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Abstract: To ensure the reliability of sensors, it is very important to study Fault Diagnosis (FD) methods for sensors. This study 

puts forward a Convolutional Neural Network (CNN)-FD model with randomly discarding network units. This model reduces 

the huge computational burden caused by excessive parameters in the CNN through silent neural nodes to achieve efficient 

automatic extraction and analysis of fault features. Considering the signal data imbalance caused by small sample failures, this 

study used Generative Adversarial Networks (GANs) to achieve intelligent expansion of samples. The performance test results 

showed that the proposed model achieved the highest classification accuracy in binary classification tasks, with a size of 93.5%, 

which is 5.5% and 3.5% higher than the Densenet model and ResNet model, respectively. In multi-classification tasks, the model 

still realized the best classification accuracy, with a size of 89.9%, which is 8.8% higher than the Densenet model. The 

experimental results of fault detection denoted that the proposed model arrived the highest recognition accuracy in aging failure 

and sensitivity failure, with 96.8% and 92.6% respectively, while the recognition accuracy of shallow neural networks and deep 

confidence networks was lower than 90%. This indicated that the proposed algorithm can effectively perform feature extraction 

and fault pattern recognition. 
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1. Introduction 

Energy is the foundation of a country's development, 

and non-renewable resources such as oil, natural gas, 

and coal are important factors driving the modernization 

of the global economy [14]. However, if the oil and 

natural gas resources are exhausted due to excessive 

consumption of oil and natural gas, the global energy 

crisis will be triggered. Under the theme of sustainable 

development, it is necessary to research and use cleaner 

energy sources. Hydrogen is a gas composed of the 

lightest elements and has high dispersibility, so its 

propagation speed in the atmosphere is much faster than 

gasoline [32]. As soon as hydrogen gas leaks, it will 

quickly spread outward. Its highly dispersed nature 

makes it more difficult to control compared to other 

gases. Moreover, the combustible range of hydrogen is 

wider, so scientifically and efficiently measuring it to 

reduce or avoid problems such as explosion is currently 

an urgent problem to be solved [1]. Hydrogen Sensors 

(HSs) are a primary means of effectively detecting 

hydrogen content and quickly capturing and detecting 

hydrogen in the event of hydrogen leakage. When the 

hydrogen content exceeds the normal range, it can also 

use a secondary instrument to alarm. Semiconductor 

HSs have been used as a gas sensor for the 

determination of hydrogen content due to their 

advantages such as low price, high sensitivity, and easy 

operation. However, in long-term use, the detection  

 
characteristics of semiconductor HS components are not 

only related to hydrogen content, but also closely related 

to factors such as temperature, humidity, and pressure. 

In engineering practice, due to environmental 

temperature and humidity, vibration and shock, the 

sensitivity of HSs is prone to degradation and failure 

[30]. Under real working conditions, changes in gas 

concentration may occur due to the influence of air 

humidity or the falling of gaseous substances. Not only 

that, due to external vibrations and other reasons, it is 

easy to break the heating and the lead wires, thereby 

causing the output of the sensor to malfunction. These 

factors will ultimately cause parameter deviations of 

sensors, reduce system efficiency, and even cause 

sensor failure, resulting in incorrect measurements and 

judgments, leading to significant disasters [31]. 

Therefore, Fault Diagnosis (FD) of HSs is very 

necessary. In view of this, this study proposed an 

optimized Convolutional Neural Network (CNN) model 

for feature extraction and learning of sensor faults to 

achieve accurate FD. In addition, considering the 

imbalanced fault data, this study also combined the 

Generative Adversarial Networks (GANs) to generate 

high similarity fault samples to improve the recognition 

effect of multi category faults. 

This study is mainly composed of four parts for 

discussion. The first section is a literature review on 

CNNs, GANs, and sensor faults. The second section is 

a fault feature recognition model constructed using an 
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improved CNN model and a GAN used for fault small 

sample expansion. The third section is a performance 

and application analysis of deep convolutional GANs. 

The fourth part is a conclusive summary of the FD 

model proposed by the research institute. The reason for 

using CNN improved based on dropout strategy is that 

it shares weights, reduces the number of links in the 

network, and reduces the risk of overfitting. The reason 

for using GANs based on duality generation is that it 

helps to enhance the sample dataset and generate 

artificially synthesized data samples. 

2. Related Works 

Many scholars have conducted extensive research on 

CNNs or GANs, their research results are shown in 

Table 1. 

Table 1. Comparison of previous research achievements on GANs. 

Number Literature title Research findings Research deficiency 

[20] Retinal vessel segmentation using Multi-Scale 
Residual convolutional neural Network (MSR-

Net) combined with GANs 

Kar et al. [20] propose a method for accurately detecting retinal 
blood vessels from fundus images using GAN's multiple loss 

function 

Small sample size for testing 

[27] CNNs as a model of the visual system: past, 

present, and future 

Lindsay [27] elaborates on the significance of cellular neural 

networks for visual tasks and discusses new opportunities for 

cellular neural networks in visual research beyond basic object 

recognition 

For quantitative scientific validation 

[7] Multi-scale GAN for image super-resolution Daihong et al. [7] propose a multi-scale GAN to address the 

difficulty of reconstructing high-frequency information and details 

in low resolution images 

The algorithm has low computational 

efficiency 

[21] Generating three-dimensional structures from a 

two-dimensional slice with GAN-based 

dimensionality expansion 

Kensh and Cooper [21] design a GAN architecture called Slice 

GAN, which can synthesize high fidelity 3D datasets using a single 

representative 2D image 

Slow processing speed 

[24] Lost data reconstruction for structural health 

monitoring using deep convolutional GANs 

Lei et al. [24] propose a deep convolutional GAN There are fewer types of signals that can 

