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Abstract: Multi-distributed high-performance computers from many companies are aggregated into a single computing 

platform to provide handlers with uniform contact besides convention outlines. Job arrangement strategies in High-Performance 

Computing (HPC) environments are lacking in flexibility, so an enhanced computational intelligence automated system in the 

task ready queue, refinement of the principal planner aimed at every job, and increased arrangement of the job setting up plan 

are proposed in this paper, which introduces an improved task scheduling model. The swarm intelligence method is used in core 

task scheduling to reduce the average scheduling time for completing tasks by assigning jobs to each node in the most efficient 

manner possible. The suggested scheduling technique outperforms the standard work scheduling approach in simulations. Task 

waiting times can be reduced, system throughput increased, task response times improved, and system resources better utilized 

by using a job setting up method created on group Acumen systems. 
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1. Introduction 

Current studies, design methodology, project 

management, and information technology all benefit 

from the High-Performance Computing (HPC) 

environment’s centralized management of several 

distributed high-performance computers from a range of 

businesses. One of the most important aspects of a HPC 

system is the ability to run simultaneous workloads on 

many processors. A crucial factor in the performance of 

parallel applications on HPC systems is how jobs are 

distributed between the available processors [8]. 

The necessity of inter-processor communication 

hinders the execution of parallel applications in HPC 

systems. When data is sent between activities on 

multiple processors, there is an additional overhead. 

Using HPC systems featuring diverse computers 

increases the need for creating high-quality job 

schedules. An additional factor that needs to be 

considered when developing a scheduling algorithm is 

how long a job will take to complete while running on 

different processors. Task scheduling has become 

increasingly critical as HPC and heterogeneous clusters 

have grown in size [9]. 

The performance, where the First-In-First-Out 

(FIFO) method, performance setting up process, and  

 

reasonable arrangement process are the job setting up 

systems with high performance models [3]. As a result, 

there’s an excessive amount of wasted resources and a 

considerable delay in task response time when these 

resource scheduling strategies are implemented. 

Because of this, the algorithm tends to slip into so-called 

“local optimality.” A general model of scheduler 

structure is depicted in Figure 1. 

 

Figure 1. General Structure of scheduler model. 

mailto:professorsrini@gmail.com
mailto:mohankumarmohan@gmail.com
mailto:umaselvam_35@yahoo.com
mailto:arokiarenjith@gmail.com


Achieving better Resource Utilization by Implementing a High-Performance …                                                                       293 

Also, the issue of inefficient use of available 

resources is a primary concern [1]. A cluster 

management system is critical in a high-performance 

computer cluster. Cluster management relies heavily on 

scheduling. To schedule a job, the entire process from 

submission to completion and the cluster’s many pieces 

must be taken into consideration [16]. We can take full 

advantage of high performing computation cluster 

system services and guarantee that the process is quick 

and efficient by building and using an effective task 

scheduling method. The task-resource connection is 

what we mean by “task scheduling.” As a result of 

extracting and evaluating the system management tasks, 

it is possible to enhance the task scheduling 

performance in direct relation to the load characteristics 

[2]. 

The goal of a task scheduler is to better use computer 

resources, reduce overall task execution time, and 

increase user satisfaction by allocating running tasks to 

the most appropriate processing nodes. Combinatorial 

optimisation is a special application of task scheduling, 

which becomes Non-deterministic Polynomial-time 

(NP)-hard as the cluster size grows. It’s becoming 

increasingly common, though, to use an intelligent 

algorithm to solve these kinds of difficulties. Artificial 

fish swarm algorithms are used to enhance task 

scheduling performance, for example, when node 

execution ability and overall task execution time are 

considered optimisation goals for nodes in swarms [20]. 

Since cluster expansion is inevitable, past and present 

hardware will have to be replaced, which will generate 

internal heterogeneity issues, Task scheduling 

techniques are now focused on heterogeneous settings 

[12]. In some cases, network topology heterogeneity can 

be caused by differences in the models of the Central 

Processing Unit (CPU) and memory on individual 

nodes, or by the addition or deletion of hardware. Task 

scheduling techniques for diverse contexts have 

therefore been the subject of several academic studies 

and advances. If the work execution planning strategy is 

saved using the Length Approximation Timer Ending 

(LATE) algorithm, then the task library’s fastest and 

easiest tasks are prioritised for execution [17]. 

