
292 The International Arab Journal of Information Technology, Vol. 21, No. 2, March 2024

Achieving better Resource Utilization by

Implementing a High-Performance Intelligent

Framework in a Distributed Environment

Srinivasan Narayanasamy

Department of Computer Science and Engineering,

Rajalakshmi Engineering College, India

professorsrini@gmail.com

MohanKumar Palanichamy

Department of Computer Science and Engineering,

Hindustan Institute of Technology and Science, India

mohankumarmohan@gmail.com

Selvam Lakshmanan

Department of Computer Science and Engineering,

Karpagam Academy of Higher Education, India

umaselvam_35@yahoo.com

ArokiaRenjith Jerald

Department of Computer Science and Engineering,

Jeppiaar Engineering College, India

arokiarenjith@gmail.com

Abstract: Multi-distributed high-performance computers from many companies are aggregated into a single computing

platform to provide handlers with uniform contact besides convention outlines. Job arrangement strategies in High-Performance

Computing (HPC) environments are lacking in flexibility, so an enhanced computational intelligence automated system in the

task ready queue, refinement of the principal planner aimed at every job, and increased arrangement of the job setting up plan

are proposed in this paper, which introduces an improved task scheduling model. The swarm intelligence method is used in core

task scheduling to reduce the average scheduling time for completing tasks by assigning jobs to each node in the most efficient

manner possible. The suggested scheduling technique outperforms the standard work scheduling approach in simulations. Task

waiting times can be reduced, system throughput increased, task response times improved, and system resources better utilized

by using a job setting up method created on group Acumen systems.

Keywords: Computational intelligence, scheduling, high-performance computing, resource utilization.

Received February 8, 2022; accepted May 8, 2023

https://doi.org/10.34028/iajit/21/2/11

1. Introduction

Current studies, design methodology, project

management, and information technology all benefit

from the High-Performance Computing (HPC)

environment’s centralized management of several

distributed high-performance computers from a range of

businesses. One of the most important aspects of a HPC

system is the ability to run simultaneous workloads on

many processors. A crucial factor in the performance of

parallel applications on HPC systems is how jobs are

distributed between the available processors [8].

The necessity of inter-processor communication

hinders the execution of parallel applications in HPC

systems. When data is sent between activities on

multiple processors, there is an additional overhead.

Using HPC systems featuring diverse computers

increases the need for creating high-quality job

schedules. An additional factor that needs to be

considered when developing a scheduling algorithm is

how long a job will take to complete while running on

different processors. Task scheduling has become

increasingly critical as HPC and heterogeneous clusters

have grown in size [9].

The performance, where the First-In-First-Out

(FIFO) method, performance setting up process, and

reasonable arrangement process are the job setting up

systems with high performance models [3]. As a result,

there’s an excessive amount of wasted resources and a

considerable delay in task response time when these

resource scheduling strategies are implemented.

Because of this, the algorithm tends to slip into so-called

“local optimality.” A general model of scheduler

structure is depicted in Figure 1.

Figure 1. General Structure of scheduler model.

mailto:professorsrini@gmail.com
mailto:mohankumarmohan@gmail.com
mailto:umaselvam_35@yahoo.com
mailto:arokiarenjith@gmail.com

Achieving better Resource Utilization by Implementing a High-Performance … 293

Also, the issue of inefficient use of available

resources is a primary concern [1]. A cluster

management system is critical in a high-performance

computer cluster. Cluster management relies heavily on

scheduling. To schedule a job, the entire process from

submission to completion and the cluster’s many pieces

must be taken into consideration [16]. We can take full

advantage of high performing computation cluster

system services and guarantee that the process is quick

and efficient by building and using an effective task

scheduling method. The task-resource connection is

what we mean by “task scheduling.” As a result of

extracting and evaluating the system management tasks,

it is possible to enhance the task scheduling

performance in direct relation to the load characteristics

[2].

The goal of a task scheduler is to better use computer

resources, reduce overall task execution time, and

increase user satisfaction by allocating running tasks to

the most appropriate processing nodes. Combinatorial

optimisation is a special application of task scheduling,

which becomes Non-deterministic Polynomial-time

(NP)-hard as the cluster size grows. It’s becoming

increasingly common, though, to use an intelligent

algorithm to solve these kinds of difficulties. Artificial

fish swarm algorithms are used to enhance task

scheduling performance, for example, when node

execution ability and overall task execution time are

considered optimisation goals for nodes in swarms [20].

