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Abstract: Semi-supervised learning is a powerful paradigm for excavating latent structures of between labeled and unlabeled 

samples under the view of models constructing. Currently, graph-based models solve the approximate matrix that directly 

represent distributions of samples by the spatial metric. The crux lies in optimizing connections of samples, which is achieved 

by subjecting to must-links or cannot-links. Unfortunately, to find links are rather difficult for semi-supervised clustering with 

very few labeled samples, therefore, significantly impairs the robustness and accuracy in such scenario. To address this problem, 

we propose the Cohesive Pair-wises Constrained deep Embedding model (CPCE) to obtain an optimal embedding for 

representing the category distribution of samples and avoid the failed graph-structure of the global samples. CPCE designs the 

deep network framework based on CNN-Autoencoder by minimizing reconstruct errors of samples, and build up constrains both 

of the sample distribution for within-class and the category distribution for intra-class to optimal the latent embedding. Then, 

leverage the strong supervised information obtained from cohesive pair-wises to pull samples into within-class, which avoid the 

similarity of high-dimension features located in different categories to achieve more the compact solution. We demonstrate the 

proposed method in popular datasets and compare the superiority with popular methods. 
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1. Introduction 

Pattern classification serves as a popular technique of 

Machine Learning, which is used widely in various fields 

including medical diagnosis [1, 10], regional science [2], 

network analysis and so on [22]. Unfortunately, the 

labeled samples are quite rare in practical scenarios due 

to the most labels are original from manually annotated, 

which limits to build up the classification model, and a 

huge amount of unlabeled data with the wealth 

information, for instance, latent structures between 

samples, are wasted. Clustering models pull samples 

with similar features into the same cluster according to 

the distance of similarity both of samples in the feature 

space, which provides a more general way to excavate 

knowledges without labels. However, clustering models 

will waste expensive labeled samples that have certainty 

and guiding significance when datasets containing few 

labeled samples. 

Aiming to above problems, semi-supervised learning 

is proposed [13], which attracts a lot of interesting from 

researchers. Semi-supervised clustering excavates latent 

structures between unlabeled and labeled samples, and 

utilizes the supervised information from labeled samples 

to predict classifications of samples [15, 19]. Most 

approaches perform in the supervised framework with  

 

help of large amounts of labeled samples, which greatly 

improve the clustering performance and have widely 

applicability. However, these models are limited to solve 

the scenarios containing unlabeled samples. Graph-

based methods [3, 8, 19] are developed in constructing 

the latent space structures between samples. Early, the 

kind of methods by solving the similarity matrix follow 

Laplace segmentation, which has received more 

attention, e.g., well-known normalized cutting, and ratio 

cutting. More recent works seek to leverage 

unsupervised information by constructing accurate pair-

wises. Nie et al. [14] proposed utilizing cannot-links to 

optimize the latent structure of the global graph. In order 

to constrain the semi-supervised clustering model to 

improve the performance, furthermore, Nie et al. [15]. 

induce the pair-wise constraints that utilize pairs locating 

in different categories to strengthen the clustering model. 

In this model, some irrelevant pair-wises from labeled 

samples provide the robust information to avoid 

unlabeled samples with similar features that are 

incorrectly classified. However, cannot-links will be 

invalid when datasets contain very few labeled samples, 

especially in multi-classes datasets due to the difficulty 

of finding a large number of accurate cannot-link pairs 

through the transitive linking method in a multi-class 

dataset with very few labels, using this method to obtain 
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inaccurate pairs will weaken the clustering effect. 

Moreover, in the high-dimension feature space, few 

constraints of pair-wises provide limited help for 

clustering. Because of the category distribution is 

inexact in the original high-dimension feature space, for 

instance, high-dimension image datasets. 

Deep Learning models have achieved the great 

success for solving tasks of high-dimension data 

processing, which is derived from the non-linear 

representation capability of objects. These methods 

based semi-supervised learning that transfer from the 

original feature to the optimal feature space by means of 

supervised information of labeled samples to improve 

the clustering performance. Ren et al. [16] proposed 

Semi-Supervised Deep Embedded Clustering (SDEC) 

that follows auto-encoder framework based on 

convolution unit to obtain high-level features and 

induces the structure constraints of labeled samples to 

optimize feature learning, which provide the novel 

solution for semi-supervised clustering of high-

dimension features. Nevertheless, it only considers 

relationship between samples in the optimal processing 

of features, and ignores the category distribution from 

unlabeled samples. 