The LATE algorithm  is a comment method for 

dealing with the issue of speculative execution. LATE 

scheduling technique based on resource prediction, for 

example, has been studied extensively since then by a 

slew of academics. Because the LATE approach does 

not address the issue of optimising data locality, the 

issue of reading data from several systems has been 

resolved. The literature, on the other hand, makes use of 

the results of previously performed work [7]. 

To keep track of the present cluster’s operational 

status and alter the job assignment strategy in a timely 

manner. Although this method is quick and easy to use, 

it is tough to get greater outcomes with it. The work 

scheduling method can be improved by using a swarm 

intelligence algorithm [15]. In order to better understand 

and optimize the routine of work arrangement 

procedures in a high-performance setting, literature 

provides the consequences of experiments with various 

intelligent algorithms. Using an intelligent approach, 

the researchers were able to demonstrate that task 

execution time may be reduced while also improving the 

scheduling effect [16]. 

2. Existing Work 

Computational intelligence techniques may be used to 

schedule tasks in HPC environments, and we’ll discuss 

these methods in detail in this section. Real-time 

approaches are known as the methodology employed in 

these computing environments [5]. Once the user’s 

request parameters and resources have been validated 

and verified, the client creates an order to improve 

reliability Job submission description language for the 

essential facility dispensation scheme, which then 

processes the request for service. After receiving a 

user’s task submission demand, the core service 

processing system will instantly begin the task 

scheduling module [11]. 

Responding to a manipulator’s demand for facility 

description, kind, and computing duration, it determines 

a list of presently accessible resources. Then, after 

finishing the transformation and development of the job 

proposal, run the job plan on an HPC using the shortest 

queue time for the resource scheduling job. This 

approach is clear and straightforward to put into 

practice. Simultaneous dispensation in the structure’s 

essential facilities is in great demand when the task 

assignment requests are significantly filled. It is also 

constrained by the greatest variety of network 

connections that may be made between dispersed 

modules [6]. 

Due to the increasing complexity of job scheduling 

issues, new intelligence algorithms, including 

evolutionary algorithms, simulated annealing, and taboo 

search, have been developed in recent years. Using a 

standard task scheduling method in a significant 

computational environment is insufficient: ignore the 

quality of service while focusing on efficiency; focus on 

justice while reducing efficiency [14]. High 

performance computing’s programming framework has 

an intelligent scheduling mechanism. Both the total 

completion time and average completion time are 

reduced when improved task scheduling is used. 

The results of a simulation experiment comparing 

real-time task scheduling with intelligent scheduling 

show that the latter is more efficient in a HPC 

environment [19]. As a result of extensive study into 

computer technology and a scheduling challenge, 

researchers have proposed a strategy constructed on the 

structure of an optimally efficient task allocation 

algorithm and a greedy algorithm. The standard task 

scheduling method emphasises efficiency, but the 

recently suggested approach emphasises service quality 
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and achieves, for the first time, a double equilibrium in 

job alignment in HPC settings [4]. 

As an example, in computer science, the swarm 

intelligent scheduling algorithm is one specific 

approach for addressing computing difficulties that may 

be simplified to optimal pathways across graphs. In 

swarm intelligence approaches, these algorithms belong 

to the ant colony algorithm family and represent certain 

heuristic optimisations [18]. A broader range of 

mathematical problems may now be solved using the 

original concept, which has now evolved to include new 

problems based on various elements of ant behaviour. 

ACO uses a model-based search and has some 

resemblances to algorithms for estimating distributions 

[12]. 

In a high-performance computer environment, the 

question of how to properly schedule jobs is critical. An 

ant colony algorithm and reinforcement learning-based 

cooperative task scheduling approach are developed in 

light of the fact that resource allocation is an NP-hard 

issue, and the current task resource allocation technique 

has long scheduling times and unbalances system 

burden [10]. Initially, the ant system was used to unravel 

the visiting trip issue, with the aim of discovering the 

unswerving distance between two points on a given 

route. The basic algorithm is built on a collection of 

ants, each of which completes one of the potential 

circuits across the city [16]. 