Since cluster expansion is inevitable, past and present

hardware will have to be replaced, which will generate

internal heterogeneity issues, Task scheduling

techniques are now focused on heterogeneous settings

[12]. In some cases, network topology heterogeneity can

be caused by differences in the models of the Central

Processing Unit (CPU) and memory on individual

nodes, or by the addition or deletion of hardware. Task

scheduling techniques for diverse contexts have

therefore been the subject of several academic studies

and advances. If the work execution planning strategy is

saved using the Length Approximation Timer Ending

(LATE) algorithm, then the task library’s fastest and

easiest tasks are prioritised for execution [17].

The LATE algorithm is a comment method for

dealing with the issue of speculative execution. LATE

scheduling technique based on resource prediction, for

example, has been studied extensively since then by a

slew of academics. Because the LATE approach does

not address the issue of optimising data locality, the

issue of reading data from several systems has been

resolved. The literature, on the other hand, makes use of

the results of previously performed work [7].

To keep track of the present cluster’s operational

status and alter the job assignment strategy in a timely

manner. Although this method is quick and easy to use,

it is tough to get greater outcomes with it. The work

scheduling method can be improved by using a swarm

intelligence algorithm [15]. In order to better understand

and optimize the routine of work arrangement

procedures in a high-performance setting, literature

provides the consequences of experiments with various

intelligent algorithms. Using an intelligent approach,

the researchers were able to demonstrate that task

execution time may be reduced while also improving the

scheduling effect [16].

2. Existing Work

Computational intelligence techniques may be used to

schedule tasks in HPC environments, and we’ll discuss

these methods in detail in this section. Real-time

approaches are known as the methodology employed in

these computing environments [5]. Once the user’s

request parameters and resources have been validated

and verified, the client creates an order to improve

reliability Job submission description language for the

essential facility dispensation scheme, which then

processes the request for service. After receiving a

user’s task submission demand, the core service

processing system will instantly begin the task

scheduling module [11].

Responding to a manipulator’s demand for facility

description, kind, and computing duration, it determines

a list of presently accessible resources. Then, after

finishing the transformation and development of the job

proposal, run the job plan on an HPC using the shortest

queue time for the resource scheduling job. This

approach is clear and straightforward to put into

practice. Simultaneous dispensation in the structure’s

essential facilities is in great demand when the task

assignment requests are significantly filled. It is also

constrained by the greatest variety of network

connections that may be made between dispersed

modules [6].

Due to the increasing complexity of job scheduling

issues, new intelligence algorithms, including

evolutionary algorithms, simulated annealing, and taboo

search, have been developed in recent years. Using a

standard task scheduling method in a significant

computational environment is insufficient: ignore the

quality of service while focusing on efficiency; focus on

justice while reducing efficiency [14]. High

performance computing’s programming framework has

an intelligent scheduling mechanism. Both the total

completion time and average completion time are

reduced when improved task scheduling is used.

The results of a simulation experiment comparing

real-time task scheduling with intelligent scheduling

show that the latter is more efficient in a HPC

environment [19]. As a result of extensive study into

computer technology and a scheduling challenge,

researchers have proposed a strategy constructed on the

structure of an optimally efficient task allocation

algorithm and a greedy algorithm. The standard task

scheduling method emphasises efficiency, but the

recently suggested approach emphasises service quality

294 The International Arab Journal of Information Technology, Vol. 21, No. 2, March 2024

and achieves, for the first time, a double equilibrium in

job alignment in HPC settings [4].

As an example, in computer science, the swarm

intelligent scheduling algorithm is one specific

approach for addressing computing difficulties that may

be simplified to optimal pathways across graphs. In

swarm intelligence approaches, these algorithms belong

to the ant colony algorithm family and represent certain

heuristic optimisations [18]. A broader range of

mathematical problems may now be solved using the

original concept, which has now evolved to include new

problems based on various elements of ant behaviour.

ACO uses a model-based search and has some

resemblances to algorithms for estimating distributions

[12].

In a high-performance computer environment, the

question of how to properly schedule jobs is critical. An

ant colony algorithm and reinforcement learning-based

cooperative task scheduling approach are developed in

light of the fact that resource allocation is an NP-hard

issue, and the current task resource allocation technique

has long scheduling times and unbalances system

burden [10]. Initially, the ant system was used to unravel

the visiting trip issue, with the aim of discovering the

unswerving distance between two points on a given

route. The basic algorithm is built on a collection of

ants, each of which completes one of the potential

circuits across the city [16].