Therefore, the challenges in constructing a semi-

supervised model for high-dimensional data with very 

few labels mainly focus on the following two aspects: 

1. How to obtain more discriminative high-dimensional 

feature representations with very little supervised 

information. 

2. How to fully utilize a very small amount of labeled 

data to assist in clustering model construction without 

introducing noise information. 

To deal with above challenges, we propose a novel 

semi-supervised clustering method by excavating the 

more discriminative embedding to build up correct 

relationships between of unlabeled and labeled samples. 

First, we utilize CNN-Autoencoder network bone to 

extract non-linear features of samples. Second, 

supplement the constraint of the category distribution to 

transfer the features into the latent space of clustering. 

Finally, leverage the regularization constraint from few 

cohesive pair-wises to strengthen the sample 

distribution within-category. 

The key contributions of our work can be summarized 

as below: 

1. We design a novel deep-network framework with the 

helping with CNN-Autoencoder for semi-supervised 

clustering, which leverages both of the reconstruction 

errors and the latent category distribution constraint 

to obtain more discriminative features of samples. 

2. We induce the cohesive pair-wise constraint term 

original from very few labeled samples by a compact 

criterion to guarantee samples with unsimilar features 

still located in the same category to optimize the 

embedding. 

3. We verify the effectiveness of proposed model in 

general semi-supervised datasets, and compare with 

popular models even in datasets with very few labeled 

samples. Our model achieves more satisfactory 

performances. 

2. Related Work 

2.1. Semi-Supervised Clustering 

Semi-supervised learning utilizes the latent structures 

information of unlabeled samples and composes with 

the less supervised information of labeled samples to 

construct the learning model. From views based on 

representations of data, there are mainly three kinds of 

semi-supervised clustering methods, including metric 

learning-based [12, 18], feature learning-based [20] and 

graph-based clustering [3, 19]. In metric learning-based 

clustering, Zhang et al. [24] proposed a non-linear 

transformation clustering method with distance matrix 

learning, which performed well on non-linearly 

separable data. Metric learning can autonomously learn 

task-specific distance metric functions according to 

different tasks. The dataset X∈ℜN×d containing the 

sample xi, i=1, …, N, the general metric function d() is 

defined as: 

𝑑(𝑥𝑖 , 𝑥𝑗) = √(𝑥𝑖 − 𝑥𝑗)𝑇𝑀(𝑥𝑖 − 𝑥𝑗) , 

where M is called the metric matrix, which is the inverse 

of the covariance matrix. Obviously, M is a symmetric 

matrix. And, the s ample pair xi and xj locate in different 

clusters. Khanali and Vaziri [9] proposed a probabilistic 

model that combines with fuzzy clustering and metric 

learning to maximize the distance between centers. 

However, it is difficult to directly solve the 

classification information by the symmetric matrix from 

pair-wises. 

Feature learning-based clustering [23] divides 

samples into different clusters according to the sample 

distribution in feature spaces. Over the past few decades, 

many more efficient varieties of k-means have been 

proposed. Solorio-Fernández et al. [17] proposed a 

useful model for simultaneous clustering based on 

feature selection and fuzzy data. [4] proposed an 

adaptive hashing method follow feature clustering to 

extract more discriminative features and reduces 

dimensionality of data. This method aims to minimize 

the following objective functions: 

𝐽 = ∑ ∑‖𝑥𝑖 − 𝑐𝑘‖2
2

𝑁

𝑖=1

𝐾

𝑘=1

 , 

In Equation (2), euclidean distance between of any 

sample xi and the cluster center ck is used to achieve 

clustering. The main idea of the kind of method is that 

construct the samples graph and define the relationship 

of edges, and use the effective energy function as the 

evaluation standard. 

(1) 

(2) 
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To address the lack of explicit clustering structures, 

the constrained Laplacian rank algorithm is proposed by 

Nie et al. [14] for direct multi-class graph clustering. 

For the dataset X defining the pre-constructed affinity 

matrix A∈ℜN×N, and will optimize the target S∈ℜN×N. 