be processed 

[8] Sensor-fault detection, isolation and 

accommodation for digital twins via modular 

data-driven architecture 

Darvishi et al. [8] propose a sensor validation architecture based on 

general machine learning to detect anomalies in sensor 

measurements and identify erroneous anomalies 

Small sample size for testing 

[10] Sensor fault detection and isolation via 

networked estimation: Full-rank dynamical 
systems 

Doostmohammadian and Meskin [10] propose a sensor replacement 

scheme based on graph theory 

/ 

[18] Sensor fault detection and isolation using a SVM 

for vehicle suspension systems 

Jeong et al. [18] propose a residual generation method based on 

fault isolation observer 

Operators need to have a certain industry 

basic knowledge reserve 

[38] Intermittent sensor fault detection for stochastic 

LTV systems with parameter uncertainty and 

limited resolution 

Zhang et al. [38] designed a sensor fault detection model for 

stochastic Linear Time-Varying (LTV) systems 

The model is black box and has poor 

interpretability 

[33] Event-triggered fuzzy filtering for networked 

systems with application to sensor fault detection 

Tan et al. [33] propose an event triggering scheme with two 

triggering matrices, 

Narrow application range 

[36] Dropout technique for image classification based 

on extreme learning machine 

Wen et al. [36] propose a new CNN learning rate scheduler based 

on reinforcement learning to enhance the potential of fault 
classification for classifying fault data diversity. 

Fewer training samples 

[15] Research and application of deep learning in 

image recognition 

Guo et al. [15] propose a deep learning based FD method for small 

current grounded distribution systems 

Slow recognition speed 

[19] A new reinforcement learning based learning 

rate scheduler for CNN in fault classification 

Jiang et al. [19] propose a CNN based azimuth FD method to 

eliminate noise interference and consider possible connections 

between signal frames 

Insufficient test data volume 

[23] Deep-learning-based fault classification using 

Hilbert-huang transform and CNN in power 

distribution systems 

Kiranyaz et al. [23] discuss and compares the performance and 

advantages and disadvantages of 1D CNN and 2D CNN in 

classification tasks 

Lack of dataset based comparative testing 

[2] Distributed Reduced CNNs Alajanbi et al. [2] design a distributed minimal CNN algorithm / 

 

Kar et al. [20] proposed an accurate retinal blood 

vessel detection method from fundus images by using 

multiple loss function of the GAN. The GAN structure 

included a generator and a discriminatoras segmentation 

and classification networks, respectively. The outcomes 

proved that the accuracy of the method on multiple 

datasets exceeded 90%. Lindsay [27] elaborated on the 

significance of CNNs for visual tasks and discussed new 

opportunities for cellular neural networks in visual 

research beyond basic object recognition. Daihong et al. 

[7] proposed a multi-scale GAN to address the difficulty 

in reconstructing high-frequency information and 

details in low-resolution images. The multi-scale 

pyramid module inside the generator could extract 

features containing high-frequency information, and 

then used bicubic interpolation results to reconstruct 

high-resolution images. The outcomes demonstrated 

that the algorithm performed better on the two indicators 

of super-resolution tasks, Peak Signal-to-Noise Ratio 

PSNR and Structural Similarity Metric (SSIM). Kench 

and Cooper [21] introduced a GAN architecture called 

slice GAN, which could synthesize high-fidelity 3D 

datasets using a single representative 2D image. This 

was particularly important for the task of generating 

material micro structures, as cross-sectional micro 

graphs could contain sufficient information to 

statistically reconstruct 3D samples. To reconstruct the 

lost data in the structural health monitoring, Lei et al. 

[24] proposed a deep convolution generation 

countermeasure network, which included a generator 

with a codec structure and a countermeasure 

discriminator. The results showed that the final 

reconstructed signal matched well with the real signal in 

both the time and frequency domains. 
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Many scholars have adopted various research 

methods in sensor FD. Darvish et al. [8] proposed a 

universal machine learning based sensor validation 

architecture to detect anomalies in measurements from 

sensors and identify erroneous anomalies. The 

comprehensive statistical analysis results on three 

different real datasets showed that this method 

performed well in identifying soft and hard 

comprehensive faults. Doostmohammadian and Meskin 

[10] have considered the simultaneous sensor fault 

detection, isolation, and networked estimation in linear 

full-rank dynamic systems, and raised a sensor 

replacement scheme based on graph theory to recover 

potential network observability losses caused by the 

removal of faulty sensors. The study examined the fault 

detection and isolation scheme on an illustrative 

academic example to validate the outcomes and 

compare them with relevant literature. Jeong et al. [18] 

proposed a method based on fault isolation observers to 

generate residuals and use Support Vector Machines 

(SVMs) for estimation. The results showed that the FD 

algorithm was desired to lessen the workload required 

in the design process, and could also detect a small 

number of sensor faults. Zhang et al. [38] considered the 

detection of intermittent sensor faults in stochastic 

linear time-varying systems with parameter uncertainty 

and limited resolution. Through recommending a soft 

sensor model, a state estimator was designed, where the 

upper bound of the estimation error covariance was 

minimized at each time step. Finally, this method’s 

effectiveness was validated through two simulation 

experiments. Tan et al. [33] proposed an event 

triggering scheme with two triggering matrices to study 

the filtering of event triggered fault detection in 

nonlinear networked control systems. Finally, the new 

fault detection filtering technology’s effectiveness and 

superiority were demonstrated through examples. 

In the application of CNN in the direction of fault 

classification, Wen et al. [36] proposed a new CNN 

learning rate scheduler based on reinforcement learning 

to improve the potential of fault classification for the 

diversity classification of fault data. The results 

indicated that the algorithm performance was better than 

traditional machine learning methods. Guo et al. [15] 

proposed a FD method for small current grounding 

distribution system based on deep learning, and used 

image similarity recognition method based on CNN to 

classify faults. The findings expressed that this method 

hadhigh accuracy and adaptability in FD of distribution 

systems. To eliminate noise interference and consider 

possible connections between signal frames, Jiang et al. 