Every time the ant moves between cities, it does so

according to some set of laws. Each city may only be

visited once; therefore, a faraway one has a lower

probability of getting picked. An edge between two

cities with a more intense pheromone trail has a better

chance of being picked if the journey is short; if the

journey is long, the ant deposits more pheromones on all

edges it has crossed During each repeat, the pheromone

trails go away [13].

3. Proposed System

Assume a HPC cluster is in place. Hence, task

scheduling inside a HPC architecture is all about finding

the shortest overall path of resource allocation. This can

be observed in an HPC setting, where the quality of a

job scheduling algorithm is increasingly measured by

the amount of time it takes to complete all of its jobs.

This present job line and job set show separate jobs, and

each task might still execute on one thread component.

Environmental queues are introduced in an

intelligence-optimised job scheduling paradigm. The

resource approximator, resource organiser, and resource

gatherer are the three main components of the core

module. There is a library of application and user

mapping information in the front-end service, which

collects queue information from the HPC properties on

a regular basis; this information includes the queue

name and status as well as the approximated hubs that

can be used. On the root of an HPC line, computing

resources are defined. Prioritising duties on an

environmental level and operating on a particular user

are both conducted to rectify the collected data in an

automated fashion.

Task queries that cannot obtain high computing

properties and tasks that surpass the handler’s bounds

are added to the task queue by the front-end scheduler.

When it comes to front-end scheduling, FIFO principles

guide processing these job queues and responding to

task requests. If the work is completed, remove it from

the front task tracker; otherwise, it will remain in the

queue until it is completed. The work status is refined

after the introduction of an intelligent scheduling

algorithm in the HPC system, making administration,

operation, and maintenance easier. The user, on the

other hand, must maintain a clear display of current task

progress. Consequently, operational status is split into

user and system status. Figure 2 shows the proposed

system architecture.

Figure 2. Proposed system architecture.

The user’s perspective displays that the computer is

uploading files and that the task request has been

approved and is being queued or scheduled in the

primary job queue. A failed operation denotes either a

normal or anomalous termination of a job that is

executing in a HPC environment. New is the state of the

task request when it first enters the core queues; delay is

the state when it first appears in the front-end queues;

and scheduling indicates that the scheduler is working

on it. Scheduled designates that the scheduling flops,

and final is the state when irregular handler information

records are sent over high-performance servers.

In this way, the procedure is analogous to an ant

creeping over a graph G. Every vertex on G represents

a task, and the crawling stops after all chores have been

completed. Each job may only be assigned once, and the

value of each decision-making variable has particular

restrictions. Solution S’ expected execution time is an

objective function, and the algorithm’s purpose is to

discover a solution that reduces the anticipated

execution time to the minimum feasible value.

Every conceivable choice has a signal pertaining to

it, which is initialised with the commencement

procedure and becomes efficient as the procedure

Achieving better Resource Utilization by Implementing a High-Performance … 295

progresses. In a certain assignment procedure, each

assessment of the flexible choice is linked to the earlier

process. The minimum obtained with this approach is

computed based on the variety of jobs, the duration of

the tasks, and the processing power of the resources

because of the active and diverse nature of supply

collection in HPC.

4. Results and Discussion

Particle swarm and ant colony algorithms are two of the

most commonly used swarm intelligence algorithms,

and they both imitate real bird and ant colony behaviour.

There are certain drawbacks to using swarm intelligence

algorithms, which mimic the natural social behaviour of

animals. Many parameters must be configured for the

ant colony algorithm to work. A substantial percentage

of exploratory arbitrary motions are already required

when the data item is scooped up or laid down in the ant

colony clustering method. In addition, its input

parameters are extremely sensitive to small changes in

values. The memory configuration of nodes is listed in

Table 1.

Table 1. Memory configuration of nodes.

Node memory Number of nodes CPU memory

8 52 45

16 124 74

32 10 154

64 189 124

128 85 11

A new version of the proposed approach is proposed

in this paper in order to make better use of available

resources, reduce overall job execution time, and

increase user satisfaction. Simulated trials in a high-

performance computer environment were used to verify

the efficacy of the suggested technique. A four-node

HPC cluster was used for the experiments, each of

which provided a task function. One administration

node, 13 submission nodes, and 316 computing nodes

make up the HPC system (execution nodes). In addition,

the system includes multiple sequencers, storage

servers, and other components that are primarily

connected by 10-gigabit Ethernet.

