
32 The International Arab Journal of Information Technology, Vol. 21, No. 1, January 2024

A Comprehensive Microservice Extraction

Approach Integrating Business Functions and

Database Entities

Deepali Bajaj

Department of Computer Science,

University of Delhi, India

deepali.bajaj@rajguru.du.ac.in

Anita Goel

Department of Computer Science,

University of Delhi, India

goel.anita@gmail.com

Suresh Gupta

Department of Computer Science,

Indian Institute of Technology, India

guptadrsc@gmail.com

Abstract: Cloud application practitioners are building large-scale enterprise applications as microservices, to leverage

scalability, performance, and availability. Microservices architecture allows a large monolithic application to be split into small,

loosely coupled services. A service communicates with other services using lightweight protocols such as RESTful APIs.

Extracting microservices from the monolith is a challenging task and is mostly performed manually by system architects based

on their skills. This extraction involves both: 1) Partitioning of business logic, 2) Partitioning of database. For partitioning of

business logic, the existing research studies focus on decomposition by considering the dependencies in the application at the

class-level. However, with the passage of time, monolith application classes outgrow their size defying the Single Responsibility

Principle (SRP). So, there is a need to consider the code within the classes when identifying microservices. Current studies also

lack the partitioning of database and ignore the mapping of Database Entities (DE) to the microservices. In this paper, we

present a Comprehensive Microservice Extraction Approach (CMEA) that considers: 1) Both classes and their methods to define

and refine microservices, 2) Associate the DE to microservices using newly devised eight guiding rules handling ownership

conflicts. This approach has been applied to three benchmark web applications implemented in Java and one in-house

application implemented in both Java and Python. Our results demonstrate better or similar software quality attributes in

comparison to the existing related studies. CMEA improves software quality attributes by 22%. System architects can easily

identify microservices along with their DE using our approach. The CMEA is generic and language-independent so it can be

used for any application.

Keywords: Microservices, static code analysis, microservice identification, software refactoring, database partitioning, move

method refactoring.

Received June 27, 2022; accepted July 17, 2023

https://doi.org/10.34028/iajit/21/1/3

1. Introduction

Microservices are gaining recognition in the software

industry. Microservices Architecture allows a legacy

enterprise software system to be split into many fine-

grained microservices that are developed and deployed

independently [14]. Generally, these services are

developed using different technological stacks by

separate teams [12]. Thus, many software business

players like Amazon, Netflix, Uber, Spotify, and

numerous small to medium-sized enterprises are opting

for microservices-based solutions for their complex

monolithic systems [4].

According to Chris Richardson’s Scale Cube, a three-

dimension scalability model [21], scaling in

Microservice Architecture (MSA) corresponds to Y-

axis scaling. It suggests the decomposition of a software

application into multiple, distinct autonomous services.

Each service is accountable for one or more closely-

related functions. However, finding these optimized sets

of services is intellectually hard and takes time to

implement as well [28]. Software architects who re-

modularize their monolithic applications to get

microservices without clearly understanding its pros

and cons invite risk and unforeseen problems [31]. Out

of all the set of activities needed to achieve a

microservice-based software solution, the most

important and determining key activity is the

identification of the architectural components that

qualify as microservices [7].

During the development of microservices,

brownfield development implies the development or

improvement of an existing software system [3]. This

development strategy utilizes existing system artifacts

like static code files, code revision history, or

application/web access logs to identify services.

Generally, existing microservice extraction approaches

build their migration strategy by static analysis of code

with an underlying assumption that “classes with strong

relationships should be in the same service”. However,

the challenge is that some classes might be tangled into

more than one microservice. These shared classes are

called crossovers and additional hard steps need to be

taken for their mapping into microservices [15].

https://doi.org/10.34028/iajit/21/1/3

A Comprehensive Microservice Extraction Approach Integrating Business Functions ... 33

Additionally, as monolithic application programs

grow and become complex, methods are added in an

unstructured manner and eventually, some classes have

more responsibilities than envisioned earlier [25]. This

leads to overall architecture model drift and erosion of

the monolithic software system. This imbalance at the

class-level motivates to break a large class into smaller

classes due to reasons, like,

1. A class has grown too large and is taking too much

responsibility. To achieve the Single Responsibility

Principle (SRP), the bloated class can be further

divided into subclasses.

2. Class design lacks a clear separation of concerns.

3. A long-lived monolithic codebase that has passed

multiple iterations of change may have a high code

toxicity level and poor design of the class code. For

example, a method is used more in another class than

in its own class.

4. Excessively long methods need to be refactored into

a separate class.

In the above scenarios, there is a need to split the class

into smaller, more cohesive classes or reorganize the

methods of a class while extracting microservices.

Kumar et al. [18] suggest moving a method to the class

that uses it the most. This Move Method Refactoring

(MMR) makes classes more cohesive internally and also

eliminates dependency between classes [28]. Our

research is motivated to find methods that are in need of

refactoring.

In our work, we focus on both class-level and

method-level dependency analysis between software

entities to segregate a cohesive set of classes and

methods that forms a reasonable set of bounded contexts

as microservice. Such mapping analysis may decisively

identify a few methods within a class that may be

required to be pulled-out from their native classes.

Fundamentally, this reorganization will generate clear

context and minimize tight coupling among

microservices. The refactoring of classes shall help to

maintain the SRP for microservices.

Typically, for performing business transactions, the

identified granular microservices interact with each

other and in most cases, are implemented by joining the

data residing on different microservices. For complex

queries, the communication overhead and latency may

increase too much. There is a need for an optimized

database design model that ensures minimum inter-

service communication. It is worth noting that existing

decomposition techniques available in literature largely

ignore the DE aspect that is behind business functions.

In fact, in some approaches, a single shared database is

maintained behind all the microservices [30]. In such a

design, any database outage would adversely affect

multiple services and lead to substantial downtime,

defeating the purpose of MSA. A careful partition of DE

across microservices enables modification to database

content without impacting other microservices [6].

This paper proposes a Comprehensive Microservice

Extraction Approach (CMEA) based on

1) Both classes and methods.

2) Access rights to DE. For a monolith application,

class-level call list and method-level call list is

collected using static code analysis.

This data is filtered and further summarized to obtain

class and method-level mapping patterns. A grouping

technique is applied to this data with the aim to package

close-knit classes along with methods as microservices.