[19] proposed a bearing FD method based on CNN. A 

filtering method based on spectral kurtosis was 

proposed to suppress noise by utilizing the sensitivity of 

spectral kurtosis to pulses. Kiranyaz et al. [23] 

summarized that 1D CNN has recently become the latest 

technology of key signal processing applications, such 

as patient specific ElectroCardioGram (ECG) 

classification, structural health, power electronic circuit 

anomaly and motor fault detection. The difference 

between it and 2D CNN was discussed. 

In summary, scholars mainly use CNNs or GANs to 

improve image quality or reconstruct images. In sensor 

FD, they mainly use residual networks or SVMs for 

analysis, and rarely combine CNN and GAN for gas 

sensor fault detection. Alajanbi et al. [2] found that 

kernel based CNN algorithms can solve nonlinear 

supervised tasks, but this algorithm is time-consuming 

and memory intensive when dealing with large-sized 

kernel matrices. Therefore, they designed a distributed 

minimalist CNN algorithm that uses a distributed 

minimalist kernel to store data from multiple locations, 

and uses distributed training techniques based on 

alternating direction multipliers for model training. The 

test results show that the training and computation time 

of the improved algorithm is much lower than that of the 

original algorithm. 

Existing research mainly focuses on using CNN or 

GAN models for fault signal recognition or estimation, 

but there are few studies that use them to optimize fault 

data to achieve a balanced effect. 

For this, this study puts forward a deep convolutional 

GAN to diagnose HS faults and improve its diagnostic 

accuracy. The novel design of CNN technology is 

optimized using the dropout strategy. The dual GAN 

proposed by the research institute has noise generation 

and denoising networks, which are continuously 

enhanced through mutual dual regularization and 

optimized using the Wassertein distance function, 

which is different from traditional GAN networks. 

3. Construction of Sensor FD Model Based 

on Deep Convolutional Kernel GAN 

Due to different working conditions, the characteristics 

and quantity of fault signal data obtained by HSs also 

vary [22, 26, 35]. Current pattern recognition methods 

such as SVMs or extreme learning machines require 

manual feature extraction, resulting in uncertainty in the 

quality of extracted features [28]. To extract features 

without relying on expert experience, this study 

proposes an improved CNN algorithm to implement an 

end-to-end HSFD system. In addition, there is an 

imbalance in the sample size of different fault data [11, 

13]. To ensure that the network can train well for faults 

with small sample sizes, this study introduces GANs to 

optimize the small sample problem. 

3.1. Improved CNN FD Model Based on 

Random Dropping of Network Units 

The neurons of CNNs can be optimized through training 

and can also perform single input independent 

operations [5]. The neurons distributed in different 

layers of CNNs contain three spatial dimensions: height, 

width, and depth. CNNs typically perform data 
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processing based on four principles: internal links, 

weight sharing, pooling, and multi-layer [4, 25]. The 

CNN structure is sequentially divided into input, 

convolutional, pooling, and fully connected layers [37]. 

By continuously training CNNs, the optimal model 

structure can be obtained. Convolutional layers have a 

crucial influence on the effectiveness of CNNs. In 

sensor FD, they can extract different input fault signal 

features. The feature map of each fault signal is 

composed of a rectangular neural network, and the 

neural network of a single fault signal has a common 

weight called a convolutional kernel [29]. The 

convolutional kernel is usually initialized as a random 

matrix, and the convolutional layer is shown in Figure 

1. 

M*M (M-N+1)*(M-N+1)

Input fault signal 

feature map

Output fault signal 

feature map

Convolutional 

kernel

N*N

 

Figure 1. Convolutional layer. 

The convolution layer contained in the CNN has 

several filters, which is a predefined hyper parameter [3, 

34]. The number of filters within a layer represents the 

depth dimension of the output of the activated feature 

map, which is created by the convolutional layer as 

input to the next layer [17]. Each filter has a set width 

and height, corresponding to the local receiving field of 

a single unit within the layer. The filter acting on the 

input data produces an output of a convolutional layer, 

known as feature mapping. In the training phase of 

CNN, the weight values in the filter can be learned [39]. 

The output dimension of the convolutional layer has a 

depth component, and if each segment of the output is 

segmented, a feature map of a two-dimensional plane 

will be obtained. A filter used on a single two-

dimensional plane contains a weight that is shared 

among all filters used on the same plane. This maintains 

the same feature detector in another part of the input 

data as in another part of the input data. Therefore, the 

direct advantage of using common weights is that it 

reduces the number of links in the network and the risk 

of overfitting [6]. Zk means the eigenvalues of the K-th 

feature map of a nonlinear transformation, which are 

calculated by Equation (1).  

𝑍𝑘 = 𝑊𝑘 ⊗ �̃� + 𝑏𝑘 

In Equation (1), x  is the two-dimensional grayscale 

image of the input sensor fault signal; Wk expresses the 

convolution kernel of the sensor fault signal feature 

map; bk denotes the offset; ⊗ refers to the convolution 

of the two-dimensional grayscale image; H indicates a 

two-dimensional convolutional kernel, with input I. The 

convolution calculation is represented by Equation (2).  

𝑆(𝑖, 𝑗) = (𝐼 × 𝐻)(𝑖, 𝑗) =∑∑𝐼(𝑚, 𝑛)𝐻(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚

 

In Equation (2), S(i,j) denotes the result of convolution 

calculation. The pooling layer, also known as 

subsampling, is used for down sampling the 

characteristic map of the input sensor. Pooling is an 

important concept in CNN, which is actually a form of 

down sampling. There are various forms of nonlinear 

pooling functions, among which maximum pooling is 

the most common. It divides the input image into several 

rectangular regions and outputs the maximum value for 

each sub region. This mechanism is effective, because 

after discovering a feature, its precise position is far less 

important than its relative position with other features. 