This SMP-designed server is used by compute nodes,

and Advanced Micro Device (AMD) 64-bit processors

are primarily used. 2600 MHZ is the most common CPU

clock speed, while 24 to 30 logical CPUs are the most

common node numbers. Storage nodes are used as the

primary data storage in an HPC system. Resource

management and job scheduling are carried out via the

operation management system. A client-side

submission is required. The compute node’s CPU core

count and memory usage are displayed. The nodes’

hardware and operating system setups are listed. This

experiment uses the same parameter settings throughout

to ensure that the results are comparable. Node memory

analysis is depicted in Figure 3.

Figure 3. Node memory analysis.

Table 2 shows the performance of the proposed

system. Numerous HPC activities demand substantial

resources and time to be run successfully. For instance,

a multi-threaded operation may demand as much as

eight 4-core nodes, 8.5 GB of peak RAM, and 1.5

terabytes of storage space to complete a single test. It

may take a week or so to complete the entire process.

Because of this, we find it important to thoroughly

comprehend the features and arrangement features of

tasks and systems in order to improve and optimise their

schedules and actions. All measurable tests for the

proposed approach are carried out to correctly and fairly

examine the performance of the scheduling algorithm.

Table 2. Performance of proposed system.

 Average of finishing

Task General scheduling Proposed scheduling

0 10 8

25 15.258 8.225

50 20.516 9.249

75 25.774 9.273

100 31.032 9.297

125 36.29 9.321

150 41.548 9.345

175 46.806 9.369

200 52.064 9.393

225 57.322 9.417

250 62.58 9.441

275 67.838 9.465

300 73.096 9.489

325 78.354 9.513

350 83.612 9.537

375 88.87 9.561

400 94.128 9.585

425 99.386 9.609

450 104.644 9.633

475 109.902 9.657

500 115.16 9.681

In the first experiment, a job was delivered to the

HPC every second throughout the scheduling time

window of one second. All of these tasks were given

varying degrees of computational difficulty at random

(about 100 points). Two batches of 2000 jobs each are

sent to the HPC for processing. To begin, our swarm

intelligence scheduling algorithms scheduled 1000 jobs

for the HPC. It was only after the first thousand jobs had

been completed that we began submitting the second

thousand. Scheduling time analysis of jobs has been

depicted in Figure 4.

296 The International Arab Journal of Information Technology, Vol. 21, No. 2, March 2024

Figure 4. Scheduling time analysis.

This graph compares the swarm intelligence

scheduling algorithm’s average execution time to that of

the arbitrary arrangement approach. That is observed

over booking. Organisations employing intelligent

arrangement procedures can effectively and

competently schedule service duties. It takes less than

0.3 seconds to accomplish nearly 500 of the 1000 jobs,

and less than 0.5 seconds to complete more than 800 of

them. The error rate analysis is depicted in Figure 5.

Figure 5. Error rate analysis.

Everyone knows that the middleware in the system is

responsible for determining which HPC resources are

most suited to the tasks that users submit. Some task

submission requests fail due to several internet

connections under large concurrent task submission

requests as transmission increases and the number of

task assignment requests significantly grows.

Figure 6. Average running time.

In Figure 6, average running time of the proposed

system is shown. The former is clearly faster than the

latter. Swarm intelligence scheduling was used to

accomplish over 800 jobs on the HPC, whereas random

scheduling only managed to complete 400. As a result,

comparing and analysing the prediction’s inaccuracy

will be essential. The flat federation indicates the

prophecy fault, while the perpendicular federation

reflects the jobs in our experiment. The variation was

5.95, and the mean of the predicted errors was 3.8

seconds. It’s worth noting that the real execution time

might have been several dozen seconds. Because of this,

the 4-second forecast error was acceptable. A sampled

analysis of the average running time is listed in Table 3.

Table 3. Analysis of average running time.

Cycles Average running time

1 180

2 179.72

3 179.575

4 179.43

5 179.285

6 179.14

7 178.995

8 178.85

9 178.705

10 178.56

We performed a total of 20 experiments to arrive at

the final average. In each test, many jobs might arrive at

the HPC at the same time. That number of tasks

increases from 40 to 100. Tasks planned using average

and random scheduling were measured for average

execution time. Swarm-based scheduling has the

greatest results, as can be seen in the graphs. When they

scheduled 80 jobs, the average execution time of our

approach was around 20 seconds longer than the

average execution time of the other method. The gulf in

time was enormous. Convergence time analysis

between various algorithms is shown in Figure 7.