Every time the ant moves between cities, it does so 

according to some set of laws. Each city may only be 

visited once; therefore, a faraway one has a lower 

probability of getting picked. An edge between two 

cities with a more intense pheromone trail has a better 

chance of being picked if the journey is short; if the 

journey is long, the ant deposits more pheromones on all 

edges it has crossed During each repeat, the pheromone 

trails go away [13]. 

3. Proposed System 

Assume a HPC cluster is in place. Hence, task 

scheduling inside a HPC architecture is all about finding 

the shortest overall path of resource allocation. This can 

be observed in an HPC setting, where the quality of a 

job scheduling algorithm is increasingly measured by 

the amount of time it takes to complete all of its jobs. 

This present job line and job set show separate jobs, and 

each task might still execute on one thread component. 

Environmental queues are introduced in an 

intelligence-optimised job scheduling paradigm. The 

resource approximator, resource organiser, and resource 

gatherer are the three main components of the core 

module. There is a library of application and user 

mapping information in the front-end service, which 

collects queue information from the HPC properties on 

a regular basis; this information includes the queue 

name and status as well as the approximated hubs that 

can be used. On the root of an HPC line, computing 

resources are defined. Prioritising duties on an 

environmental level and operating on a particular user 

are both conducted to rectify the collected data in an 

automated fashion. 

Task queries that cannot obtain high computing 

properties and tasks that surpass the handler’s bounds 

are added to the task queue by the front-end scheduler. 

When it comes to front-end scheduling, FIFO principles 

guide processing these job queues and responding to 

task requests. If the work is completed, remove it from 

the front task tracker; otherwise, it will remain in the 

queue until it is completed. The work status is refined 

after the introduction of an intelligent scheduling 

algorithm in the HPC system, making administration, 

operation, and maintenance easier. The user, on the 

other hand, must maintain a clear display of current task 

progress. Consequently, operational status is split into 

user and system status. Figure 2 shows the proposed 

system architecture. 

 

Figure 2. Proposed system architecture. 

The user’s perspective displays that the computer is 

uploading files and that the task request has been 

approved and is being queued or scheduled in the 

primary job queue. A failed operation denotes either a 

normal or anomalous termination of a job that is 

executing in a HPC environment. New is the state of the 

task request when it first enters the core queues; delay is 

the state when it first appears in the front-end queues; 

and scheduling indicates that the scheduler is working 

on it. Scheduled designates that the scheduling flops, 

and final is the state when irregular handler information 

records are sent over high-performance servers. 

In this way, the procedure is analogous to an ant 

creeping over a graph G. Every vertex on G represents 

a task, and the crawling stops after all chores have been 

completed. Each job may only be assigned once, and the 

value of each decision-making variable has particular 

restrictions. Solution S’ expected execution time is an 

objective function, and the algorithm’s purpose is to 

discover a solution that reduces the anticipated 

execution time to the minimum feasible value. 

Every conceivable choice has a signal pertaining to 

it, which is initialised with the commencement 

procedure and becomes efficient as the procedure 
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progresses. In a certain assignment procedure, each 

assessment of the flexible choice is linked to the earlier 

process. The minimum obtained with this approach is 

computed based on the variety of jobs, the duration of 

the tasks, and the processing power of the resources 

because of the active and diverse nature of supply 

collection in HPC. 

4. Results and Discussion 

Particle swarm and ant colony algorithms are two of the 

most commonly used swarm intelligence algorithms, 

and they both imitate real bird and ant colony behaviour. 

There are certain drawbacks to using swarm intelligence 

algorithms, which mimic the natural social behaviour of 

animals. Many parameters must be configured for the 

ant colony algorithm to work. A substantial percentage 

of exploratory arbitrary motions are already required 

when the data item is scooped up or laid down in the ant 

colony clustering method. In addition, its input 

parameters are extremely sensitive to small changes in 

values. The memory configuration of nodes is listed in 

Table 1. 

