NL) means 

with wavelet thresholding and Robust Completed Local 

Binary Pattern (RCLBP) integration. These features will 

then be applied to the classification module to determine 

the damages on surfaces. The aforementioned approach 

has a very high speed. But the feature extraction 

capability is not so effective in case of inconspicuous 

textures. A defect detection approach using two stage 

method has been explained in [22]. It includes a 

segmentation network and a decision network. The 

model has been tested and trained using Kolektor 

Surface- Defect Dataset (KolektorSDD). A multi-scale 

cascade CNN called MobileNet-V2-dense has been 

proposed by Lin et al. [13]. The Siamese Neural 

Network using CNN has been developed by Kim et al. 

[8] for the identification of the damages over the small 

number of images. 

YOLO, a one-stage target identification method, is 

one of the frequently utilized algorithms as a result of 

the considerable advancement of deep learning 

techniques [11]. With the changes in size of the input 

and batches, a YOLOv3-based model was proposed by 

Hetab et al. [4] for defect identification over the NEU-

DET dataset. 70.06%, a low figure, was found for the 

mean average precision. An improved version of 

YOLOv3 was developed by Kou et al. [10] for target 

defect detection of NEU-DET dataset. By combining 

deep neural network and random forest classifier, an 

early cancer detection technique has been proposed in 

[16]. It utilizes various mammogram images from a 

predefined dataset. A lightweight defect recognition 

model for steel strips has been presented in [34]. It 

designs a shallow feature enhancement module for the 

backbone structure of YOLOv5 network. The given 

method achieves good performance by means of 

detection accuracy and speed. 

The YOLOv3 architecture was enhanced by Ning 

and Mi [18] by adding a prediction box layer, which 

allowed the system to detect tiny damages. In this the 

defect labels were detected using K-means++ algorithm 

and provided 14.7% increment in mean average 

precision. The addition of the prediction layer resulted 

in an increase in the size of the system, which decreases 

the speed of detection. A Single Shot Multi-Box 

Detector has been developed by Lv et al. [14]. In order 

to train the newly built model, a new dataset with the 

name GC10-DET was created. A study on the 

identification of damages over steel strip surfaces was 

carried out by Fu et al. [2] utilizing transfer learning as 

the method of analysis. To do this, a pretrained VGG16 

model was utilized as the basis for the feature method, 
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while CNN was used for the classification. The 

semantic segmentation method based on a modified U-

shaped network was used to construct an automated 

system for metal surface defect detection, which has 

been described in [24]. 

In the realm of neural networks, the attention 

mechanism [19] is a useful module which can be 

incorporated into a variety of applications, including 

target detection, natural language processing, and 

semantic segmentation. The ultimate purpose of the 

algorithm is to extract the characteristics that are unique 

to the targets themselves. Because of the attention 

mechanism, the algorithm is able to ignore any 

irrelevant regions and concentrate only on the relevant 

regions that have been specified. Such a mechanism is 

explained in [31]. 

4. Proposed Methodology 

In this paper, a single stage automated defect detection 

algorithm known as YOLOv-5s-FRN is proposed, and 

its overall functioning has been represented using a 

block diagram, as shown in Figure 3. Input images from 

a huge dataset will be pre-processed and passed through 

an augmentation operation before being divided for 

training and testing purposes. Each image from the 

dataset will be passed through discriminability boosted 

feature extraction processes at the time of model 

training. The efficient channel-oriented feature 

recalibration in the proposed system enables it to 

recognize and classify the images with greater accuracy. 

Model testing will be done using test images for 

visualization of test results and performance evaluation 

of the trained model. 

The detailed architecture of the proposed system is 

shown in Figure 4. A newly featured backbone, neck, 

and head are the three primary structural elements of the 

proposed system. The A newly featured backbone is the 

one that is tasked with the responsibility of extracting 

informative details from the input image. Following the 

completion of the encoding and decoding processes, the 

neck structure will locate the pixels. The head module 

will identify and correctly interpret any defects or 

damages that are present on the surfaces. 

 

 

 

Figure 3. Functional block diagram of YOLOv-5s-FRN. 