The pooling layer continuously reduces the spatial size 

of the data, resulting in a decrease in the number of 

parameters and computational complexity, which to 

some extent also controls overfitting. Due to the absence 

of parameters in the pooling layer, this method can cut 

down the dimensionality of the feature expression of the 

fault signal and computational time and net parameters. 

This study applies the maximum pool function to 

calculate the maximum value in a local neighborhood 

rectangle. In the pooling layer, assuming the 

characteristic map of a sensor fault as input, Equation 

(3) is used to calculate the output of the level I 

characteristic map. 

  1
, 1,...,

l l l l
x f down x b j Nj j j j


    

In Equation (3), l
jb expresses additive deviation; l

j

means multiplicative deviation; 1l
jx  infers to input 

diagram of j layer; l
jx stands for output diagram of j 

layer; f indicates activation function; down denotes sub 

sampling function. Figure 2 is a schematic diagram of 

the fully connected layer. 

Classifier

Input

Output

 

Figure 2. Schematic diagram of fully connected layer. 

The convolutional and pooling layers are used to 

extract the characteristics of sensors, while the fully 

connected layer is used to convert the feature 

information of 2D grayscale images into 1D feature 

vectors. The Softmax classifier makes final judgments 

(2) 

(3) 

(1) 
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and identifies fault patterns based on the characteristics 

of faults, and outputs FD results. Equation (4) is the 

expression for the output result of the classifier.  

𝑦(𝑎𝑖) =
𝑒𝑥𝑝⁡(𝑎𝑖)

∑ 𝑒𝑥𝑝⁡(𝑎𝑖)
 

In Equation (4), y(ai) represents the output result of the 

classifier; a is the output value of the fault signal feature 

vector in the fully connected layer. Because of the 

massive parameters in the CNN network, it will increase 

computational complexity and slow down 

computational efficiency. To minimize computational 

complexity as much as possible, this study adopts a 

network unit random discarding method, as shown in 

Figure 3. 

(a) Traditional neural network (b) Dropout neural network

 

(a) Traditional neural network (b) Dropout neural network

 

a) Traditional neural network. b) Dropout neural network. 

Figure 3. Neural network model diagram with random discarding of 

network units. 

Random discarding is a method of implementing 

different combinations of nodes in a neural network by 

actively and randomly silencing some nodes (while still 

retaining their weight values) [12]. The key concept of 

this method is to randomly remove units from the neural 

network to avoid excessive adaptation between units 

[16]. In addition, it is an effective method to 

approximate the exponential combination of various 

neural networks [9]. Removing a unit from the network 

means temporarily removing any input and output links 

of that unit from the network. Equation (5) is the 

expression for calculating the feedforward operation 

when network units are randomly discarded. 

 
 

     
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 
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




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In Equation (5), l denotes the hidden layer number; 
( 1)l
iz  is the input vector; y(l) represents the output vector; 

( 1)l
iw   stands for the weight value; ( 1)l

ib  means offset; f 

stands for activation function; × infers to the 

multiplication of vectors by their corresponding 

elements; ( )l
jr  denotes a random variable and obeys the 

Bernoulli distribution; �̃�(𝑙) indicates the product of the 

random variable and the output ( )ly  of the layer, and is 

used as the input value for the next layer. z means the 

category value for sensor fault mode diagnosis. 

3.2. Construction of Small Sample Fault 

Equilibrium Model Based on Dual GAN 

The feature extraction algorithm based on traditional 

deep learning relies on a large dataset for model 

training. And the dataset it uses belongs to paired 

datasets with and without noise, which greatly increases 

the learning time of the model and reduces the 

efficiency of image extraction. Automatic generation of 

datasets is one of the functions that GAN can achieve. 

For fault feature images, the generating noise samples 

by fitting the initial image or the mapping relationship 

between fitting noise and non-noise samples is the key 

to dataset generation. However, the disadvantage of 

these two methods is that the former has too many hyper 

parameters, which requires a lot of manual adjustment 

and processing, while the latter has unstable learning 

due to too high learning dimensions. Therefore, the 

study chooses a dual GAN to establish a joint 

distribution relationship between the noiseless and 

noisy images, which avoids the need for a large dataset 

to construct the mapping relationship between the two 

images. Figure 4 is a schematic diagram of the network 

structure composition. 

Noisy digital 

images

Noisy digital 

images

Image denoising 

network

Noise generating 

network

x̂

ŷ

 ˆ,Rp x y

 ˆ,Gp x y

 ,p x y
Discriminator 

network

z Output Results
 

Figure 4. Composition diagram of dual GAN structure. 

From Figure 4, the network mainly consists of three 

functional sub-networks for noise generation, image 

denoising, and sample authenticity discrimination. The 

generation of noise and image denoising belongs to the 

reciprocal process, and this reciprocal relationship is the 

basis for establishing joint distributions in the network. 

Research has recorded them as pR(x, y) and pG(x, y), 

respectively. The enhanced noise samples automatically 

generated by the network will train the image denoising 

network in the future, which is beneficial for improving 

the denoising level of the network. Considering that 

UNet networks have the advantage of occupying fewer 

computing resources and having higher learning speed, 

this network module is used to construct noise 

generation networks and image denoising networks. 

The discriminator is composed of a single-layer fully 

connected network and a multi-layer CNN. It assumes 

that x and y represent the initial fault feature image 

without and with noise, respectively, then digital image 

data will be obtained for (x, y). Equation (6) is the 

transformation expression of the input data pair.  