This optimization expression is defined as follows: 

min‖𝑆 − 𝐴‖𝐹
2  𝑠. 𝑡. 𝑆 ≥ 0, 𝑟𝑎𝑛𝑘(𝐿𝑠) = 𝑁 − 𝐶′, 

where Ls=Ds-S is the Laplace matrix of S and Ds is the 

diagonal matrix with the sum of each row of S. The 

model takes a rough similarity matrix A and obtains a 

non-negative normalized approximation S with exactly 

connected components. However, whether incorrect 

connections are removed and valid connections are 

retained will be uncontrolled, Nie et al. [15] proposed a 

non-link graph regularization method to learn pair-wises 

from a given affinity A by means of the supervised 

information with pair-wise constraints. Solving the 

cannot-linked constraint problem by a specific cannot-

linked graph regularization can be demonstrated to solve 

the cannot-linked constraint in graph learning, providing 

a matchable pairwise constraint selection, significantly 

improving semi-supervised clustering performance. 

2.2. Deep Clustering 

In order to obtain more efficient representation for 

clustering, deep clustering integrates the goal of 

clustering into the powerful representation capability 

[21]. Typical semi-supervised clustering methods work 

in the original feature space with poor representation 

ability, and it is reasonable to use Deep Neural 

Networks (DNN) for semi-supervised clustering to 

make SSC more powerful [6]. Li et al. [11] proposed a 

Deep Metric Learning-based Semi-Supervised 

Clustering method (SCDML) by adopting triplet loss in 

a deep metric learning network and combined with a 

label propagation strategy to dynamically update the 

unlabeled samples. Deep Embedding Clustering (DEC) 

constructed the KL divergence loss, which jointly learns 

feature representations and cluster assignments, making 

the representations learned closer to the cluster centers. 

However, DEC does not ignore prior knowledge to 

guide the learning processing. Ren et al. [16] improved 

DEC and proposed a new SDEC scheme to overcome 

the limitation. The Improved Deep Embedded 

Clustering (IDEC) adds the constraints to hold the latent 

structures of samples and autoencoders learn better 

representations. In semi-supervised deep clustering 

frameworks, the loss of KL divergence and semi-

supervised loss are jointly optimized to obtain the deep 

representation of clusters, which proves that semi-

supervised information indeed improves the deep 

representation of clusters. This paper proposes a pair-

wise prediction considers the relationship between 

pairings and proposes a new cannot-linked graph 

regularization to obtain key pairing constraints via 

Stacked Auto-Encoders (SAE) [5] and key pair 

constraint clustering extract discriminative features and 

update cluster centers at the same time, effectively 

utilize deep learning and semi-supervised learning, 

greatly improve clustering performance. 

3. The Proposed Model 

Graph-based models develop the latent structures of 

unlabeled samples to construct the optimal non-negative 

approximation matrix. Moreover, in order to fully utilize 

the latent information of correct pairs and to avoid the 

negative effect of incorrect pairs, Nie et al. [15] proposed 

the information transmission chain constructed cannot-

link pairs to strengthen the graph-structures of samples, 

which achieves satisfactory performances. However, 

this kind of two-step models from the original space of 

samples will product the invalid constraints of cannot-

link pairs when data contain relatively little ground-truth 

information, especially these samples locate in the high-

dimension feature space. In the kind of scenarios, the 

incorrect structure graph from few labeled samples will 

induces the incorrect latent manifold representations. 

And, graph-based models do not attention the category 

distribution of data. 

To deal with above problems, we propose the 

Cohesive Pair-wise Constraint Embedding (CPCE) 

method to achieve semi-supervised clustering with very 

few labeled samples by solving the optimal embedding. 

CPCE maps samples containing unlabeled samples and 

very few labeled samples from the high-dimensional 

original space to the latent structure space subjected to 

both of maximizing the distance between categories and 

minimizing the distance of samples located in the same 

category. Furthermore, we induce cohesive pair-wise 

constrains from few labeled samples to optimize the 

learning process, which obtain the discriminative 

features and updates cluster centers. In order to solve 

semi-supervised clustering of high-dimension datasets, 

for instance, image datasets, we improve above method 

to build up the deep embedding semi-supervised model 

through autoencoder network framework, which fully 

leverages the non-linear representation of the deep 

network to improve the clustering performance. 