Based on the frequency of calls, methods are also

refactored to their appropriate classes resulting in more

internal cohesion. Guiding rules to determine ownership

of business entities have been formulated so that

extracted microservices have share-nothing [23] or

share-as-little-as-possible database dependency on

other microservices. Significant contributions of this

research paper are as follows:

• Contribution 1: a five-step Comprehensive

microservice extraction appraoch by grouping

business classes and methods that are highly cohesive

and loosely coupled at the same time.

• Contribution 2: eight guiding rules for decomposing

Database Entities (DE) and resolving their ownership

conflicts with microservices.

• Contribution 3: applying the proposed approach to

three Java benchmark applications,

1) JPetStore.

2) AcmeAir.

3) Cargo tracking system.

• Contribution 4: applying the proposed approach to an

in-house ‘Teachers-Feedback Web Application

(TFWA)’ written in both Java and Python as a Proof

of Concept (POC).

• Contribution 5: validating our results qualitatively

and quantitatively.

The remainder of the paper is organized as follows:

Section 2 presents the related work going on in this

domain. Section 3 describes the methodology for

microservice identification. Section 4 walks through the

approach on a sample benchmark Java application taken

as an example. Section 5 shows the qualitative and

quantitative analysis of our methodology along with the

results. Section 6 discusses threats to the methodology

and section 7 states the conclusion and future work.

2. Related Work

Source code is the only artifact that is essentially

available for an application. It reflects the real

functionality implemented in the application. Other

artifacts might get obsolete or eroded with time, such as

documentation. For this reason, several researchers

have presented their approach for microservice

identification using codebase analysis.

34 The International Arab Journal of Information Technology, Vol. 21, No. 1, January 2024

Mazlami et al. [23] presented a static algorithmic

extraction technique based on three formal coupling

strategies- logical coupling, semantic coupling, and

contributor coupling. Based on the coupling, a graph is

constructed which is decomposed into microservice

candidates based on the minimum spanning tree

algorithm. An automatic extraction approach is

proposed by Eski and Buzluca [11] using code

repositories. The authors use code coupling and

evolutionary coupling to find microservices. Both

Mazlami et al. [23] and Eski and Buzluca [11] take into

account code revision history for microservice

candidate identification. Consequently, if revision

history is not updated or is unavailable, their approach

becomes unusable. Selmadji et al. [26] propose a semi-

automatic extraction approach for object-oriented

monolithic applications. Their microservices

identification approach is based on the structure and

behaviour of the application.

Gysel et al. [13] suggested a structured approach for

the identification of microservices using artifacts and

documents based on software engineering principles. It

results in a graph representation that is dissected using

graph-cutting algorithms. The limitation of this

approach is that if documents and artifacts are

unavailable or are not updated then the approach is not

viable. Jin et al. [16] use a dynamic analysis of legacy

application logs to find microservice candidates. While

it provides decent results, it is greatly dependent on a

sufficient pool of test cases to properly execute and

cover the whole system. Al-Debagy and Martinek [1]

proposed a novel decomposition method by utilizing

code to understand similarity within the classes and

cluster semantically similar classes together using a

neural network model, code2vec. Lohnertz and Oprescu

[20] devised an approach to automatically find

microservice candidates by utilizing three coupling

criteria: static, semantic, and evolutionary. A combined

weighted graph is created by aggregating these coupling

criteria. Lastly, clustering is applied to isolate

microservice recommendations. Raj and Bhukya [24]

suggested a fully automated approach for migrating

Service Oriented Architecture (SOA) based applications

to microservices in three steps. First, a Service Graph

(SG) is constructed for SOA application. Later, for each

service, task graphs are built. A microservices

extraction algorithm using the SG is applied to generate

the candidate microservices. El Kholy and El Fatatry

[10] advised the “Managing Database for Microservice

Architecture” (MDMA) approach for organizing

databases in MSA. But their approach is superficial as it

does not mention the functional decomposition of

microservices.

All the above-stated approaches may not work

suitably well when classes are large and bloated and

must be broken into smaller classes thereby moving

groups of methods into classes that use it the most. This

idea of MMR automatically helps to reduce coupling,

bad-smells and increase cohesion [29].

Though few approaches have been suggested for

dealing with the concern of microservice identification

from code, none of them describe measures for

partitioning the database. To a certain extent, many

existing approaches keep the data stored in one

monolithic database and all services interact with this

database. We do not appreciate this approach to

database design because services by their very

definition must be loosely coupled so that they can be

independently deployed and scaled. Also, if database

partitioning is not done properly, microservices will

keep on connecting to private DE of other services

leading to high coupling and interdependence between

them. This shared persistence scenario is a technical

anti-pattern in microservice identification [27].

Here, we present guiding criteria that shall help the

service architects and developers in deciding the

alignment of DE with microservices. We understand

that microservice identification achieved using method-

level dependency analysis in addition to class-level

analysis will help to find methods that are in need of

refactoring. Thus, our approach will potentially enhance

the granularity and preciseness of the code

rearrangement and reorganization. To the best of our

knowledge, there is no well-established research that

comprehensively identifies microservices based on

classes, methods, and DE around them so as to achieve

optimized database design models for microservices.

3. Methodology for Microservice Extraction

In this section, we will brief about the proposed

methodology for the extraction of services that are

cohesive and based on the SRP [3].

3.1. Basic Definitions

We list a few symbolic notations needed to comprehend

the proposed methodology as shown in Table 1.

DE is a set of objects or items around which the data

is captured and stored in the form of tables or

collections. A database entity has a set of attributes and

is related to other DE. We define it as DE={DE1, DE2,

…, DEk}.

Table 1. Symbolic notations used for CMEA.

Symbol Description

Μ Microservice.

∑ μ: { μ1, μ2,…, μn} Set of microservices.

Ci : i=1...m Set of class.

Mj : j=1...n Set of methods.

CL: <c1,c2,c3,…,cn> Sequence of class calls.

ML: <m1,m2,m3,…, mn> Sequence of method calls.

DE={DE1, DE2,. . ., DEk} Database entities.

Let μ be a microservice and ∑μ: { μ1, μ2,…, μn} is the

set of microservices in the monolithic application. Each

microservice is characterized by a set of classes and DE

like, [μn:{(Ci, DEj), i=1...n, j=1...m}]. Each microservice

A Comprehensive Microservice Extraction Approach Integrating Business Functions ... 35

must satisfy non-intersection characteristics i.e., {∀μ1

and μ2, μ1∩ μ2=(Ø)}. It implies that the microservices

have nothing in common in terms of classes and DE.