(5) 

(4) 
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{
�̂� = 𝑅(𝑦)⁡⁡⁡
ŷ = 𝐺(𝑥, 𝑧)

 

In Equation (6), x̂  and ŷ  express the enhanced sample 

data output through the noise generating network G and 

the denoising network R. This enhancement of sample 

data comes from the dual regularization in the dual 

GAN. Since x̂  needs to be given noise information, the 

variable parameter z that obeys normal distribution and 

belongs to isotropy is introduced to simulate the noise 

brought by the hardware itself in the image generation. 

x, y, x̂ , and ŷ  can form data pairs  ˆ,x y  and  ˆ,x y , and 

then  ˆ,Rp x y  and  ˆ,Gp x y  are obtained using Bayesian 

thinking. The mathematical expressions for networks R 

and G are in Equation (7).  

     

           
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In Equation (7),  Rp x y  and  ,Gp y x z  denote the 

conditional probability distribution, and p(x), p(y), and 

p(z) represent the general probability distribution. The 

probability based joint distribution pR(x, y) and pG(x, y) 

can gradually approximate the true joint distribution 

relationship p(x, y) of the image after adversarial 

learning. Figure 5 is a schematic diagram of the UNet 

network framework. 

 

Figure 5. Schematic diagram of UNet network framework. 

From Figure 5, the UNet network mainly performs 

image scaling and restoration processing. In the image 

scaling operation, the linear convolution layer is utilized 

to control the size of the image feature map. Image 

restoration processing utilizes image transposition to 

transform the feature map into its original size. In the 

learning of image features, the network adopts a residual 

learning method, as shown in Equation (8).  

   

    . ,

R y y U y

G x z x U x z

 

 




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In Equation (8), U(·) denotes the forward propagation 

algorithm. The discriminator network is selected to 

replace the general loss function in the dual GAN. 

Figure 6 is a schematic diagram of the discriminator 

network structure. 
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Figure 6. Schematic diagram of discriminator network structure. 

From Figure 6, the discriminator network has a linear 

convolutional layer of 5 and a fully connected layer of 

1. The function of linear convolutional layers is to lessen 

the size of feature maps, while the function of fully 

connected layers is to blend image features. The 

function of the entire discriminator is to judge between 

real and false images, so that the adversarial network is 

in the correct training direction. 

3.3. GAN Model Optimized Based on 

Wassertein Distance Function 

When identifying fault features, it mainly includes three 

steps: extracting real noise, calculating noise residuals, 

and feature estimation. Several digital images are 

obtained through the device, and then denoising 

operations are performed on them using a dual GAN to 

obtain the denoised digital images. Afterwards, the 

noise residual is calculated using Equation (9).  

i i i
W I C   

In Equation (9), Ii refers to the original digital image, 

and Ci denotes the denoised digital image. The 

maximum likelihood estimation value K̂  of fault 

features can be obtained using residual values, and its 

calculation is shown in Equation (10).  
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Although the dual GAN has advantages in learning 

image sample features, the gradient vanishing situation 

that exists in the GAN itself has not disappeared. Due to 

the interruption of network training caused by the 

disappearance of gradients, the model loses its image 

recognition function. Therefore, it is necessary to 

optimize the above model. The study adopts Wassertein 

distance as the similarity training objective to improve 

the gradient vanishing problem. Equation (11) is a 

mathematical expression for calculating the Wassertein 

distance. 

 
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In Equation (11), D means the discriminator, and 𝛼 is 

the hyper parameter used to allocate the weights of the 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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noise generation and the noise removal networks. The 

purpose of calculating the distribution distance is to 

understand the distinguish between the actual output 

image and the expected output image. The similarity 

measurement parameters originally used to GANs are 

Kullback Leibler (KL) divergence or Jensen Shannon 

(JS) divergence, and their mathematical calculation 

expressions are shown in Equation (12).  

   
 

 

 

log

1 11 2 1 2
1 2 1 2

2 2 2 2

P x
KL P Q P x

Q xx X

P P P P
JS P P KL P KL P

 


 
 






   
       
   

 

In Equation (12), P(x) and Q(x) indicate the probability 

distributions of real and theoretical existence events, 

respectively. Although KL or JS have the function of 

characterizing the similarity between images, both 

divergences use the log function for similarity 

calculation. This causes the similarity value to suddenly 

change to a constant log2 as the discriminator is trained, 

leading to the phenomenon of gradient disappearance. 

The Wassertein distance function, on the other hand, has 

fewer fluctuations in its value and tends to be more 

stable during training due to the absence of mutation 

points. In addition to replacing the similarity 

measurement equation to optimize the original network, 

the study also considers introducing the loss function to 

speed up the network training. Equation (13) is the 

expression of loss function.  

   ˆ
1

LOSS F y x F y x      

In Equation (13),  F   indicates a Gaussian filter. 

Equation (13) is based on loss
1

x̂ x . The reason why 

1
x̂ x  is not directly used as the loss function is that 

the noise is a strong random signal. Figure 7 is a 

schematic diagram of the image update. 

Generator 1 Generator 2 Generator 3 Generator n

Generate images 1 Generate images 2 Generate images 3 Generate images n

Discriminator 1 Discriminator 2 Discriminator 3 Discriminator n

Real Picture

Renew Renew Renew

Renew Renew

 

Figure 7. Image update process. 

From Figure 7, the image output by the generator will 

be fed into the discriminator for true or false judgment. 

The goal of the generator is to obtain an image that is 

closer to the expected output, while the goal of the 

discriminator is to identify whether the image is false. 

As a result, a confrontational relationship is formed 

between the two. When the image output by the 

generator is sufficiently realistic to deceive the 

discriminator, both will no longer be updated, and an 

ideal network model will be obtained. 

4. Performance Evaluation Experiment and 

Utility Analysis of Deep Convolutional 

GAN Algorithm 

To verify the superiority of the deep convolutional GAN 

algorithm proposed by the research institute and its 

effectiveness in sensor FD, this study set up binary and 

multi-classification tasks to evaluate the algorithm 

performance. And five types of sensor fault signals are 

selected as experimental data to evaluate the algorithm's 

application effectiveness. 