 

Figure 4. YOLOv-5s-FRN architecture. 
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The proposed system has been developed by 

modifying the backbone structure of basic YOLOv-5s 

model. In order to accomplish this, a novel architectural 

module named as FRN has been designed and integrated 

to the backbone module by replacing bottleneck and 

CSP1_X blocks. Embedding FRN structure into the 

YOLO network helps to achieve competitive accuracy 

through adaptive recalibration of channel-wise features. 

This innovative structure models the interdependencies 

of channels and convolutional characteristics in order to 

carry out channel-oriented analysis. It enables FRN to 

learn global information as well as capture hierarchical 

patterns with receptive fields. As a result, FRN is able 

to selectively highlight the features that are most 

relevant while simultaneously suppressing the features 

that are undesirable and less useful. 

The architectural changes that have been done in the 

network and defining new structure of backbone with 

the incorporation of FRN structure is shown in Figure 

5. The input image will go inside the backbone through 

focus structure. Following with the focus module in the 

architecture, there will be a convolution module named 

as C3. It is made up of three layers that are convolutional 

in nature. In between the various sets of convolutional 

layers is where the FRN has been inserted. After each 

iteration of the convolution operation, it will refine more 

useful characteristics.  

 

Figure 5. Defining network structure of backbone of YOLOv-5s-

FRN. 

In addition to FRN structure, the backbone mainly 

includes focus and Spatial Pyramid Pooling (SPP) 

structure. The SPP structure [6] is responsible for 

performing the operation of converting feature maps of 

arbitrary sizes into particularly defined sizes. Figure 6 

shows the structure of focus module. The high-

resolution feature map will be divided and stitched into 

several smaller resolution feature maps by the focus 

structure. This process will reduce the size of the input 

image and contributes to speeding up and deepening the 

feature extraction process. To facilitate this there are 

four slice blocks provided. Therefore, Both the width 

and height of the output image have been reduced to half 

of what they were in the input image, but the number of 

channels has been increased to four times what it was in 

the input image. The most significant benefit is that 

there is no loss of information. Then it performs CBS 

(Convolution, Batch normalization and Swish 

activation) operation after concatenating the output 

from slice blocks. 

 

Figure 6. Structure of the focus module. 

The neck structure includes CSP2_1 network, up 

sample and down sample blocks for the purpose of 

encoding, decoding and concatenation. The structure of 

CSP2_1 is shown in Figure 7, where CBS uses 

convolution, batch normalization and SiLu activation 

function for feature extraction. Neck structure transmits 

semantic information and location information to enable 

the network to combine feature data. The main purpose 

of using the CSP network is to reduce the computational 

cost by 10% or 20%. To do this, the base layer's feature 

map will be split into two sections, and they will be 

combined using a cross-stage hierarchy. This technique 

lowers the total number of parameters, which in turn 

speeds up the inference process and reduces the cost of 

computing. 

 

Figure 7. The structure of the CSP2_1 in neck module. 

The head structure will be responsible for adjusting 

the number of channels and prediction. Three 

convolutional layers in the head structure will forecast 

the position of the bounding box, the prediction score, 

and the class of the item. The computation of the 

coordinates of bounding box by the head structure is 

based on the Equations (2), (3), (4), and (5). 

𝑏𝑥 = ((2. 𝜎(𝑡𝑥) − 0.5) + 𝐶𝑥)) 

𝑏𝑥 = ((2. 𝜎(𝑡𝑦) − 0.5) + 𝐶𝑦)) 

𝑏𝑤 = 𝑃𝑤. (2. 𝜎(𝑡𝑤))2 

𝑏ℎ = 𝑃ℎ. (2. 𝜎(𝑡ℎ))2 

 

where (bx,by) denotes the centroid and (bw,bh) reflects 

the size of the bounding box that is predicted by the 

created model, respectively. The centroid of the 

bounding box of the feature map is given by the 

(2) 

(3) 

(4) 

(5) 
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(8) 

(7) 

coordinates (Cx,Cy), and the size of the bounding box is 

shown by the coordinates (Pw,Ph). The values (tx,ty) and 

(tw,th) denote the center offset of the bounding box with 

respect to the network prediction and the appropriate 

scaling size respectively.  