3.1. Cluster Embedding with Cohesive Pair-

Wise Constraints 

Despite very few labeled samples provide efficient 

supervised information for clustering, graph-based 

clustering models are rather difficult to utilize few 

samples to construct the accuracy graph structure of 

global. In order to more efficient leverage few labeled 

samples, we propose a novel method to solve the 

embedding with subjecting to optimal conditions of 

category distribution, and obtain accuracy clustering 

centers. So, the semi-supervised dataset X is consisted 

by both parts {XƖ, Xu} of the labeled dataset Xl and the 

unlabeled dataset Xu builds up the optimization equation. 

(3) 
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(7) 

According to the metric clustering theory in Equation 

(1), we solve the clustering centers ck,k=1,…,K in 

dataset X by optimizing the projection model H to 

ensure the discriminability of the sample distribution. 

Moreover, we ensure that the distance between samples 

located in the same categories is as small as possible, 

and the distance between samples located in different 

categories is as large as possible in the projection space. 

In this model, the number of categories is known, which 

results from the part of labeled samples XƖ. The 

following optimization equation is obtained: 

min
𝐻,𝑐

∑ ∑ ‖𝐻𝑇𝑥𝑖 − 𝑐𝑘‖2
2𝑁

𝑖=1
𝐾
𝑘=1 − 𝜆 ∑ ‖𝐻𝑇𝑐𝑘 − 𝐻𝑇𝑐𝑗‖

2

2𝐾
𝑘,𝑗=1 , 

where 𝜆 is a tunable positive parameter, and N is the 

number of samples, and K is the number of categories. 

In Equation (4), ck is the clustering center of the 

category k, and 
2

2
  represents the L2-norm and the right 

term is a conventional term used to prevent overfitting. 

The above formulate attention to maximize the 

distance between category centers for constructing the 

embedding, and ignore the hard samples located in the 

classification boundary. These hard samples greatly 

influence the accuracy of model. Therefore, we utilize 

the supervised and discriminative information from the 

labeled part XƖ to obtain the more compact solution. We 

are inspired by Nie et al. [15] that proposed and 

discussed the cohesive pair-wise constraints in solving 

the embedding. Therefore, we introduce cohesive pair-

wise constraints to obtain more optimal the embedding 

and more accuracy clustering centers. The improved 

optimization equation with the cohesive pair-wise 

constrains is expressed as follows:  

min
𝐻,𝑐

∑ ∑‖𝐻𝑇𝑥𝑖 − 𝑐𝑘‖2
2

𝑁

𝑖=1

𝐾

𝑘=1

− 

𝜆 ∑ ‖𝐻𝑇𝑐𝑘 − 𝐻𝑇𝑐𝑗‖
2

2
𝐾

𝑘,𝑗=1

, 𝑠. 𝑡. (𝑦𝑎 + 𝑦𝑏)‖𝐻𝑇𝑥𝑎 − 𝐻𝑇𝑥𝑏‖ ≤ 𝜌, 

where 𝜌 is a rather small constant. The sample xa or xb 

is the ground-truth corresponding to the marked sample 

𝑦a or 𝑦b. In this paper, we utilize ADMM to solve both 

of H and c by iterating alternately. The above formula 

realizes the strong pairwise constraint embedding, and 

we discuss the rationality as below. 

• Discussion: labels 𝑦a and 𝑦b corresponding to 

samples xa and xb originating from different 

categories in binary-classification are +1 and -1. 

Induce the cohesive pair-wise constraint: 

(𝑦a+𝑦b)ǁH
Txa-H

Txbǁ≤𝜌 in the objective in Equation (5) 

will optimal within-class samples to its cluster. 

According to Equation (4), the minimized distance-

sum of within-class samples is defined the constant S, 

then we can obtain:  

∑ ∑ ‖𝐻𝑇𝑥𝑖 − 𝑐𝑘‖2
2𝑁

𝑖=1
𝐾
𝑘=1 = 𝑆.  

In the equation above, if both of samples xa and xb 

belong to the same category, the constraint is 

transformed into (HTxa-H
Txb)≤𝜌/(𝑦a+𝑦b). This 

combines with the objective of within-class, and can 

obtain the equation: 

∑ ∑‖𝐻𝑇𝑥𝑖 − 𝑐𝑘‖2
2

𝑁

𝑖=1

𝐾

𝑘=1

− (𝐻𝑇𝑥𝑎 − 𝐻𝑇𝑥𝑏), < 𝑆 − 𝜌 ∕ (𝑦𝑎 + 𝑦𝑏) 

where 𝜌/(𝑦a+𝑦b) is rather small value according to the 

condition 𝑦a=1 and 𝑦b=-1. Therefore, we can get S-

𝜌/(𝑦a+𝑦b)<S is more optimal solution for with within-

class. If both of samples xa and xb belong to different 

categories, the constraint will equal to 0 that does not 

distribute to minimize the solution for inter-class. 