4.1. Analysis of the Performance Results of 

Deep Convolutional GAN Algorithms 

The CIFAR-10 dataset was collected by professors from 

the University of Toronto in Canada and is a common 

database for tasks in the fields of machine learning and 

image recognition. The database contains images of 

airplanes, cars, cats, birds, dogs, deer, frogs, horses, 

boats, and trucks, all of which are 32 images×32 size 

color image. Due to the diverse color images included 

in the CIFAR-10 dataset and the image specifications 

meeting the requirements of the experimental 

environment, the performance evaluation experimental 

dataset was selected as CIFAR-10, this dataset was used 

for performance comparison analysis between the 

designed algorithm and the comparative algorithm in 

this study. This dataset contained 6*104 color images, 

with image types covering vehicles, animals, etc. The 

proportion of training and testing samples included was 

5:1. The grid structure used in the experiment was 

uniform. The convolution kernel of the grid structure 

was set to 4*4; the pooling layer used the maximum 

pooling function; the step size was set to 2; the sliding 

window was set to 2*2; the random abandonment 

probability of neurons was set to 0.5; the activation 

function was set to ReLU; and the learning rate was set 

to 0.005. Figure 8 shows the classification accuracy and 

loss value curves of different models in the binary 

classification task. In this study, the consistency 

between the predicted image type output by the model 

and the actual label will be used as the criterion for 

judging the correctness of classification. 

From Figure 8-a), the classification accuracy curve 

corresponding to the model proposed in the study had 

the fastest climbing speed,and was in a stable growth 

state, with little fluctuation. The classification accuracy 

has already exceeded 90% when the iteration times was 

50, and the convergence value was 93.5% when the 

amount of iterations was 110. The Densenet model 

corresponded to the slowest growth rate of the 

classification accuracy curve, and that of the entire 

curve was below 90%. When the amount of iterations 

(12) 

(13) 
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was 110, the classification accuracy was 88%, which 

was 5.5% lower than the former. The classification 

accuracy curve of the ResNet model fluctuated 

significantly in the early stage, but remained stable in 

the later stage. The final classification accuracy value 

was 90%, which was 3.5% lower than the model 

proposed in the study. From Figure 8-b), the proposed 

model achieved the minimum loss value of 2%. The loss 

value curve had the fastest descent speed, after 60 

iterations, it decreased from 10.3% of the initial loss 

value to 2.1%, and began to enter the convergence stage. 

The convergence curve was stable without oscillation, 

and the convergence performance was good. The initial 

loss value curve of the Densenet model was 11.2%. 

When the number of iterations was 100, the curve 

entered the convergence stage, and the loss value was 

2.8%. Afterwards, the curve achieved a final loss value 

of 2.8% in stationary convergence. The ResNet model 

had the worst convergence performance, with 

significant fluctuations in the curve during the decline, 

and the resulting loss value was relatively large, with a 

magnitude of 3.2%. By comparison, the proposed model 

reduced the loss value by 0.8% and 1.2% compared to 

the latter two models. This indicated that the proposed 

model had higher classification accuracy and faster 

convergence speed. Figure 9 shows the classification 

accuracy and loss value curves of different models in 

multi-classification tasks. 
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Figure 8. Classification accuracy and loss value curves of different 

models in binary classification tasks. 

From Figure 9-a), for multi-classification tasks, the 

classification accuracy curve corresponding to the 

Densenet model showed a brief downward trend during 

the iteration. For example, when the iteration interval 

was [10, 20], the classification accuracy decreased from 

70.9% to 66.8%. Then at the iteration interval [50, 70], 

the classification accuracy decreased from 84.6% to 

81.3%. When iterations were 110, the final 

classification accuracy obtained was 89.9%. For the 

classification accuracy curve of the ResNet model, 

because of the drastic fluctuations in the iteration, the 

convergence value was ultimately not achieved. The 

classification accuracy curve of the model proposed by 

the research institute had almost no fluctuations, and it 

began to converge at the iteration number of 50. The 

convergence value obtained at the completion of the 

iteration was 98.7%, which was 8.8% higher than the 

Densenet model. From Figure 9-b), the loss value curve 

corresponding to the proposed model showed a rapid 

decline and then tended to a stable convergence state. 

The initial loss value of the loss value curve was 10%. 

When the iteration times was 50, the loss value quickly 

decreased to 3.7%, and then began to converge at 70. 

Finally, the minimum loss value of 1.9% was achieved 

at 130 iterations. The convergence speed of the 

Densenet model was slower than that of the proposed 

model. When the iterations were 60, the loss value 

decreased to 3.8%. Afterwards, the loss value slowly 

decreased to 2.6%, and finally achieved a convergence 

loss value of 2.5% when the iteration times was 130. 

The ResNet model had the slowest descent speed and 

only converged when the number of iterations was 100, 

resulting in a final convergence value of 3.9%. By 

comparison, the proposed model has reduced the loss 

value by 0.6% and 2.0% compared to the latter two 

models. This indicated that the proposed algorithm 

outperformed other algorithms in multi -classification 

tasks. Figure 10 shows the accuracy comparison scatter 

plot. 
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Figure 9. Classification accuracy and loss curve of different models 

in multi classification tasks. 
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Figure 10. Accuracy comparison scatter plot. 

From Figure 10-a), in the accuracy calculation results 

of the binary classification task, the image recognition 

accuracy of the proposed model was only lower than 

that of the shallow CNN model on image 8, while on the 

other 9 images, the accuracy was higher than the latter. 