Conversely, it also suggests that the union of two

microservices μ1∪ μ2 is equivalent to merging them.

Microservice Access Control Matrix (MACM)

describes access rights of microservices (represented in

rows) over DE (represented in columns) as shown in

Figure 1. Consider a set of microservices as μ={μ1, μ2 .

. ., μn} and DE={DE1, DE2,..., DEm} as the set of DE,

MACM A is a nxm matrix, where each element A(i, j)

shows the database operations that a microservice

performs on a database entity.

Figure 1. Microservice access control matrix.

3.2. Proposed Approach-CMEA

Extraction of microservices from a monolithic is

performed incrementally. Our proposed approach has

five steps and it works on brownfield applications where

system designers and architects use the application’s

codebase repositories to re-modularize the application

into microservices architectural pattern. A complete

outline of the proposed systematic approach is shown in

Figure 2. The steps to be performed are discussed in the

following subsections.

1. Perform Static Analysis of Code: our approach

employs static analysis of the code files. We analyse

both class-level and method-level dependency

patterns in the monolithic application to extract core

business classes and methods that should be grouped

together in a microservice. To get this, we generate

both:

1) Class caller-callee call list (CL).

2) Method caller-callee call list (ML).

CL is basically a sequence of class-to-class calls and

ML is a method to method calls that correspond to the

calling behaviour in the given monolithic application.

The syntax of the CL is

C: class1 class2

Each entry represents that some method(s) in class1

called some method(s) in class2. Similarly, the syntax

of the ML is

M:classi: <methodj> (arg_types) classk: <methodl>

(arg_types).

Each entry represents methodj of classi is calling a

methodl of classk.

2. Filter Class Call List and Method Call List: the CL

obtained in the previous step can be completely

exhaustive for bigger projects. It includes extra

classes that will definitely distract from the actual

analysis and utilize an inordinate amount of time and

effort as well. Thus, there is a need to filter out

classes that are not adding any significance to

business value. This filtering step uses heuristics to

extract classes that are relevant to the core business

functionality of the application. In this step, we will

filter CL by removing abstract classes, initialization

classes, libraries, utility classes, and other classes.

Remove self-calling between classes also. Similarly,

ML is also filtered to mine useful methods needed for

core business functionality. Examples of such

filtered methods are: wrappers, getters, setters,

library functions, sample data generator functions,

init methods, and exception handling functions.

3. Service Identification by Generating a Class and

Method Dependency Graph: create a class

dependency graph G=(V, E, w) by linking web

interface classes to internal classes. The weights w of

the edges represents the frequency of call between

classes. Internal classes called by multiple interface

classes will belong to the group where w is higher.

Internal classes called by multiple interface classes

having same w can be further investigated based on

domain knowledge. Now, the classes with strong

dependencies are grouped together to generate

candidate microservices. Repeat these steps for

Method Call List (ML) as well. Albeit, few methods

might exist that access other classes more frequently

than where they are actually defined. Such methods

must be investigated further for possible refactoring.

In this scenario, our methodology suggests MMR to

redefine them to other classes where they are mostly

called [30]. In case, a method is called by another

class with the same frequency as that to its own class

where the method is defined, then methods can be

allowed to remain in the original defining class. We

understand if methods are bundled with the

microservice where they are frequently used rather

than where they are originally defined, inter-service

communication between them will be greatly

reduced.

4. Creation of MACM: now we will look for the issues

of data entity ownerships. For the identified

microservices in step 3, we need to determine the

ownership of the databases. We create a MACM to

determine relationships between the identified

microservices and DE. MACM is populated to

represent Read/Write access privileges of

microservices to the DE.

5. Determining Ownership of DE: the MACM is further

analysed to address the splitting or sharing of

databases among microservices. Our proposed

approach follows the Database-per-service pattern

wherein DE pertaining to a microservice are

36 The International Arab Journal of Information Technology, Vol. 21, No. 1, January 2024

encapsulated along with its code. In essence, a

microservice should privately the own data it needs

and other microservices are allowed to use this data

via APIs. To partition data between microservices,

we present a systematic approach for deciding the

ownership of DE between microservices.

This step is an integral component of the whole

approach. If not done correctly, microservices will

communicate excessively with each other and will

become too chatty. As a result, careful consideration

must be given to who will “own” the database entity.

Here, we define eight guiding criteria that can be used

in determining ownership of a database entity as shown

in Figure 3.

Figure 2. Outline of the proposed approach.

The Guiding Criteria to define ownership of DE is as

follows:

• Guiding Criteria 1 (GC1): let μ1 be the only

microservice accessing a database entity DE1, then μ1

be assigned the owner of DE1.

• Guiding Criteria 2 (GC2): let μ2, μ3, μ5, and μN be four

microservices accessing database entity DE2 i.e., μ2,

μ5, and μN are reading DE2 and μ3 is both reading and

writing to DE2, then μ3 should be considered the

owner of DE2. The idea is to assign ownership of DE

to the microservice that writes data to it.

• Guiding Criteria 3 (GC3): let μ1, μ2, μ5, and μN are

accessing database entity DE3, i.e., μ1 is writing to

DE3, μ5 is reading and writing to DE3, and μ2 and μN

is just reading from DE3. Microservice that interacts

more with DE (more read and write operations) shall

be considered its owner.

• Guiding Criteria 4 (GC4): let μ2 and μN read some

same DE like DE2, DE3, and DEN, then their

functionalities may be merged together as none of

them is the owner of any database entity.

• Guiding Criteria 5 (GC5): let a database entity DEI

that is accessed by all or the majority of

microservices then it indicates a poor database

design. In such a scenario, design optimization or re-

modeling of the database entity is suggested. In

Figure 3, DE4 is an entity where GC5 can be applied.

The DE4 column is filled with read or write

permissions for all microservices, so it should be re-

modeled.

• Guiding Criteria 6 (GC6): let μN is a microservice that

accesses all or majority of the DE DE= {DE1, DE2,

..., DEn}, so it can be named as Super_Microservice.

Such scenarios can be easily identified by finding

rows filled with read/write permissions for all DE in

MACM e.g., μ5. These Super_Microservice might be

too complex, prone to defects and violate SRP. In this

situation, a design optimization or re-factoring of

microservice is suggested.