3.2. Deep Embedding for Semi-Supervised 

Clustering 

According to above model, we solve the optimal 

embedding and clustering centers according to the 

sample and category distribution by means of the 

supervised information from the rather few labeled 

samples, and utilize the cohesive pair-wise constraints 

to enhance the clustering performance. However, this 

linear projection of the model greatly limits the semi-

supervised clustering performance when samples locate 

in high-dimension subspace, for instance, image 

datasets. The cause can be summarized as the 

superelevation dimension and sparse features of the 

image samples. In order to obtain more discriminative 

features and the optimized clustering model, we 

proposed a novel semi-supervised deep embedding 

clustering model. 

The proposed model as shown in Figure 1 with the 

aid of CNN-Autoencoder deep-network framework by 

constructing the encoder and decoder network 

structures, which map the samples from the original 

space to a high-dimensional nonlinear space, and 

leverage convolutional operations and then restore them 

by using convolutional operations. The reconstruction 

error between the restored samples and the original 

samples is used to train the encoder network. According 

to Equation (4), maximizing category distribution 

ensure the global structure of the embedding, moreover, 

utilize the cohesive pair-wise constraints from few 

labeled samples to optimize the distribution of samples 

within-class to enhance the discrimination of 

embedding from CNN-Autoencoder. 

First, we utilize the network structure of CNN-

Autoencoder to initialize the non-linear transformation 

fӨ that belongs to stronger representation ability. Each 

layer of the network is a denoising autoencoder that, after 

training, can reconstruct the output of the previous layer 

after random corruption. After training, we concatenate 

all encoders and decoders layer by layer together to form 

a deep autoencoder. The encoder layer is exactly what 

we need, as an initial mapping between the original 

feature space and the latent learned space fӨ learn the 

data X embedded in the space Z to be valid feature 

(4) 

(5) 

(6) 
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representations for the original input data examples, fӨ: 

X→Z. 
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Figure 1. The framework of proposed model. 

Second, for semi-supervised clustering, we optimize 

the deep embedding according the category distribution. 

Above proposed method that minimize the inter-class 

distances and maximize the intra-class distances is 

utilized to measure the clustering loss function between 

the embedding and cluster centers ck defined as: 

𝐿𝑢 = ∑ ∑ ‖𝑓𝜃(𝑥𝑖) − 𝑓𝜃(𝑐𝑘)‖2
2𝑁

𝑖=1
𝐾
𝑘=1 − 𝜆 ∑ ‖𝑓𝜃(𝑐𝑘) − 𝑓𝜃(𝑐𝑗)‖

2

2𝐾
𝑘,𝑗=1  

where fӨ(xi)∈Z corresponds to the embedded of xi∈X, 

and ck is the center of the i-th cluster in the embedding 

space. The first term of Lu indicates the Euclidean 

distance between xi and ck, meanwhile, both of xi and ck 

represent the features of the input pair samples and 

cluster centers extracted by the metric learning network 

respectively. We minimize the within-class and 

between-class distances after projection to strength the 

nonlinear transformation xi∈X, and the deep neural 

network structure initialized by the encoder layer of 

CNN. 

Finally, in order to avoid interferences resulting from 

samples located in the boundary, we leverage cohesive 

pair-wise constraints to the objective of DEC to learn 

features transformation and cluster assignment and the 

use of KL divergence, which uses points with high 

confidence as supervision and assemble samples located 

on within-class. However, it does not take into account 

the relationship between pairs and pairs leading to 

inability to identify pairwise constraints and limited 

support for semi-supervised, we introduce cohesive 

pairwise constraints through a compact criterion to 

guide clustering and the orientation of the embedding. 

Pair-wise constraints specify whether a pair of data 

examples belong to the same class (must link constraints) 

or belong to different classes (cannot link constraints). 