4.1. Feature Recalibration Network (FRN) 

The basic building block of novel architectural module 

named as FRN is shown in Figure 8. The ultimate aim 

of developing such a structure is to improve the feature 

representational power of the network. Therefore, FRN 

will use feature map as input for performing channel- 

specific analysis. This helps to emphasis the informative 

features and to suppress the irrelevant ones. In order for 

the FRN to accomplish this, it will concentrate only on 

the channel-wise information rather than the spatial 

information. The main operational modules in FRN 

structure are transformation operation module, feature 

map generator, Spatial Dimension (SD) suppressor, 

Channel-Wise Attention (CWA) module and a rescaling 

module. 

 

Figure 8. Block diagram of FRN. 

The input image I has taken into consideration, which 

is being fed into the network. The input image has a 

dimension of HxWxC, where H, W and C are 

representing the height, width and channel respectively. 

Any kind of transformation applied to the input image I 

will generate output O. In this case, the transformation 

procedure is carried out by performing the convolution 

operation or set of convolutions. As O is the output of 

convolution operation, it can be considered as feature 

map with dimension of H’xW’xC’. Then the feature 

map O will traverse through the SD suppressor module. 

This module will aggregate the feature map across the 

spatial dimensions HxW, which leads to the creation of 

a channel descriptor. The distribution of the channel-

wise feature responses will be included in the channel 

descriptors. The spatial dimension suppressor block will 

provide an output with a dimension of 1x1xC. Then, the 

CWA module will take the responsibility to produce 

channel excitations based on the channel dependencies. 

In order to make this process easier, CWA module 

includes two fully connected layers within it. The output 

from CWA module will then be directed to rescaling 

module. In rescaling module, it will first be rescaled to 

the original input dimension, and then it will be sent to 

the successive layers in the architecture. 

The mathematical model of the FRN module is 

shown in Figure 9. Consider the convolution operation 

on input image I for generating the feature map O. Let 

K= [k1, k2, k3,………kc] be the set of kernels, where kc 

refers to the parameter of cth filter. Applying convolution 

on I using the kernel K will generate the output 

O=[O1,O2,O3………OC]. O can be expressed as shown 

in Equation (6). 

Oc = Kc ∗ I ∑ Kcs ∗ ISC′

S=1
  

where * denotes the convolution operation, kc
s= [ kc

1, 

kc
2, kc

3……… kc
c’] and Is = [I1, I2, I3……Ic’]. In this kc

S 

is a two-dimensional kernel and it will act on 

corresponding channel of I. The feature map can be 

obtained by doing a summing over each channel in this 

case. 

 

Figure 9. The mathematical model of the FRN. 

The feature map will then be passed through SD 

suppression module for generating channel-wise 

statistics YC. To do this, each channel of the output 

feature O has taken into account and its each unit will 

be able to exploit the contextual information in and 

outside the receptive fields. This makes the network to 

perform better even in lower layers, where the size of 

receptive field is small. This is accomplished by the 

utilization of global average pooling, often known as a 

straightforward aggregation operation approach. 

Therefore, YC will be generated with a dimension of 

1x1xC, which is on the basis of spatial dimensions of O, 

specifically H and W. i.e., YC has been generated by 

shrinking O through its spatial dimensions HxW. 

Equation (7) shows the calculation of the cth element of 

Y. 

Yc = FSD(Oc) =
1

HxW
∑ ∑ Oc(i, j)W

j=1
H
i=1    

where OC is the feature map generated after convolution, 

FSD(OC) is the global average pooling operation and H 

and W are the height and width of feature map. The 

statistics parameter obtained from SD suppressor 

module will then be passed through a CWA module in 

order to obtain the information related to channel-wise 

dependencies. It is possible for the CWA module to learn 

a nonlinear interaction between channels. In order to 

acquire the output of the CWA module, a 

straightforward gating mechanism with a sigmoid 

function has been implemented, as demonstrated in 

Equation (8).  