• Guiding Criteria 7 (GC7): let μ3 and μ4 are two

microservices writing to a database entity DE5

leading to a conflict in deciding the ownership of

DE5. This conflicting scenario may be investigated in

detail by capturing additional data access operations

i.e., CREATE (C) and UPDATE (U) for both

conflicting microservices [22]. Technically,

CREATE operation writes values to all the mandatory

fields of a record in a database table and UPDATE is

updating/ writing in just a subset of fields. While

designating weights to C and U operations in the

CRUD matrix, C always carries more weight than U.

Intuitively, a microservice that creates a database

entity has a higher claim of ownership than a

microservice updating it. Thus, understanding these

additional C or U operations on a database entity can

be used to resolve data ownership conflicts between

two or more microservices.

A Comprehensive Microservice Extraction Approach Integrating Business Functions ... 37

• Guiding Criteria 8 (GC8): let two microservices μi

and μj write to a database entity DEN and both are

performing the same data access operations including

C and U also. This scenario cannot be resolved using

GC7. For these scenarios, gaining a deeper

understanding from the software architects is

significant. They can thoroughly analyze the

frequency of Create and Update operations in

conflicting microservices. We assert that a

microservice having a greater number of write

operations to a database entity has more claims for it

and should be given its ownership.

Figure 3. GC to define ownership of DE.

In general, these guiding criteria shall help software

practitioners to comprehend and identify data

ownership for microservices.

4. Implementation

In this section, we show the application of CMEA on

three sample benchmark Java applications and on an in-

house Java application: TFWA. A detailed run-through

of the proposed approach is depicted on the JPetStore

application (monolithic version).

4.1. Applying CMEA to Benchmark

Applications

In order to validate our proposed decomposition

approach, we carry out a case study on sample open-

source monolithic Java applications namely-JPetStore1,

AcmeAir2, and cargo tracking system3. For these web

applications, their server-side packaged code is

available on Github as Web Application Archive

(WAR) or Enterprise Application Archive (EAR) files

in the SRC folder.

4.1.1. Description of Case Studies

A brief description of these applications is exhibited in

Table 2. Since refactoring a monolithic application into

microservices at the enterprise level is a complex and

1https://github.com/mybatis/jpetstore-6
2https://github.com/acmeair/acmeair
3https://github.com/citerus/dddsample-core
4https://github.com/gousiosg/java-callgraph
5https://github.com/anitagoel/CMEA

lengthy task; we have opted for these applications as

they are of manageable size. Another reason for their

selection is that these applications are predominantly

used in other related studies as well.

Table 2. Description of sample legacy monolithic application.

Sample

benchmark

application

Description LOC No. of

packages

No. of

classes

No. of

methods

JPetStore e-store for buying

pets

2059 5 24 299

AcmeAir Flight Reservation 3471 8 33 196

Cargo tracking

system

Tracking system

for shipping cargo

8635 24 64 525

4.1.2. Proposed Methodology in Practice

Below are the steps we followed to implement the

proposed approach on the selected benchmark

applications.

We used Java Call Graph utilities4 for generating

static call lists. “javacg-static” program reads classes

from application’s jar file, moves down to the method

body, and prints a list of ‘caller-callee relationships’ for

both classes and methods. Snippets of the output

produced for both CL and ML by this utility for the

JPetStore application is shown in Figure 4-a) and (b).

Next, we filter both CL and ML for our sample

applications: JPetStore, AcmeAir, Cargo Tracking

System, and TFWA. This step achieves a considerable

reduction in the number of entries in both CL and ML

as shown in Table 3. The detailed CL and ML can be

found in our repository5.

Table 3. Percentage of reduction in CL entries.

Sample

benchmark

application

CL # ML # Filtered

CL

Filtered

ML

Reduction

% in CL

Reduction

% in ML

JPetStore 173 352 53 133 69.36 62.21

AcmeAir 513 1529 82 193 84.01 87.37

Cargo

tracking

system

1669 4356 204 345 88.88 92.07

TFWA 1303 2733 210 276 83.89 89.90

Our next task is to group classes and methods that

may be bundled together as microservices. Figure 4-c)

shows the mapping results of classes for JPetStore

application.

For JPetStore application, four groups corresponding

to microservices-Catalog, Cart, Order, and Account

was achieved as shown in Figure 4-d).

For AcmeAir, we achieve four functionally

autonomous services: Flight, Booking, Authentication,

and Customer. For the cargo tracking system, our

approach achieved four microservices: CargoBooking,

Handling, Location, and Voyage and Planning. Tables 4

and 5 show the identified microservices and composed

classes for AcmeAir and cargo tracking system.

https://github.com/gousiosg/java-callgraph

38 The International Arab Journal of Information Technology, Vol. 21, No. 1, January 2024

4.1.3. Examine Ownership of Database Entities

Determining ownership of DE is a critical step in

microservice identification. Based on the proposed eight

guidelines principles discussed earlier in section 3.2, we

have handled this issue.

In JPetStore, we identify thirteen entities i.e.,

SupplierId, SignOn, Account, Profile, BannerData,

Order, OrderStatus, LineItem, Category, Product, Item,

Inventory, and Sequence. MACM is shown in Appendix

A, Table A.1. Based on guiding criteria, we comprehend

that the Account service may own the Account, Profile,

SignOn, and BannerData tables. Order service can take

ownership of Order, OrderStatus, LineItem, and

Sequence entities. Catalog service can take ownership

of Item, Category, Product, Inventory, and SupplierID

entities.

AcmeAir application contains six MongoDB

Collections-Booking, CustomerSession, Flight,

Customer, FlightSegment, and AirportCodeMapping.

Applying guiding criteria, we found that Flight service

owns Flight, FlightSegment, and AirportCodeMapping

collections. Likewise, Booking service possesses

Booking collection and Customer service will be the

owner of the Customer collection and the

Authentication service will become the owner of

CustomerSession collection as shown in Appendix A,

Table A.2.

a) Snippet of class call list.

b) Snippet of ML.

c) Two level mapping between classes. d) Identified microservices along with composed classes.

Figure 4. Run through JPetStore application.

A Comprehensive Microservice Extraction Approach Integrating Business Functions ... 39

Table 4. Identified microservices and composed classes for AcmeAir.