We expect that points of the same class should be closer, 

while points of different classes should be farther apart 

in the latent feature space. Therefore, we define the 

structurally constrained loss function as: 

𝐿𝑠 = (𝑦𝑎 + 𝑦𝑏)‖𝑓𝜃(𝑥𝑎) − 𝑓𝜃(𝑥𝑏)‖2
2. 

Notice, the equation minimizes the cost of violating 

constraints, enabling simultaneous learning of feature 

representations and performing cluster assignments to 

support user-specified constraints. In addition, 

autoencoder training uses Value-based reconstruction 

error minimization Lc, that is, the mean square error 

between the model output value and the original input is 

minimized, so that a deep learning network can be 

trained unsupervised, and the equation results shown 

that the overall loss function of the model can be divided 

into three parts namely unsupervised clustering loss Lu, 

structural constraint loss Ls and reconstruction error loss 

Lc. 

𝐿 = 𝐿𝑐 + 𝐿𝑢 + 𝐿𝑠, 

where Lu is the minimum difference loss between the 

within-class distance and the between-class distance, and 

it can learn a latent representation of the original data that 

is beneficial to the clustering task, and the structural 

constraint loss Ls represents the learned representation 

between the embedding fӨ and the prior information. 

consistency. Intuitively, minimizing the equation, the 

distance between fӨ and cluster center ck will be close in 

latent space Z if they are in the same class. Similarly, if 

in different classes, the distance between fӨ and cluster 

center ck will be very far in space Z. Therefore, the model 

not only learns a good representation of the clusters, but 

also makes points from the same class closer, while 

points from different classes are separated from each 

other. 

4. Experiments 

In this section, we verified the proposed model in 

popular datasets, and demonstrate the efficiency of 

(8) 

(10) 

(9) 



80                                                            The International Arab Journal of Information Technology, Vol. 21, No. 1, January 2024 

model even in semi-supervised datasets with very few 

labeled samples, and analysis advantages when induce 

cohesive pair-wise constraint in the optimization model. 

Moreover, we compare with the-state-art methods, 

which achieve satisfactory performances. The 

experiments were run on Intel Core i7-8700 and 

NVIDIA Geforce RTX 2070 hardware environment, as 

well as Windows 10 operating system, Python3 language 

environment, and Pytorch deep learning framework. 

4.1. Experimental Datasets and Evaluation 

Metrics 

To investigate the performances and generality of 

different algorithms, we perform experiments on four 

popular datasets under standard experimental 

conditions: 

• STL-10 is a benchmark dataset commonly used for 

evaluating unsupervised and semi-supervised 

learning algorithms. It consists of a total of 10 

classes, including airplain, bird, car, cat, deer, dog, 

horse, monkey, ship, and truck. There are a total of 

5,000 training images and 8,000 test images, all in 

RGB format with the size of 96x96 pixels. [16], we 

also used HOG features and an 8×8 concatenated 

colormap as input. 

• MNIST (Modified National Institute of Standards 

and Technology) is a commonly used dataset in 

computer vision and machine learning for evaluating 

algorithms related to classification and recognition of 

handwritten digits. It contains 60,000 training images 

and 10,000 test images, all in grayscale format with 

the size of 28x28 pixels, and we treat each grayscale 

image as a 784-dimensional vector. Each dimension 

is centered and normalized. 

• USPS (United States Postal Service) is a dataset 

commonly used for evaluating algorithms related to 

classification and recognition of handwritten digits, 

similar to MNIST. It consists of a total of 9,298 

training images and 1,979 test images, all in 

grayscale format with the size of 16x16 pixels. 

Compared to MNIST, USPS is relatively more 

challenging due to several factors such as lower 

image resolution, variations in writing styles, and 

distortions caused during the scanning process. The 

dataset also includes significant overlaps between 

some of the digits, which can make their recognition 

more difficult. 

• CIFAR-10 (Canadian Institute for Advanced 

Research) is a widely used benchmark dataset in 

computer vision and machine learning for evaluating 

image classification algorithms. It consists of a total 

of 60,000 color images, with the size of 32x32 pixels, 

evenly distributed across 10 classes, including 

airplanes, automobiles, birds, cats, deer, dogs, frogs, 

horses, ships, and trucks. Each image is associated 

with a ground-truth label indicating the 

corresponding class it belongs to. We concatenate 

HOG features and 8×8 color-maps to represent each 

image, same as STL-10. 

In this paper, we employ Clustering Accuracy (ACC) 

and Normalized Mutual Information (NMI) to evaluate 

the performances of the proposed and compared models. 