Table 1. Memory configuration of nodes. 

Node memory Number of nodes CPU memory 

8 52 45 

16 124 74 

32 10 154 

64 189 124 

128 85 11 

A new version of the proposed approach is proposed 

in this paper in order to make better use of available 

resources, reduce overall job execution time, and 

increase user satisfaction. Simulated trials in a high-

performance computer environment were used to verify 

the efficacy of the suggested technique. A four-node 

HPC cluster was used for the experiments, each of 

which provided a task function. One administration 

node, 13 submission nodes, and 316 computing nodes 

make up the HPC system (execution nodes). In addition, 

the system includes multiple sequencers, storage 

servers, and other components that are primarily 

connected by 10-gigabit Ethernet. 

This SMP-designed server is used by compute nodes, 

and Advanced Micro Device (AMD) 64-bit processors 

are primarily used. 2600 MHZ is the most common CPU 

clock speed, while 24 to 30 logical CPUs are the most 

common node numbers. Storage nodes are used as the 

primary data storage in an HPC system. Resource 

management and job scheduling are carried out via the 

operation management system. A client-side 

submission is required. The compute node’s CPU core 

count and memory usage are displayed. The nodes’ 

hardware and operating system setups are listed. This 

experiment uses the same parameter settings throughout 

to ensure that the results are comparable. Node memory 

analysis is depicted in Figure 3. 

 

Figure 3. Node memory analysis. 

Table 2 shows the performance of the proposed 

system. Numerous HPC activities demand substantial 

resources and time to be run successfully. For instance, 

a multi-threaded operation may demand as much as 

eight 4-core nodes, 8.5 GB of peak RAM, and 1.5 

terabytes of storage space to complete a single test. It 

may take a week or so to complete the entire process. 

Because of this, we find it important to thoroughly 

comprehend the features and arrangement features of 

tasks and systems in order to improve and optimise their 

schedules and actions. All measurable tests for the 

proposed approach are carried out to correctly and fairly 

examine the performance of the scheduling algorithm. 

Table 2. Performance of proposed system. 

 Average of finishing 

Task General scheduling Proposed scheduling 

0 10 8 

25 15.258 8.225 

50 20.516 9.249 

75 25.774 9.273 

100 31.032 9.297 

125 36.29 9.321 

150 41.548 9.345 

175 46.806 9.369 

200 52.064 9.393 

225 57.322 9.417 

250 62.58 9.441 

275 67.838 9.465 

300 73.096 9.489 

325 78.354 9.513 

350 83.612 9.537 

375 88.87 9.561 

400 94.128 9.585 

425 99.386 9.609 

450 104.644 9.633 

475 109.902 9.657 

500 115.16 9.681 

In the first experiment, a job was delivered to the 

HPC every second throughout the scheduling time 

window of one second. All of these tasks were given 

varying degrees of computational difficulty at random 

(about 100 points). Two batches of 2000 jobs each are 

sent to the HPC for processing. To begin, our swarm 

intelligence scheduling algorithms scheduled 1000 jobs 

for the HPC. It was only after the first thousand jobs had 

been completed that we began submitting the second 

thousand. Scheduling time analysis of jobs has been 

depicted in Figure 4. 
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Figure 4. Scheduling time analysis. 

This graph compares the swarm intelligence 

scheduling algorithm’s average execution time to that of 

the arbitrary arrangement approach. That is observed 

over booking. Organisations employing intelligent 

arrangement procedures can effectively and 

competently schedule service duties. It takes less than 

0.3 seconds to accomplish nearly 500 of the 1000 jobs, 

and less than 0.5 seconds to complete more than 800 of 

them. The error rate analysis is depicted in Figure 5.  

 

Figure 5. Error rate analysis. 

Everyone knows that the middleware in the system is 

responsible for determining which HPC resources are 

most suited to the tasks that users submit. Some task 

submission requests fail due to several internet 

connections under large concurrent task submission 

requests as transmission increases and the number of 

task assignment requests significantly grows. 

 

Figure 6. Average running time. 