Figure 7. Convergence time analysis.

In this case, we can see how the computational

intelligence algorithm is coming to a point of

convergence. Near-optimal allocation can be found to

converge in roughly 50 iterations, according to the

research. Our suggested scheduling technique

outperforms the standard job scheduling approach in

simulations. Task waiting times can be reduced, system

throughput increased, task response times improved,

and system resources better used with a task scheduling

method based on evolutionary algorithms.

Achieving better Resource Utilization by Implementing a High-Performance … 297

It is common that the system middleware matches

user-submitted tasks with the best HPC resources

available in the system. Some task submission requests

fail due to excessive network connections under large

concurrent task submission requests as transmission and

the number of task assignment requests both

significantly rise. With the help of predictive

maintenance, expenditures may be kept to a minimum

while uptime is maximised and the reliability of the

system is protected from potential failures. The use of

neural networks and deep learning offers a promising

approach for this application domain, as shown by the

outcomes of machine learning models for event

prediction in time series and the continuous monitoring

of mission essential equipment.

The implementation issues in these situations emerge

from the system’s underlying hardware, yet overcoming

them is crucial for the effective deployment of these

concepts. To overcome these obstacles, there must be

consensus among stakeholders to support joint efforts to

create effective business models that benefit all parties.

Using random forest classifiers, we compare resource

utilisation data from two settings using the F1-score

metric, and we find that the optimal value is 0.97. From

the data collected by monitoring computer nodes, a

prediction model is developed using descriptive

statistics and supervised machine learning techniques.

While it did achieve up to 79% failure detection rates

during validation in a production context, this technique

also showed a large number of false positives.

A reliable power supply is essential in mission-

critical supercomputing settings, since it lessens the

chances of service interruption and, in turn, lowers

operating expenses. By collecting and analysing system

logs, compute node failures in a HPC system may be

predicted through the development of classification

algorithms for data mining. A computational node’s

consumption and error records are combined in this

technique. The HPC system uses a prediction model to

determine if the breakdown will happen subsequently.

5. Conclusions

According to the findings of this work, we have

suggested an intelligent scheduling model for numerous

services using the proposed approach in HPC. An

enhanced swarm intelligence system has been created

that uses projected outcomes to plan tasks. Task

completion times can be reduced by as much as 50%

using the swarm intelligence algorithm, which is

implemented in our main scheduling module. There is

evidence that the suggested approach is superior to the

typical task scheduling method in terms of performance.

Therefore, the workflow scheduling system based on the

proposed approach would efficiently decrease the

waiting time, enhance processes, productivity,

responsiveness, and organisation supply exploitation

with improved impact.

References

[1] Amer D., Attiya G., Zeidan I., and Nasr A., “Elite

Learning Harris Hawks Optimizer for Multi-

Objective Task Scheduling in Cloud Computing,”

The Journal of Supercomputing, vol. 78, pp. 2793-

2818, 2022. https://doi.org/10.1007/s11227-021-

03977-0

[2] Anzt H., Cojean T., Flegar G., and Göbel F.,

“Ginkgo: A Modern Linear Operator Algebra

Framework for High Performance Computing,”

ACM Transactions on Mathematical Software,

vol. 48, no. 1, pp. 1-33, 2022.

DOI:10.1145/3480935

[3] Bartolini A., Borghesi A., Lombardi M., Milano

M., and Benini L., “Anomaly Detection Using

Autoencoders in High Performance Computing

Systems,” in Proceedings the of 31st AAAI

Conference on Innovative Applications of

Artificial Intelligence, Hawaii, pp. 9428-9433,

2019.

https://doi.org/10.1609/aaai.v33i01.33019428

[4] Borghesi A., Libri A., Benini L., and Bartolini A.,

“Online Anomaly Detection in HPC Systems,” in

Proceedings of the IEEE International

Conference on Artificial Intelligence Circuits and

Systems, Hsinchu, pp. 229-233, 2019.

https://ieeexplore.ieee.org/document/8771527

[5] Carvalho T., Soares F., Vita R., Francisco R.,

Basto J., and Alcalá S., “A Systematic Literature

Review of Machine Learning Methods Applied to

Predictive Maintenance,” Computers and

Industrial Engineering, vol. 137, pp. 106024,

2019. https://doi.org/10.1016/j.cie.2019.106024

[6] Essien A. and Giannetti C., “ A Deep Learning

Model for Smart Manufacturing Using

Convolutional LSTM Neural Network

Autoencoders,” IEEE Transactions on Industrial

Informatics, vol. 16, no. 9, pp. 6069-6078, 2020.