S = FCWA(Y, w) = σ(g(Y, w)) = σ(w1⸹(w2, Y)) 

where ⸹ refers to Rectified Linear Unit (ReLu) 

(6) 
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activation function, σ refers to the sigmoid activation 

function and w1 and w2 are the weights provided. As 

illustrated in Figure 10, the CWA module has been 

implemented with two Fully Connected (FC) networks 

in order to keep the complexity of the model to a 

minimum. The dimension of w1 is C/r of C (i.e., 

((C/r)xC), where r is the compression ratio. In first fully 

connected layer the channel dimension or the channel 

length is reduced to C/r. The dimension of w2 is same as 

that of C (i.e., Cx(C/r)). Therefore, in second fully 

connected layer, the dimension of the channel is brought 

back to its original value, i.e., C itself. Therefore, the 

first fully connected layer can be considered as 

dimensionality-reduction layer and the second fully 

connected layer can be considered as a dimensionality 

increasing layer. Finally, the output obtained from CWA 

module will be fed into the rescaling module so that the 

initial dimension can be preserved. Equation (9) 

indicates the operation in rescaling module.  

I′ = Frescale(Oc . Sc) = Sc. Oc  

where I’= [I’1, I’2, I’3……. I’c] and Frescale(Oc.Sc) is the 

channel-wise multiplication of feature map Oc and the 

scalar Sc. 

 
Figure 10. Fully Connected layers in CWA module. 

5. Experimental Results 

5.1. Implementation 

The proposed YOLOv-5s-FRN architecture is 

developed and run on a computer with CPUi7-

10900K@3.7GHz, GPU NVIDIA RTx3090 and 64GB 

running memory. The newly designed architecture has 

been trained and tested using a publicly available dataset 

called North Eastern University (NEU- DET) metal 

surface defect data set [17]. It consists of six various 

forms of surface defects called as rolled in scale, 

scratches, pitted surface, inclusion, patches and crazing. 

Rolled in scale defects are occurring during the rolling 

process of metal due to flaky mixture of iron oxides. 

Scratch is nothing but a mark over the surfaces, which 

happened due to sharp end of any object. Corrosion over 

the metallic objects causes pitted surfaces. Sometimes, 

the corrosion may occur on a specific portion of metal 

surface and it leads to the formation of cavity.  

Inclusions are nothing but the occurrence of the flaws 

in shape of dots, blocks or lines. Patches are the irregular 

shapes appear on the metal surfaces. They may occur 

either in black or white color. It provides negative 

impact to the appearance of the metal surfaces. Crazing 

is a phenomenon which causes cracks over the metal 

surfaces. It occurs either due to the poor quality of the 

raw materials or high temperature in production 

environment. Their appearance will be like black spots 

with small or large areas. 

The dataset consists of 1800 grey scale images and 

each category of defect is 300 in count. The pixel 

resolution of each image is 200x200. NEU-DET dataset 

is provided with the respective annotations of each 

image. The training and the test data are divided in 9:1 

ratio. The training data set is again divided as training 

and validation data set in 9:1 ratio. The training process 

of the NEU-DET dataset has been lasted for around 8 

hours to complete 1000 epochs. Training dataset 

includes 1440 images out of 1800 images in dataset. 

 

Figure 11. Number of layers and parameters obtained after training 

YOLOv-5s-FRN structure. 

In order to avoid overfitting, image position 

augmentation method has been employed. It will flip, 

rotate and scale every image. Flipping make the images 

to flip into left, right and upside down. To generate the 

images in different angles and variety of orientations, 

rotation augmentation has been applied. Scaling 

operation will increase and decrease the size of the 

picture. After defining various parameters for 

developing the model, the network structure of the 

proposed system has been generated as shown in Figure 

11. It can be seen from the structure of the network that 

the number of parameters created by the YOLOv-5s-

FRN network is significantly more than the number 

generated by a typical YOLOv-5 network. This is 

because of the integration of FRN into the system. 

Figure 12 shows the structure definition of FRN 

module. 

mailto:CPUi7-10900K@3.7GHz
mailto:CPUi7-10900K@3.7GHz
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Figure 12. Structure definition of FRN module. 

Regardless of the size of the image that is loaded into 

the YOLO, it will always convert the image to the same 

standard size. The YOLOv-5s-FRN has undergone 

training for a total of 1000 epochs with a batch size of 

16. YOLOv-5s uses Sigmoid Linear Unit )SiLu( and 

sigmoid functions as activation function [5]. In addition 

to SiLu, FRN structure is used ReLu activation function 

[15]. While the sigmoid function is utilized for the 

convolution operation in the output layer, the SiLu 

function is employed for the convolution operation in 

the hidden layers. Pytorch was utilised in the 

development of the environmental setup for YOLOv-5s-

FRN, so that a greater degree of flexibility could be 

achieved. 