4.2. Parameter Selection and Neural Network 

Structure 

In the proposed model, the optimization formulate has 

been developed in Equation (5) by considering both of 

the class and intra-class distribution in the deep 

embedding. The parameter 𝜆 as the intensively impact 

to balance both. In light of this, we seek a reasonable 

value in most datasets in the range [0.1, 1] with the 

interval of 0.2. As shown in Figure 2, the accuracy value 

changes with 𝜆, and achieves the best results when the 

value is 0.5 in two popular datasets. These results 

portray the significance of cohesive pair-wise 

constraints for the problem of semi-supervised learning, 

especially in very few labeled samples. The 𝜆=0.5 is use 

in below experiments. Moreover, in the following 

sections, we will provide an analysis of how the number 

of labeled samples affects the performance of the model. 

 

Figure 2. The relationship between the balance impact 𝜆 and the 

accuracy value. 

In order to avoid dataset-specific tuning as much as 

possible, we are inspired by IDEC [7] and SDEC [16] to 

set the network dimension to d-500-500-2000-10 for all 

datasets, where d is the data space dimension, which is 

different between datasets. All layers are tightly (fully) 

connected. Except for the input layer, output layer, and 

embedding layer, all inner layers are activated by Relu 

nonlinear function and optimized by Adam. We pre-

train and fine-tune the autoencoder with the same 

parameter settings as SDEC to minimize the effect of 

parameter tuning. 

4.3. Results and Analysis 

We randomly select pairs of data points from the dataset: 

if two data points share the same label, then we generate 

a constraint that must be linked. Otherwise, and cannot-
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linked constraint will be generated. Through the proof 

of cannot-linked pairs regularization, each cannot-

linked constraint is guaranteed, so that the associated 

points enter different clusters. Combined with the must-

linked constraint, CPCE significantly improves the 

clustering performance, so that a large number of 

connected points in the ambiguous region can be 

correctly clustered. The learning rate of SGD is 0.001. 

Set the convergence threshold from to l% to 0.1%. For 

all algorithms, we set the number of clusters 

corresponding with the number of ground truth classes. 

We run each algorithm 10 times independently and 

report the average results. 

• Results and Comparison 

To evaluate the effectiveness of our proposed algorithm 

CPCE, we compare it with several benchmark 

algorithms. We first compare our algorithm with IDEC 

and SDEC. The classical k-means algorithm is applied 

to both the original feature space and the embedded 

feature space. We perform k-means while generating 

strong constraints through the proof of cannot-linked 

pairs regularization, so that a large number of connected 

points in ambiguous regions can be clustered correctly. 

The details of the comparative clustering methods are as 

follows: compared with traditional clustering methods 

k-mean, KM-cst, our method can learn more meaningful 

and robust features through deep embedding. 

Furthermore, k-mean and KM-cst are unsupervised 

methods that do not use label information during the 

clustering process, which further impairs their 

performance. The clustering performance of AE+KM in 

the learning space is significantly better than that of k-

mean in the original data space, indicating that its deep 

neural network with large nonlinear representation 

ability is indeed beneficial to the clustering task. 

Compared with the deep clustering methods DEC, 

IDEC, SDEC, the reasons for the improved performance 

of CPCE are as follows: DEC and IDEC ignore the 

utilization of labeled data information, unlabeled 

samples are only used for regularization, and SDEC 

adopts pairwise constraints to guide the clustering. Class 

direction, which is similar to the contrastive loss. On 

this basis, we add unsupervised clustering loss, 

structural constraint loss and reconstruction errors to 

jointly learn representations and cluster assignment. 

Therefore, the CPCE framework optimizes the 

embedding and fully utilizes the prior information 

encapsulated in pairwise constraints is exploited, 

improving the overall quality of the final result. 

As shown in Tables 1 and 2, the clustering results 

measured by ACC and NMI, respectively. In each row, 

the best and comparable results are shown in bold. In 

order to save space, the Standard Deviation (std) is not 

reported, in fact, the std value of CPEC is very small 

(i.e., the std value obtained by CPEC on USPS, STL-10, 

CIFAR-10, MNIST is 0.05%, 0.03%, 0.03%, 

respectively %, and 0.22%). Some observations can be 

made from Tables 1 and 2: 

1. As shown in the Table 1, the clustering performance 

of k-means (AE+KM) in the learning space is 

significantly better than that in the original data 

space, indicating that the strong nonlinear 

representation ability of deep neural networks is 

indeed beneficial to the clustering task. 