In Figure 6, average running time of the proposed 

system is shown. The former is clearly faster than the 

latter. Swarm intelligence scheduling was used to 

accomplish over 800 jobs on the HPC, whereas random 

scheduling only managed to complete 400. As a result, 

comparing and analysing the prediction’s inaccuracy 

will be essential. The flat federation indicates the 

prophecy fault, while the perpendicular federation 

reflects the jobs in our experiment. The variation was 

5.95, and the mean of the predicted errors was 3.8 

seconds. It’s worth noting that the real execution time 

might have been several dozen seconds. Because of this, 

the 4-second forecast error was acceptable. A sampled 

analysis of the average running time is listed in Table 3. 

Table 3. Analysis of average running time. 

Cycles Average running time 

1 180 

2 179.72 

3 179.575 

4 179.43 

5 179.285 

6 179.14 

7 178.995 

8 178.85 

9 178.705 

10 178.56 

We performed a total of 20 experiments to arrive at 

the final average. In each test, many jobs might arrive at 

the HPC at the same time. That number of tasks 

increases from 40 to 100. Tasks planned using average 

and random scheduling were measured for average 

execution time. Swarm-based scheduling has the 

greatest results, as can be seen in the graphs. When they 

scheduled 80 jobs, the average execution time of our 

approach was around 20 seconds longer than the 

average execution time of the other method. The gulf in 

time was enormous. Convergence time analysis 

between various algorithms is shown in Figure 7. 

 

Figure 7. Convergence time analysis. 

In this case, we can see how the computational 

intelligence algorithm is coming to a point of 

convergence. Near-optimal allocation can be found to 

converge in roughly 50 iterations, according to the 

research. Our suggested scheduling technique 

outperforms the standard job scheduling approach in 

simulations. Task waiting times can be reduced, system 

throughput increased, task response times improved, 

and system resources better used with a task scheduling 

method based on evolutionary algorithms. 
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It is common that the system middleware matches 

user-submitted tasks with the best HPC resources 

available in the system. Some task submission requests 

fail due to excessive network connections under large 

concurrent task submission requests as transmission and 

the number of task assignment requests both 

significantly rise. With the help of predictive 

maintenance, expenditures may be kept to a minimum 

while uptime is maximised and the reliability of the 

system is protected from potential failures. The use of 

neural networks and deep learning offers a promising 

approach for this application domain, as shown by the 

outcomes of machine learning models for event 

prediction in time series and the continuous monitoring 

of mission essential equipment. 

The implementation issues in these situations emerge 

from the system’s underlying hardware, yet overcoming 

them is crucial for the effective deployment of these 

concepts. To overcome these obstacles, there must be 

consensus among stakeholders to support joint efforts to 

create effective business models that benefit all parties. 

Using random forest classifiers, we compare resource 

utilisation data from two settings using the F1-score 

metric, and we find that the optimal value is 0.97. From 

the data collected by monitoring computer nodes, a 

prediction model is developed using descriptive 

statistics and supervised machine learning techniques. 

While it did achieve up to 79% failure detection rates 

during validation in a production context, this technique 

also showed a large number of false positives. 

A reliable power supply is essential in mission-

critical supercomputing settings, since it lessens the 

chances of service interruption and, in turn, lowers 

operating expenses. By collecting and analysing system 

logs, compute node failures in a HPC system may be 

predicted through the development of classification 

algorithms for data mining. A computational node’s 

consumption and error records are combined in this 

technique. The HPC system uses a prediction model to 

determine if the breakdown will happen subsequently. 

5. Conclusions 

According to the findings of this work, we have 

suggested an intelligent scheduling model for numerous 

services using the proposed approach in HPC. An 

enhanced swarm intelligence system has been created 

that uses projected outcomes to plan tasks. Task 

completion times can be reduced by as much as 50% 

using the swarm intelligence algorithm, which is 

implemented in our main scheduling module. There is 

evidence that the suggested approach is superior to the 

typical task scheduling method in terms of performance. 

Therefore, the workflow scheduling system based on the 

proposed approach would efficiently decrease the 

waiting time, enhance processes, productivity, 

responsiveness, and organisation supply exploitation 

with improved impact. 
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