It is also possible to implement the defect detection 

system using X-Ray captured images. Such a system is 

required during the quality inspection of the products 

within concealed packages. Therefore, the primary stage 

of the defect detection system will be equipped with an 

image sensing devise using X-Ray source. X- rays will 

penetrate through the packaging material to capture the 

image of the product surface. X-Ray captured images 

will be saved as Digital Imaging and Communication in 

Medicine )DICOM( file. During the pre-processing 

stage, the DICOM images will be transformed into 

JPEG format and then the images will be rescaled into a 

predetermined size using code called cv2. The training 

module of the proposed YOLOv-5s-FRN will be 

modified in accordance with the new dataset of X-Ray 

images. After training process, the new network 

structure will be defined and it will generate suitable 

number of trainable parameters and network layers.  

5.1. Performance Evaluation 

The performance of the proposed YOLOv-5s-FRN has 

been analyzed and evaluated based on various matrices 

such as losses, precision, recall and mean Average 

Precision (mAP). Graphs of different losses, recall, 

mAP and precision for the proposed model have been 

obtained after defining and training the proposed 

system. The value of mean average precision is 

calculated based on different IoU thresholds. The ratio 

of overlap between the ground truth and the predicted 

value provides the Intersession-over-Union (IoU). 

Therefore, IoU plays a significant part in process of 

ensuring the accurate detection results. When the value 

of the IoU grows to a point where it is greater than 0.5, 

the model will then begin to assign positive labels. If the 

IoU value drops below 0.5, negative labels will be 

assigned to the observations. 

Different types of losses considered in this paper are 

Generalized Intersession Over Union (GIoU), 

objectness and the classification loss. Binary Cross 

Entropy (BCE) is used to compute the classification loss 

and objectness. The training and validation GIoU loss of 

the proposed system is shown in Figure 13. The GIoU 

is a loss matric which indicates how close the predicted 

bounding box to the ground truth. Ground truth is 

nothing but the labels on the image. The GIoU value is 

obtained to be a small value in the proposed system, i.e., 

less than 0.01. As it can be seen from the graphical 

representations, the error values are produced in the 

proposed system is less in value than that in the basic 

model as the epochs approach larger values. The lower 

values of the GIoU indicates that the model is good 

enough to generate a proper bounding box around the 

dataset. 

 

 

a) GIoU loss during training. b) GIoU loss during validation. 

Figure 13. GIoU loss obtained for YOLOv-5s-FRN model. 

Another type of loss metric that is taken into 

consideration is known as classification loss. This loss 

metric evaluates how accurately all predicted bounding 

boxes are classified. Figure 14 is indicating the training 

and validation classification loss of YOLOv-5s-FRN 

structure. The classification loss of the suggested model 

decreases as the number of epochs rises, and its value 

keeps decreasing until final few epoch values. 

  
a) Training classification loss. b) Validation classification loss. 

Figure 14. Classification loss obtained for YOLOv-5s-FRN model. 
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Objectness is nothing but the ability of the model to 

recognize the presence of an object in the analyzed 

image. Figure 15 indicates the graphical representation 

of objectness loss of YOLOv-5s with the FRN structure. 

According to the objectness graphs, it is obvious that the 

proposed model suffers notable losses in the earlier 

stages of the epochs. But the loss is getting reduced 

when the epoch number is tending towards 1000. 

Considering these three loss matrices, the final loss 

value can be calculated as shown in Equation (10). 

𝐿𝑜𝑠𝑠 = ℷ1𝐿𝑐𝑙𝑠 + ℷ2𝐿𝑜𝑏𝑗 + ℷ3𝐿𝐺𝐼𝑜𝑈  

where, ℷ1, ℷ2 and ℷ3 are the constants and Lcls, Lobj, and 

LGIoU are the classification loss, objectness loss and 

GIoU loss respectively. 

  
a) Objectness loss during training.  b) Objectness loss during validation. 

Figure 15. Objectness loss obtained for YOLOv-5s- FRN model . 