S.No. Service name Composed classes

1 Booking BookingREST, BookingService, BookingServiceImpl, BookingLoader

2 Customer CustomerREST, ServiceLocator, CustomerService, CustomerServiceImpl,

CustomerLoader, CustomerInfo, AddressInfo, RestCookieSessionFilter

3 Flight FlightREST, FlightService, FlightLoader, FlightServiceImpl, AirportCodeMapping

4 Authentication LoginREST, AuthService, SessionLoader, AuthServiceImpl, KeyGenerator

Table 5. Identified microservices and composed classes for cargo tracking system.

S.No. Service name Composed classes

1 Cargo Booking BookingServiceImpl, Cargo, CargoRepository, Delivery, RoutingStatus, Itinerary, Leg, RouteSpecification,TrackingId

2 Handling HandlingActivity, HandingEvent, HandlingEventRepository, Handling History

3 Location Location, LocationRepository, SampleLocation, UnLoCode

4 Voyage and Planning CarrierMovement, SampleVoyage, Schedule, Voyage, VoyageNumber, VoyageRepository

For the cargo tracking system, we identify six entities,

Cargo, Leg, Location, HandlingEvent, Voyage, and

CarrierMovement table and three components

RouteSpecification, Itinerary, and Delivery associated

with cargo.hbm.xml. CargoBooking service writes to

the Cargo and RouteSpecification table. So, applying

GC2, Cargo and RouteSpecification table ownership

can be given to CargoBooking microservice as shown

in Appendix A, Table A.3. Only the Location service

writes to the Location table. It suggests that Location

can take ownership of this table (GC2). Likewise, the

HandlingEvent entity is owned by the Handling service.

Similarly, Voyage, and CarrierMovement entities are

owned by VoyagePlanning service.

4.2. Applying CMEA on in-House Application

In this section we will discuss the application of CMEA

in a case study based on the TFWA as a POC. TFWA

automates the teachers’ feedback mechanism in a

university system. This in-house application is

implemented in both Java and Python

4.2.1. Description of Case Study

TFWA is used by students to give their feedback to all

the respective teachers and subjects who teach that

subject. To confirm the complete participation of all

students in this feedback process, the Teacher-

Coordinator (TC) of every department can check the

feedback status. TC can analyze the departmental

feedback data from different analysis views. The

principal has access to analyze college feedback data

from different analytics perspectives [2].

Java Implementation of TFWA is a Spring Boot

monolithic application having Lines of code: 2504,

Number of packages: 10, Number of classes: 30, and

Number of methods: 128.

Python Implementation of TFWA is designed on the

Model View Template (MVT) architectural pattern and

is developed using Django framework 3.0.2 that is a free

and open-source web framework. In our implementation

we have used SQLite as a database backend, a default

option supported by Django.

4.2.2. Ownership of Database Entities

Feedback microservice writes to Feedback table and

reads QTemplate table as shown in Appendix A in Table

A.4. No other microservice performs any write

operation on the Feedback table and reads the Qtemplate

table. Applying guiding criteria 1 and 2, Feedback and

QTemplate ownership are given to Feedback

microservice. Only Authentication microservice writes

to tables like UserRole and UserDetails. It suggests that

Authentication takes ownership of these tables.

Analytics read Department, Course, Paper and

Feedback tables. So, the ownership of the Department,

Course, and Paper is given to the Analytics service.

5. Quantitative Evaluation

 In this section, we’ll brief about the quantitative and

quantitative evaluation of the proposed approach on

chosen sample benchmark applications. The purpose of

this evaluation is to determine whether CMEA creates

effective microservice candidates.

5.1. Qualitative Evaluation-from Software

Industry Expert

Since the whole decomposition process is quite

methodical and subject to errors, we have validated

CMEA from two agile software industry experts

working in a Dubai-based organization in the domain of

transforming enterprise-scale applications to MSA.

Both have significant experience in building and

designing services from monolithic applications. They

modeled the business domain of sample benchmark

applications using domain-driven design orientation and

agreed to our decomposition proposal for microservice

extraction for JPetStore, AcmeAir, and cargo tracking

system applications.

5.2. Quantitative Evaluation

For the chosen applications, we fail to find software

quality metrics that are used in existing research papers

for all three benchmark applications. Researchers have

confirmed their results on diverse sets of quality

metrics. Hence, we assess these benchmark applications

against those quality metrics that are used in other

40 The International Arab Journal of Information Technology, Vol. 21, No. 1, January 2024

related studies. This enables us to test and verify our

approach on a diverse range of quality metrics.

In general, a good microservice decomposition

approach should produce services that are loosely

coupled and highly cohesive. Cohesion indicates the

strength of associations between methods. High

cohesion means better reliability, reusability,

robustness, and understandability of microservices.

Coupling shows interconnections and dependencies

among services.

We evaluate CMEA with four established

microservice identification techniques-Mono2Micro

[17], CoGCN [9], FoSCI [15], and MEM [23] for

JPetStore, and AcmeAir application. We apply five

quality performance metrics namely-Structural

Modularity (SM), Non-Extreme Distribution (NED),

Inter-Partition Call percentage (ICP), Interface Number

(IFN), and Business Context Purity (BCP) to measure

the effectiveness of CMEA. A brief description for these

metrics is mentioned in [4].

For cargo tracking system, we were not able to find

any research article where the above-mentioned quality

evaluation metrics are used. So, we employ another set

of four object-oriented metrics namely-Number of

Incoming Dependencies (Ca), Number of Outgoing

Dependencies (Ca), Instability (I), and Relational

Cohesion6 (RC). These metrics are used and discussed

in many reference techniques [5, 8, 13, 29].

The comparison of our results across two sets of metrics

are presented in Figure 5. For all the quality assessment

metrics, two types of tags are assigned: “(-)” or “(+)”.

Tag “(-)” shows lower values are better, while Tag “(+)”

shows higher values are better.

For JPetStore, CMEA gives superior results for

NED, ICP, and BCP. NED specifies that the majority of

the identified microservices hold 5 to 20 classes as

shown in Figure 5-a). Lower ICP shows reduced calling

between microservices. It is noteworthy that SM is

slightly lower than MEM (highest) but significantly

greater than the other three approaches. IFN is better

than FoSCI and MEM but M2M and CoGCN have

better values than our approach.

a) Metrics comparison for JPetStore. b) Metrics comparison for AcmeAir.

c) Quality Metrics for cargo tracking system microservices. d) Metrics comparison for cargo tracking system.

Figure 5. Quantitative evaluation-JPetStore application.

For the AcmeAir application, CMEA performed

better than other techniques for SM, ICP, IFN, and BCP

as illustrated in Figure 5-b). CMEA results of SM

indicates that partitions have better modular quality. For

NED, our approach yields slightly higher than CoGCN,

but much better than rest three techniques namely M2M,

FoSCI, MEM.