2. Three algorithms based on the deep embedded 

clustering framework (i.e., DEC, IDEC and SDEC) 

jointly deep representations and cluster assignment, 

which is better than AE+-means(AE+KM) means 

iteratively update features according to cluster 

assignment and learn latent representations for 

clustering. 

3. KM-cst generally outperforms k-means in both the 

original space and the embedding space. This shows 

that incorporating pairwise information does 

improve clustering performances. 

4. SDEC incorporates pairwise constraints to guide 

features learning, which suggests that pairwise 

constraints play an important role in improving 

performances. 

5. The performance of CPCE is the best, and its 

performance is better than unsupervised deep 

embedded clustering algorithms DEC, IDEC and 

semi-supervised clustering SDEC. Specifically, 

CPCE on MNIST, ACC, and NMI are significantly 

improved than SDEC. It is shown that the CPCE 

framework optimizes representations and utilizes the 

regularization term to fully excavate the prior 

information, i.e., data samples from the same cluster 

are forced to be close to each other, while data 

samples from different clusters are in the learning 

feature away from each other in space. Combining 

the three loss functions of unsupervised clustering 

loss Lu, structural constraint loss Ls and 

reconstruction error loss Lc, provides more accurate 

and robust results, significantly improving clustering 

performance. 

Table 1 . Clustering results measured by ACC (%). 

Data k-mean KM-cst AE+KM DEC IDEC SDEC CPEC 

USPS 65.67 68.18 70.28 75.81 75.86 76.39 79.01 

STL-10 28.31 29.09 34.00 37.40 36.99 38.86 52.20 

CIFAR-10 23.75 23.91 23.89 26.26 25.02 27.26 50.58 

MNIST 52.98 54.27 54.27 84.94 83.85 78.12 91.35 

Table 2. Clustering results measured by NMI (%). 

Data k-mean KM-cst AE+KM DEC IDEC SDEC CPEC 

USPS 62.00 63.94 66.38 76.91 77.68 77.68 78.60 

STL-10 24.40 24.79 29.37 32.43 32.53 32.84 45.44 

CIFAR-10 14.67 14.21 15.80 16.99 17.27 17.20 41.37 

MNIST 49.74 50.47 72.26 81.60 77.89 82.89 88.51 

• Semi-Supervised Clustering Analysis 

The dilemma of semi-supervised clustering lies in that 

very few supervised information is difficult to guide 

construction the global structure, especially in weakly 

discriminative features. Our model solves the optimal 
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embedding with the metrics both of maximizing the 

distance of intra-class samples and minimizing the 

distance of within-class samples, and only use very few 

labeled samples to construct pair-wise constrains to 

control the samples located in the classification 

boundary, which enhance the performances. In general 

datasets, we demonstrate this conduct by experiments 

that set different environments with different sizes of 

labeled samples to execute the proposed model. As 

shown in Figure 3, the accuracies appear ever-

increasing with the size of labeled samples growing. In 

MNIST dataset, the accuracy of the proposed model 

gets 0.87% even the percentage of labeled sample 

capacity is 10%, and the accuracy gets 0.91% when the 

percentage is 50%, which is rather closing to supervise 

learning. Aiming to the features of samples with low 

discrimination in difference-class, such as USPS 

dataset, our model also achieves the satisfactory 

performance using 10% of labeled samples, as shown in 

Figure 3. 

 
a) The percentage of labeled sample capacity. 

 

b) The percentage of labeled sample capacity. 

Figure 3. The accuracy variation with the scale minimization of 

labeled samples in USPS and MNIST datasets. 

5. Conclusions 

In this paper, we propose model to optimize the local 

and global clustering structures simultaneously, and 

induce must pair-wise constrains to solve ambiguous 

samples and obtain the compact solution and the better 

embedding than the original space. Furthermore, we 

utilize CNN-Autoencoder with constraints to overcome 

the negative influence of high-dimension on the global 

structure in the calculation. The proposed model is 

verified in popular datasets, improvement the 

performance of semi-supervised clustering significantly. 

In the future, the research will proceed and focus on the 

remained challenge that is incremental semi-supervised 

learning. 
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