Precision and recall are the other evaluation 

indicators considered to check the performance of the 

proposed system. Precision is the measure which says 

about how precise the developed model to give the 

predictions. The precision value can be calculated by 

dividing the number of actual successes by the total 

number of guesses. Recall can be considered as the 

ability of model to identify the positive samples. 
Equations (11) and (12) indicate the calculation of 

precision. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where TP, FP and FN are true positive, false positive 

and false negatively respectively. 

Precision obtained for YOLOv-5s-FRN structure is 

shown in Figure 16. When compared to the other 

already-existing base models, the value of accuracy 

converges more quickly using the proposed YOLOv-5s-

FRN based defect detection system. 

 
Figure 16. Precision obtained for YOLOv-5s-FRN structure. 

Graphical representation of recall values obtained for 

YOLOv-5s-FRN structure is shown in Figure 17. 

Higher values of recall indicate that more samples are 

detected as positive. It can be computed as the 

proportion of number of positive samples classified 

correctly as positive to the total number of positive 

samples as shown in Equation )12(. From the graphical 

representation in Figure 17, it is clear that the recall 

value obtained for the YOLOv-5s-FRN structure is 

99.86%, which is a high value. The P-R curve obtained 

for YOLOv-5s-FRN architecture is shown in Figure 18. 

 

Figure 17. Recall values obtained for YOLO-v5-FRN structure. 

 

Figure 18. P-R curve obtained for the proposed system. 

The determination of an average precision value for 

each class of defects based on the prediction of a model 

is termed as mean average precision. It is related to the 

area under Precision and Recall (P-R) curve. The value 

for the mean average precision will be determined by 

taking the mean of all averages of precision values for 

the distinct classes. Normally, mAP value will be 

calculated at an IoU value of 0.5 or 50% (mAP_0.5) and 
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at an IoU interval of 0.50 to 0.95 or 50% to 95% 

(mAP_0.5:0.95). The prediction of defect detection 

system with mean average precision value which is 

considered at a threshold value of 0.5 or greater that 0.5 

will be considered as defect. 

 

Figure 19. mAP_0.5 of YOLOv-5s-FRN structure . 

 

Figure 20. mAP_0.5:0.95 of YOLOv-5s-FRN structure . 

 The mAP_0.5 and mAP_0.5:0.95 obtained for 

YOLOv-5s-FRN structure is shown in Figure 19 and 20 

respectively. The maximum value of mAP_0.5 and 

mAP_0.5:0.95 of proposed YOLOv-5s-FRN are 

obtained to be 98.05% and 89.03% respectively. It has 

been observed that the convergence of mAP occurs 

quicker in the proposed system. i.e., the value of mAP 

started to increase earlier than the other state-of-the-art 

approaches. The introduction of FRN structure makes 

the object detection system to obtain maximum value of 

mAP in minimal possible number of iterations, which 

contribute to enhance the performance of the proposed 

system. 

Following with the execution completion of 

prediction module, the trained model will identify 

defects and form bounding box around each of them. 

Prediction module will generate a dictionary for 

representing the information related to defects and 

bounding boxes for each image. Each dictionary 

indicates class of the defect, coordinates of bounding 

box and confidence value of each defect. Confidence 

value indicates the percentage of probability that the 

identified defect was correctly labelled. Figure 21 

indicates detection and classification of different types 

of defects done by the proposed system. Figure 22 

indicates the dictionaries generated by predictor module 

for certain samples of images from the dataset during 

classification.  

 

Figure 21. Detection and classification of different types of defects 

done by YOLOv-5s-FRN defect detection system. 

 

Figure 22. Bounding box axis values and corresponding confidence 

values obtained by predictor of the proposed system. 

5.2. Comparison of Various Deep Methods 

The proposed method has been compared with basic 

YOLOv-5 model in order to evaluate the effectiveness 

of new architectural module called as FRN. Graphical 

representations obtained on the basis of recall and 

precision has been shown in Figure 23-a) and (b). 

Comparison graphs of basic YOLOv-5s and YOLOv-

5s-FRN on the basis of mean average precision has been 

shown in Figure 24-a) and (b). From the graphical 

representations it is clear that the performance of 

YOLOv-5s-FRN is superior to that of basic YOLOv-5s 

model. 

 
 

a) Comparison based on recall. b) Comparison based on precision. 