6http://eclipse.hello2morrow.com/doc/standalone/content/core_metrics.html

We used SonarGraph-Architect (12.0.4.713 version)

[32] to evaluate metrics for cargo tracking system.

SonarGraph-Architect a technical quality assessment

tool. Figure 5-c) shows values of the quality assessment

metrics for microservice generated by CMEA. Our

results reveal a better performance in Relational

Cohesion and Instability Index. It indicates more

A Comprehensive Microservice Extraction Approach Integrating Business Functions ... 41

maintainable, robust, and reusable services. Number of

Incoming and Outgoing Dependencies metrics gives a

bit increased value as compared to other existing

techniques [5, 8, 13, 19], as shown in Figure 5-d).

For TFWA, we identified three microservices

namely Feedback, Analytics, and Authentication. For

Java implementation, we compared the TFWA-

monolithic and microservices application (developed

according to CMEA). Table 6 shows the software

quality metrics7 (generated using SonarGraph-

Architect).

Table 6. Metrics comparison for TFWA (Java implementation).

Metrics Monolithic

TFWA

Microservice TFWA

using CMEA

Physical cohesion (+) 1.91 2.38

Physical coupling (-) 1.79 1.32

System maintainability level (+) 60 70

Structural debt index (-) 124 78

Cyclic Java packages (-) 8 6

Component dependencies to

remove (-)

9 6

For Python implementation, we again compared the

TFWA-monolithic and microservices application

(developed according to CMEA). Table 7 shows the

software quality metrics8 (generated using

SonarGraph-Architect).

Table 7. Metrics comparison for TFWA (Python implementation).

Metrics Monolithic TFWA Microservice TFWA

using CMEA

Component dependencies to

Remove (-)

60 40

Structural debt Index (-) 923 469

Number of critical Python

Package cycle groups (-)

4 1

Average complexity (-) 5.99 1

CMEA results show that microservice application

yields lesser structural debt index and cyclic package

dependencies. At the same time, higher system

maintainability level, and physical cohesion. Therefore,

our approach improves the maintainability, quality, and

long-term health of the application. To summarize,

CMEA achieves better cohesion, lesser coupling, a

smaller number of operations performed by a service,

and lastly, a smaller number of calls between services.

Therefore, these results exhibit an acceptable POC.

6. Threats to Validity

We understand that CMEA is a generic approach and

can be applied to projects having varied languages,

sizes, and architectural structures. We have applied our

approach to Java and Python projects but they can be

applied to Net applications equally well.

The microservice extraction procedure proposed in

this work focus on “splitting design” i.e., defining the

functional boundaries for microservices. Accordingly,

7http://eclipse.hello2morrow.com/doc/standalone/content/java_metrics.html
8http://eclipse.hello2morrow.com/doc/standalone/content/python_metrics.ht

ml

we perform analysis of the identified microservices

using various object-oriented quality metrics of the

design stage of the software life cycle.

Another possible threat to this study is the fact no

standard quality metrics are defined for the assessment

of identified microservice. For Teachers’ Feedback

application, and cargo tracking system, we relied on the

SonarGraph-Architect tool to collect quality assessment

attributes. For JPetStore and AcmeAir, we implemented

the metrics discussed in a related publication [25] and

took clarifications from the publication’s authors in case

of doubts.

Our approach works on monolithic source code. In

our design, the code repositories of the chosen

benchmark applications (available at Github) have only

one SRC folder, ensuring them to be monolithic

applications. Thus, it becomes imperative not to choose

projects having multiple project folders (multiple SRC

folders) which indicate them to be SOA based

application or already microservice application.

Lastly, selected benchmark projects used in this

research are open-source projects. We anticipate and

predict the consistency of our results for proprietary and

enterprise level software as well.

7. Conclusions and Future Work

For microservice extraction, the most challenging task

is to identify the right microservice candidates. Few

brownfield approaches exist in academic literature to

identify microservices using source code repositories.

However, these approaches rely on static class-level

coupling information and largely neglect 1) method-

level refactoring, 2) splitting of bloated classes, and 3)

database decomposition. Our research is motivated to

fill these gaps existing in the decomposition approaches

proposed in this area so far. We make use of MMR

which is applied when a method depends more on

members of other classes than on its own original class.

MMR improves organization, maintainability,

reliability, and reusability of code and also results in

achieving fine-grained microservices.

Sharing a single database among multiple services as

recommended so far is incomplete and could be more

error-prone. For MSA, we should split the monolith

database such that each microservice totally

encapsulates its own data. For this, we have proposed a

CMEA, utilizing both business functions and DE to

identify microservices. This approach identifies

functionally independent microservices by grouping

cohesive business classes and methods. For ownership

of DE, we have also recommended step-by-step guiding

criteria for a microservice. Largely, the results of our

technique are positive and outperform other state-of-

the-art baseline techniques. Our approach facilitates

42 The International Arab Journal of Information Technology, Vol. 21, No. 1, January 2024

system developers and architects in identifying logically

cohesive microservices from a legacy application and

partitioning DE around these services. In the future, we

will apply our approach to large-scale enterprise

applications. Also, we aspire to evaluate the database

performance of the microservice-based systems

implemented using CMEA.

Acknowledgment

We express gratitude to the developers of JPetStore,

AcmeAir, and cargo tracking system for providing their

applications codebase for this research. We also thank

HELLO2MORROW Inc. for providing a trial and

evaluation license for SonarGraph-Architect. We also

like to express our special thanks of gratitude to the team

of system architects from Tribal Scale, Dubai, for the

qualitative assessment of our approach.

References

[1] Al-Debagy O. and Martinek P., “Dependencies-

Based Microservices Decomposition Method,”

International Journal of Computers and

Applications, vol. 44, no. 9, pp. 814-821, 2022.

https://doi.org/10.1080/1206212X.2021.1915444

[2] Bajaj D., Bharti U., Goel A., and Gupta S., “Partial

Migration for Re-Architecting a Cloud Native

Monolithic Application into Microservices and

Faas,” in Proceedings of the 5th International

Conference on Information, Communication and

Computing Technology, New Delhi, pp. 111-124,

2020. https://doi.org/10.1007/978-981-15-9671-

1_9

[3] Bajaj D., Bharti U., Goel A., and Gupta S., “A

Prescriptive Model for Migration to Microservices

Based on SDLC Artifacts,” Journal of Web

Engineering, vol. 20, no. 3, pp. 817-852, 2021.
DOI: 10.13052/jwe1540-9589.20312

[4] Bajaj D., Goel A., and Gupta S., “GreenMicro:

Identifying Microservices from Use Cases in

Greenfield Development,” IEEE Access, vol. 10,

pp. 67008-67018, 2022.