Among them, the accuracy of images 1, 2, 3, 7, 8, and 9 

was higher than 0.90, with sizes of 0.92, 0.91, 0.90, 

0.90, 0.92, and 0.91, respectively, which was 0.03, 0.03, 

0.01, 0.02, 0.06, and 0.05 higher than that of shallow 

CNNs. From Figure 10-b), in the accuracy calculation 

results of multi-classification tasks, the model image 

recognition accuracy used in the study was only lower 

than that of shallow CNNs on indicator 2, and higher 

than that of shallow CNNs on the other 9 indicators. The 

proposed model was higher than 0.90 in images 1, 3, 7, 

and 8, with the highest value obtained in image 3 being 

0.94. The shallow CNN only had an accuracy higher 

than 0.9 on image 2, with a value of 0.91, which was 

0.03 lower than the former. Figure 11 shows the F-

metric box plot. 

From Figure 11, the proposed model achieved higher 

indicator values in both binary and multi-classification 

tasks for the F indicator. For example, for binary 

classification tasks, the model used in the study had an 

F indicator higher than 0.86 on all images, with a 

minimum value of 0.867 obtained in image 2 and a 

maximum value of 0.91 obtained in image 7. The 

shallow CNN was not higher than 0.87 on the entire 

image, indicating that the recognition performance 

established by the proposed model was better. Figure 12 

shows the comparison results of ablation experiments. 
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Figure 11. F-metric comparison box plot. 

From Figure 12, the F-value curve optimized using 

the dropout strategy for CNN was higher than the 

unoptimized CNN curve. At the initial value, dropout 

CNN obtained an F-value of 0.874, while traditional 

CNN obtained an F-value of 0.862. In terms of F-value 

convergence, dropout CNN improved by 0.012. This 

indicated that the proposed model has improved 

classification accuracy due to the introduction of a 

random discard strategy. 
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Figure 12. F-metric comparison results. 

4.2. Analysis of FD Effectiveness of Deep 

Convolutional GAN Algorithm 

Five types of fault sensors were used in the experiment 

to correspond to aging failure, sensitivity failure, false 

welding failure sensitivity, heating wire disconnection 

fault, and heating wire aging fault. The first two have 

balanced fault data, while the latter three have 

imbalanced fault data. During the testing, the faulty 

sensor was placed in the sensor compartment and tested 

in a stable state. The operating conditions were normal 

atmospheric pressure, temperature was 18-25 ℃, and 
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moisture concentration was 40% -50%. The hydrogen 

concentration in the mixture was evenly distributed, and 

then entered the sensor array through a channel and was 

loaded onto the sensor array. The working and heating 

voltages of the sensing array were provided by a 

bidirectional adjustable power supply. The detection 

signals from the sensor array were collected in the data 

collection unit, which transmitted them to the computer 

system through the 232 bus. This application ran on 

Windows 11 and had a 3.2GHz CPU and 16GB of 

storage space. Figure 13 shows the performance 

comparison curves of different models in aging failure 

experiments.  

 

a) The recognition accuracy of three algorithms in aging failure. 

 

b) Loss function values of three algorithms on aging failure. 

Figure 13. Loss value and accuracy curve of aging failure fault data 

diagnosed by different algorithms. 

From Figure 13-a), the diagnostic accuracy curves 

obtained by the three algorithms through aging failure 

fault data testing showed consistency, all gradually 

increasing and tending to converge. As the iteration 

progressed, the algorithm proposed in the study 

achieved the greatest recognition accuracy of 96.8% 

when the number of iterations was 80. The shallow 

CNN achieved a second highest recognition accuracy of 

89.1% when the number of iterations was 86. The deep 

confidence network achieved a minimum recognition 

accuracy of 80% when the number of iterations was 90. 

By comparison, the algorithm proposed in the study 

achieved the fastest convergence speed and the highest 

accuracy, which were improved by 7.7% and 16.8% 

respectively, compared to the latter. From Figure 13-b), 

the change trend of the loss function value curve of the 

proposed algorithm and the depth confidence network 

was similar, both were decline curves. However, the 

decline speed of the proposed algorithm was faster. 

When the number of iterations was 40, the 

corresponding curve finally got a stable loss function 

convergence value, which was 0.48%. The slope of the 

deep confidence network was smaller and the decline 

speed was slower. When the iteration times was 70, the 

curve began to converge, and the final value of the loss 

function was 30%. The difference between the two loss 

function values was an order of magnitude. The loss 

function curve of shallow CNN showed a small 

horizontal fluctuation first, and then a decreasing trend. 

This made the curve fail to obtain the convergence value 

of the loss function, and its minimum value was 3%. By 

comparison, the algorithm proposed by the research 

reduced it by 2.52%. To sum up, the data showed that 

the raised algorithm has improved the convergence 

speed and stability of the network because it integrated 

the generation of confrontation network and the 

improvement of loss function. Figure 14 shows the 

performance curves of different models in sensitivity 

failure experiments. 

 

a) Identify accuracy of three algorithms in sensitivity failure. 

 

b) The loss function values of three algorithms in sensitivity failure. 

Figure 14. Loss value and accuracy curve of failure data with 

different algorithm diagnostic sensitivity. 

From Figure 14-a), the proposed algorithm, shallow 

CNN, and deep confidence network began to converge 

at iterations of 30, 63, and 80, respectively. The 

convergence values of the recognition accuracy 

obtained by the three algorithms were 92.6%, 89.1%, 

and 82.5%, respectively. From this, the algorithm 

proposed in the study converged 33 and 50 iterations 

earlier than the latter two, and the recognition accuracy 

was improved by 3.5% and 10.1%, respectively. So this 

algorithm had a faster convergence speed and 

recognition effect. From Figure 14-b), both the shallow 

CNN and the deep confidence network showed a trend 

of slowly decreasing first and then rapidly decreasing. 