Figure 23. Comparison of YOLOv-5s-FRN model with basic 

YOLOv-5s model. 
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a) Comparison based on mAP_0.5. 
b) Comparison based on 

mAP_0.5::0.95. 

Figure 24. Comparison of YOLOv-5s-FRN model with basic 

YOLOv-5s model based on mean average precision. 

In order to ensure the effectiveness of the proposed 

method, it has been compared with the other existing 

deep learning based algorithms. Table 1 shows the 

comparison between different deep methods for defect 

detection based on different parameters. 

Table 1. Comparison of different deep methods. 

Method Accuracy Recall mAP@0.5 mAP@0.5:0.95 
Computational 

time 

SSD 0.971 0.956 0.957 0.6981 29ms 7s 

FASTER-

RCNN 
0.977 0.963 0.899 0.7102 37ms 7s 

YOLOV-2 0.98 0.966 0.819 0.7712 24.91ms 4.03s 

YOLOV-3 0.984 0.974 0.855 0.7856 21.75ms 8.46s 

YOLOV-5 0.9912 0.9901 0.9683 0.8139 22.18ms 4s 

Proposed 

method 
0.9989 0.9986 0.9805 0.8903 21ms 9s 

The proposed method has been compared with Single 

Shot Defect Detection (SSD), Faster Region- 

Convolutional Neural Network (Faster R-CNN), 

YOLOV-2, YOLOV-3, and basic YOLOV-5 networks. 

SSD is a detection algorithm, which adopts a feature 

extraction structure with the aim of improving accuracy 

value. Faster R-CNN is a defect detection system which 

will identify the region of interest and then executes 

detection operation. YOLOV-2, YOLOV-3, and 

YOLOV-5 are the subsequent improved versions of 

YOLO, which is capable to do the defect detection in 

single stage.  

From Table 1, it is observed that the proposed model 

has an accuracy value of 0.9989 and a recall value of 

0.9986, which are highest values when comparing with 

the other deep methods taken into consideration. On the 

other hand, it is obtained that the proposed method is 

capable of producing a mean-average precision values 

(98.05% of mAP@0.5 and of mAP@0.5::0.95) that are 

superior to those delivered by existing approaches. 

Computational time of the proposed system is obtained 

to be 21ms and 9s, while the computational time of the 

YOLOv-3 is nearly same, i.e., 21.75ms and 8.46s. 

However, the design has not seen any computational 

delays even with the inclusion of the new network 

known as FRN. Graphical representation of 

comparative analysis of proposed system has been 

shown in Figure 25. Therefore, it is obtained that the 

incorporation of FRN structure offers higher 

performance in terms of accuracy, recall, precision, 

mean average precision, and computing time. 

Comparing with the other techniques, the cost 

effectiveness of the proposed method is obtained to be 

moderate as it incorporates a new module into network 

structure. 

 

Figure 25. Comparative analysis of various deep methods. 

6. Conclusions 

An automated defect detection system named as 

YOLOv-5s-FRN has been proposed as a method that 

can detect and classify the metal surface defects with 

high levels of accuracy and efficiency. The proposed 

system has been developed with the integration of a new 

architectural module called as FRN. FRN module 

performs channel-oriented analysis and understanding 

of each image, which helps the network to filter the most 

important features and neglect other ones. The ability of 

FRN structure to extract relevant deep features help to 

boost the feature discrimination capability of the 

proposed system. From the experimentations executed 

using NEU-DET dataset for 1000 epochs, it is observed 

that the convergence of precision, recall and mAP 

values are occurring more quickly in the proposed 

system. Therefore, YOLOv-5s-FRN provide more 

accurate interpretations and deliver performance 

matrices that are superior to those of the basic YOLOv-

5s network and other deep methods. The maximum 

value of mean average precision has been achieved with 

minimum number of iterations, which leads to the 

performance enhancement of the proposed system by 

means of speed. For the purpose of performance 

evaluation, the proposed technique has been compared 

with the other defect detection methods, which are 

already in use, on the basis of various indicators.  

The future research can focus on the detection of 

defects on the metal surfaces in concealed packages in 

industries. For doing this, the network can be trained 

using X-Ray captured images. Additionally, the 

development of a production software can be done to 
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make such an automated defect detection system, which 

is accessible to a variety of applications. 
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