DOI:10.1109/ACCESS.2022.3182495

[5] Baresi L., Garriga M., and De Renzis A.,

“Microservices Identification through Interface

Analysis,” in Proceedings of the Service-Oriented

and Cloud Computing 6th IFIP WG 2.14 European

Conference, Oslo, pp. 19-33, 2017.

https://doi.org/10.1007/978-3-319-67262-5_2

[6] Baškarada S., Nguyen V., and Koronios A.,

“Architecting Microservices: Practical

Opportunities and Challenges,” Journal of

Computer Information Systems, vol. 60, no. 5, pp.

428-436, 2020.

https://doi.org/10.1080/08874417.2018.1520056

[7] Cerny T., “Aspect-Oriented Challenges in System

Integration with Microservices, SOA and IoT,”

Enterprise Information Systems, vol. 13, no. 4, pp.

467-489, 2019.

DOI:10.1080/17517575.2018.1462406

[8] Daoud M., El Mezouari A., Faci N., Benslimane

D., Maamar Z., and El Fazziki A., “A Multi-

Model Based Microservices Identification

Approach,” Journal of Systems Architecture, vol.

118, pp. 102200, 2021.

https://doi.org/10.1016/j.sysarc.2021.102200

[9] Desai U., Bandyopadhyay S., and Tamilselvam S.,

“Graph Neural Network to Dilute Outliers for

Refactoring Monolith Application,” SFU Public

Knowledge Project, vol. 35, no. 1, pp. 72-80,

2021. DOI:10.1609/aaai.v35i1.16079

[10] El Kholy M. and El Fatatry A., “Framework for

Interaction between Databases and Microservice

Architecture,” IT Professional, vol. 21, no. 5, pp.

57-63, 2019. DOI:10.1109/MITP.2018.2889268

[11] Eski S. and Buzluca F., “An Automatic Extraction

Approach-Transition to Microservices

Architecture from Monolithic Application,” in

Proceedings of the 19th International Conference

on Agile Software Development: Companian,

Porto, pp. 1-6, 2018.

https://doi.org/10.1145/3234152.3234195

[12] Ghlala R., Kodia Z., and Ben Said L., “Using

MCDM and FaaS in Automating the Eligibility of

Business Rules in the Decision-Making Process,”

The International Arab Journal of Information

Technology, vol. 20, no. 2, pp. 224-233, 2023.

https://doi.org/10.34028/iajit/20/2/9

[13] Gysel M., Kölbener L., Giersche W., and

Zimmermann O., “Service Cutter: A Systematic

Approach to Service Decomposition,” in

Proceedings of the 5th IFIP WG 2.14 European

Conference on Service-Oriented and Cloud

Computing, Vienna, pp. 185-200, 2016.

https://doi.org/10.1007/978-3-319-44482-6_12

[14] Jamshidi P., Pahl C., Mendonça N., Lewis J., and

Tilkov S., “Microservices: The Journey so far and

Challenges Ahead,” IEEE Software, vol. 35, no. 3,

pp. 24-35, 2018. DOI:10.1109/MS.2018.2141039

[15] Jin W., Liu T., Zheng Q., Cui D., and Cai Y.,

“Functionality-Oriented Microservice Extraction

Based on Execution Trace Clustering,” in

Proceedings of the IEEE International

Conference on Web Services, San Francisco, pp.

211-218, 2018. DOI:10.1109/ICWS.2018.00034

[16] Jin W., Liu T., Cai Y., Kazman R., Mo R., and

Zheng Q., “Service Candidate Identification from

Monolithic Systems Based on Execution Traces,”

IEEE Transactions on Software Engineering, vol.

47, no. 5, pp. 987-1007, 2021.

DOI:10.1109/TSE.2019.2910531

[17] Kalia A., Xiao J., Krishna R., Sinha S., Vukovic

M., and Banerjee D., “Mono2Micro : A Practical

and Effective Tool for Decomposing Monolithic

Java Applications to Microservices,” in

https://doi.org/10.1080/1206212X.2021.1915444
https://doi.org/10.1007/978-981-15-9671-1_9
https://doi.org/10.1007/978-981-15-9671-1_9
https://doi.org/10.1109/ACCESS.2022.3182495
https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1080/08874417.2018.1520056
http://dx.doi.org/10.1080/17517575.2018.1462406
https://doi.org/10.1016/j.sysarc.2021.102200
http://dx.doi.org/10.1609/aaai.v35i1.16079
https://doi.org/10.1109/MITP.2018.2889268
https://doi.org/10.1145/3234152.3234195
https://doi.org/10.34028/iajit/20/2/9
https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/ICWS.2018.00034

A Comprehensive Microservice Extraction Approach Integrating Business Functions ... 43

Proceedings of the 29th ACM Joint Meeting on

European Software Engineering Conference and

Symposium on the Foundations of Software

Engineering, pp. 1214-1224, Athens, 2021.

https://doi.org/10.1145/3468264.3473915

[18] Kumar L., Satapathy S., and Murthy L., “Method

Level Refactoring Prediction on five Open Source

Java Projects Using Machine Learning

Techniques,” in Proceedings of the 12th

Innovations on Software Engineering Conference,

Pune, pp. 1-10, 2019.

https://doi.org/10.1145/3299771.3299777

[19] Li S., Zhang H., Jia Z., Li Z., Zhang C., Li J., Gao

Q., Ge J., and Shan Z., “A Dataflow-Driven

Approach to Identifying Microservices from

Monolithic Applications,” Journal of Systems and

Software, vol. 157, pp. 110380, 2019.

https://doi.org/10.1016/j.jss.2019.07.008

[20] Lohnertz J. and Oprescu A., “Steinmetz : Toward

Automatic Decomposition of Monolithic

Software into Microservices,” Seminar Series on

Advanced Techniques and Tools for Software

Evolution, vol. 2754, pp. 1-8, 2020. https://ceur-

ws.org/Vol-2754/paper2.pdf

[21] Márquez G., Villegas M., and Astudillo H., “A

Pattern Language for Scalable Microservices-

Based Systems,” in Proceedings of the 12th

European Conference on Software Architecture:

Companion, Madrid, pp. 1-7, 2018.

https://doi.org/10.1145/3241403.3241429

[22] Matalqa S. and Mustafa S., “The Effect of

Horizontal Database Table Partitioning on Query

Performance,” The International Arab Juornal of

Information Technology, vol. 13, no. 1A, pp. 184-

189, 2016.

https://iajit.org/PDF/Vol%2013,%20No.%201A

%20(Special%20Issue)/329.pdf

[23] Mazlami G., Cito J., and Leitner P., “Extraction of

Microservices from Monolithic Software

Architectures,” in Proceedings of the IEEE 24th

International Conference on Web Services,

Honolulu, pp. 524-531, 2017.