Among them, the value of the loss function of the 

shallow CNN decreased from 35%, and the minimum 

value of 16.5% was obtained when the number of 
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iterations was 100. That of the deep confidence network 

decreased from 30%, and the minimum value of 14% 

was obtained at the end of the iteration. The 

corresponding curve of the proposed algorithm 

fluctuated slowly around 15% at first. When the number 

of iterations was 60 and 80, the curve started to decline 

and converge, respectively, and finally the minimum 

value of 10% of the loss function was obtained. Figure 

15 shows the Receiver Operating Characteristic (ROC) 

curves for aging failure and sensitivity failure diagnosis. 

 

a) Aging failure. 

 

b) Sensitivity failure. 

Figure 15. ROC curve for diagnosis of aging failure and sensitivity 

failure. 

From Figure 15, in the diagnosis of aging failure and 

sensitivity failure, the Receiver Operating 

Characteristic Curve (ROC) composed of true and false 

positive rate obtained by the proposed algorithm 

performed better. Based on the y=x line, when 

diagnosing aging failure, the ROC curve of the proposed 

algorithm was farthest from the line. For example, when 

the false positive rate was 0.1, the true positive rates 

obtained by the three algorithms were 0.67, 0.61, and 

0.51, respectively. Therefore, the proposed algorithm 

had a higher true positive rate. When the diagnostic 

sensitivity failed, the ROC curve obtained by the 

proposed algorithm was still further away from the y=x 

line. From this, the Area Under the Curve (AUC) value 

of the proposed model was larger, while the AUC of the 

other two models was smaller. Due to the fact that the 

ROC curve reflected the subject's discrimination ability, 

this indicated that the proposed algorithm had better 

recognition performance. Figure 16 shows the accuracy 

curves of diagnosing imbalanced fault data using 

different models. 

 

a) Model in this artical. 

 

b) Shallow convolutional network. 

Figure 16. Accuracy curves for diagnosing imbalanced fault data 

using different models. 

From Figure 16, the diagnostic accuracy curves of the 

model for three types of imbalanced fault data showed a 

small decrease during the iteration. Among them, the 

accuracy curve of false welding failure sensitive FD was 

generally stable during the convergence, while the 

heating wire disconnection fault and heating wire aging 

fault had a certain degree of fluctuation in the middle 

and later stages. However, the accuracy of all three was 

ultimately higher than 75%. The diagnostic accuracy of 

shallow CNNs for three types of imbalanced data 

showed a sharp decline trend, with the final accuracy 

being below 70%. By comparison, CNNs optimized 

using GAN performed better in small sample FD. 
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Figure 17. Model accuracy curves under different types of 

imbalances. 

From Figure 17, as the class imbalance increased, the 

accuracy of the K-means, AdaBoost, and CNN-GAN 

models all showed a decreasing trend. Due to the fact 

that the K-means algorithm is only suitable for balanced 

data classification tasks, the accuracy of this model was 

relatively low. The other two models applicable to 

imbalanced data both achieved high convergence 

accuracy of 85.3% and 93.8%, respectively. The 
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algorithm proposed in the study had higher accuracy and 

better performance. 

Table 2. Algorithm spatiotemporal complexity. 

Model Average run time(ms) CPU usage rate (%) 
Smote 562 5.6 

AdaBoost 597 5.9 

CNN-GAN 524 5.2 

From Table 2, the spatiotemporal complexity of the 

three models was at a reasonable level. The average 

running time range of the algorithm was within 600ms, 

and the CPU utilization rate was less than 6%. 

5. Conclusions 

Hydrogen is a flammable and explosive gas. To avoid 

dangerous accidents, the use of HSs to monitor the 

concentration of hydrogen in real-time has become the 

key to the safe use of hydrogen. HSs are mostly made of 

semiconductor materials, which are greatly affected by 

environmental factors such as temperature. To 

accurately detect the operational status of sensors and 

timely diagnose their fault types, this study proposed a 

FD model based on deep convolutional GANs. The 

results showed that in the binary classification task, the 

proposed model had the smallest corresponding loss 

value, with a size of 2.0%, which was 0.8% and 1.2% 

less than the convergence loss values of the Densenet 

and ResNet models. In multi-classification tasks, the 

model still achieved a minimum loss value of 1.9%, 

which was a decrease of 0.6% and 2.0% compared to 

the latter two models. When diagnosing fault data with 

balanced distribution, the proposed model achieved the 

fastest convergence speed and highest diagnostic 

accuracy in aging failure diagnosis, with a convergence 

iteration number of 70 and a size of 96.8%, which was 

7.7% and 16.8% higher than shallow CNNs and deep 

confidence networks, respectively. When diagnosing 

fault data with imbalanced distribution, the diagnostic 

accuracy of the models proposed in the study was higher 

than 75%, while the comparison model was lower than 

70%. The above results indicated that the proposed 

model accelerated the convergence speed of accuracy 

and loss rate, overcame the need for a large amount of 

labeled training samples, and improved HSFD 

accuracy. With the increasing variety and volume of 

fault data, processing these data requires a lot of time. 

Subsequent research will consider GPU hardware 

factors in optimization to improve computing speed. In 

addition, the current research has not been able to extend 

the proposed method to other types of sensor faults, and 

it is expected to conduct in-depth research in the future. 

The limitations and challenges of this study lie in the 

fact that although using GAN to design a model solves 

the problem of data imbalance, the training process of 

the model is often difficult to control, which can hinder 

its application. Secondly, the model designed in this 

study has poor processing ability for high-dimensional 

and large-scale data. As a result, when the scale of the 

data to be processed is large, the training and prediction 

speed of the model is significantly slowed down. The 

future research directions of this study are as follows: 

The first direction is to attempt to further enhance the 

computational performance of the algorithm by 

improving its structure; the second direction is to test the 

application effect of the designed algorithm in fault 

detection of other gas sensors, and expand the 

applicability of the algorithm. 
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