DOI:10.1109/ICWS.2017.61

[24] Raj V. and Bhukya H., “Assessing the Impact of

Migration from SOA to Microservices

Architecture,” Springer Nature Journal of

Computer Science, vol. 4, pp. 577, 2023.

https://doi.org/10.1007/s42979-023-01971-2

[25] Schmidt F., MacDonell S., and Connor A., Studies

in Computational Intelligence, Springer, 2012.

https://doi.org/10.1007/978-3-642-23202-2_7

[26] Selmadji A., Seriai A., Bouziane H., Mahamane

R., Zaragoza P., and Dony C., “From Monolithic

Architecture Style to Microservice one Based on a

Semi-Automatic Approach,” in Proceedings of

the IEEE International Conference on Software

Architecture, Salvador, pp. 157-168, 2020.

DOI:10.1109/ICSA47634.2020.00023

[27] Taibi D., Lenarduzzi V., and Pahl C.,

Microservices: Science and Engineering,

Springer, 2018. https://doi.org/10.1007/978-3-

030-31646-4_5

[28] Trabelsi I., Abdellatif M., Abubaker A., Moha N.,

Mosser S., Ebrahimi‐Kahou S., and Guéhéneuc

Y., “From Legacy to Microservices: A Type-

based Approach for Microservices Identification

Using Machine Learning and Semantic Analysis,”

Journal of Software: Evolution and Process, vol.

35. no. 10, pp. 1-27, 2023.

https://doi.org/10.1002/smr.2503

[29] Tsantalis N. and Chatzigeorgiou A.,

“Identification of Move Method Refactoring

Opportunities,” IEEE Transactions on Software

Engineering, vol. 35, no. 3, pp. 347-367, 2009.

DOI:10.1109/TSE.2009.1

[30] Walker A., Das D., and Cerny T., “Automated

Code-Smell Detection in Microservices through

Static Analysis: A Case Study,” Applied Sciences,

vol. 10, no. 21, pp. 1-20, 2020.

https://doi.org/10.3390/app10217800

[31] Zimmermann O., “Microservices Tenets: Agile

Approach to Service Development and

Deployment,” Computer Science-Research and

Development, vol. 32, no. 3-4, pp. 301-310, 2017.

DOI:10.1007/s00450-016-0337-0

[32] Von Zitzewitz A., “Mitigating Technical and

Architectural Debt with Sonargraph,” in

Proceedings of the IEEE/ACM International

Conference on Technical Debt, Montreal, pp. 66-

67, 2019. DOI:10.1109/TechDebt.2019.00022

https://doi.org/10.1145/3468264.3473915
https://doi.org/10.1145/3299771.3299777
https://doi.org/10.1016/j.jss.2019.07.008
https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1007/s42979-023-01971-2
https://doi.org/10.1007/978-3-642-23202-2_7
https://doi.org/10.1109/ICSA47634.2020.00023
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1002/smr.2503
https://doi.org/10.1109/TSE.2009.1
https://doi.org/10.3390/app10217800
http://dx.doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1109/TechDebt.2019.00022

44 The International Arab Journal of Information Technology, Vol. 21, No. 1, January 2024

Deepali Bajaj is Associate

Professor in Department of

Computer Science, Shaheed Rajguru

College of Applied Sciences for

women (University of Delhi). She

has over 17 years of teaching

experience at university level. She

has done her Ph.D. in the area of Cloud and Distributed

Computing. Her key research areas are Microservices,

Function-as-a-Service (FaaS) and Serverless

Technology. She has authored several national and

international research publications. She has also

authored and edited books in Computer Science.

Anita Goel is Professor in

Department of Computer Science,

Dyal Singh College, University of

Delhi, India. She has a work

experience of more than 30 years.

She is a visiting faculty to several

Universities in India. She has guided

several students for their doctoral studies and has

travelled internationally to present research papers. Her

research interests include Cloud Computing,

Microservices, Serverless Computing, Software

Engineering, and Technology-Enhanced education

(MOOC). She has authored books in Computer Science

and has several national and international research

publications.

Suresh Gupta is B.Tech. from IIT

Delhi. He worked as Deputy Director

General, Scientist-G and Head of

Training at National Informatics

Centre, New Delhi. He has extensive

experience in design and

development of large Complex

Software Systems. Currently he is a

Visiting Faculty at Department of Computer Science

and Engineering, IIT Delhi. His research interests

include Software Engineering, Data Bases and Cloud

Computing.

A Comprehensive Microservice Extraction Approach Integrating Business Functions ... 45

Appendix A

Table A.1. MACM for JPetStore.

μName Supplier Id Sign On Account Profile BannerData Order Order

status

Line item Category Product Item Inventory Sequence

Cart R - - - - - - - R R R R -

Catalog RW - - - RW - - - RW RW RW RW -

Order - - R - - RW RW RW - - R - RW

Account - RW RW RW RW - - - - - - - -

Table A.2. MACM for AcmeAir.

μName Booking Customer session Flight Customer Flight segment AirportCode mapping

Flight - - RW - RW RW

Booking RW - - R R R

Authentication - RW - R - -

Customer R R R RW - -

Table A.3. MACM for cargo tracking system.

μName Cargo Route Specification Itinerary Leg Location Handling event Delivery Voyage Carrier movement

Cargo booking RW RW R R R - RW R R

Handling R - R - - RW R R R

Location - - - RW - - - -

Voyage and planning R R R R R - - RW RW

Table A.4. MACM for TFWA.

μName Department Course Paper QTemplate Feedback User role User details

Feedback - R R R RW - -

Analytics R R R - R - -

Authentication - - - - - RW RW