DOI:10.1109/TII.2020.2967556

[7] Gupta S., Iyer S., Agarwal G., and Manoharan P.,

“Efficient Prioritization and Processor Selection

Schemes for HEFT Algorithm: A Makespan

Optimizer for Task Scheduling in Cloud

Environment,” Electronics, vol. 11, no. 16, pp. 1-

15, 2022.

https://doi.org/10.3390/electronics11162557

[8] Jamil B., Ijaz H., Shojafar M., Munir K., and

Buyya R., “Resource Allocation and Task

Scheduling in Fog Computing and Internet of

Everything Environments: A Taxonomy, Review,

and Future Directions,” ACM Computing Surveys,

vol. 54, no. 11s, pp. 1-38, 2022.

https://doi.org/10.1145/3513002

[9] Jena B., Nayak G., and Saxena S., High-

Performance Medical Image Processing, Apple

Academic Press, 2022.

DOI:10.1201/9781003190011-12

https://doi.org/10.1007/s11227-021-03977-0
https://doi.org/10.1007/s11227-021-03977-0
http://dx.doi.org/10.1145/3480935
https://doi.org/10.1609/aaai.v33i01.33019428
https://doi.org/10.1016/j.cie.2019.106024
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424
https://doi.org/10.1109/TII.2020.2967556
https://doi.org/10.3390/electronics11162557
https://doi.org/10.1145/3513002
http://dx.doi.org/10.1201/9781003190011-12

298 The International Arab Journal of Information Technology, Vol. 21, No. 2, March 2024

[10] Kruekaew B. and Kimpan W., “Multi-Objective

Task Scheduling Optimization for Load Balancing

in Cloud Computing Environment Using Hybrid

Artificial Bee Colony Algorithm with

Reinforcement Learning,” IEEE Access, vol. 10,

pp. 17803-17818, 2022.
https://ieeexplore.ieee.org/document/9708723

[11] Li C., Zhang C., Ma B., and Luo Y., “Efficient

Multi-Attribute Precedence-based Task

Scheduling for Edge Computing in Geo-

Distributed Cloud Environment,” Knowledge and

Information Systems, vol. 64, pp. 175-205, 2022.

https://link.springer.com/article/10.1007/s10115-

021-01627-8

[12] Nayak S., Parida S., Tripathy C., and Pattnaik P.,

“An Enhanced Deadline Constraint-based Task

Scheduling Mechanism for Cloud Environment,”

Journal of King Saud University-Computer and

Information Sciences, vol. 34, no. 2, pp. 282-294,

2022.

https://doi.org/10.1016/j.jksuci.2018.10.009

[13] Pirozmand P., Javadpour A., Nazarian H., Pinto

P., Mirkamali S., and Ja’fari F., “GSAGA: A

Hybrid Algorithm for Task Scheduling in Cloud

Infrastructure,” The Journal of Supercomputing,

vol. 78, no. 4, pp. 17423-17449, 2022..
https://doi.org/10.1007/s11227-022-04539-8

[14] Sellami B., Hakiri A., Yahia S., and Berthou P.,

“Energy-Aware Task Scheduling and Offloading

Using Deep Reinforcement Learning in SDN-

Enabled IoT Network,” Computer Networks, vol.

210, pp. 108957, 2022.

https://laas.hal.science/hal-03648574/document

[15] Shukla A., Kumar S., and Singh H., “Fault

Tolerance-Based Load Balancing Approach for

Web Resources in Cloud Environment,” The

International Arab Journal of Information

Technology, vol. 17, no. 2, pp. 225-232, 2020.
https://www.iajit.org/portal/PDF/Vol%2017,%20

No.%202/17514.pdf

[16] Talaat F., Ali H., Saraya M., and Saleh A.,

“Effective Scheduling Algorithm for Load

Balancing in Fog Environment Using CNN and

MPSO,” Knowledge and Information Systems,

vol. 64, no. 3, pp. 773-797, 2022.
https://doi.org/10.1007/s10115-021-01649-2

[17] Tripathi G. and Kumar R., “A Heuristic-Based

Task Scheduling Policy for QoS Improvement in

Cloud,” International Journal of Cloud

Applications and Computing, vol. 12, no. 1, pp. 1-

22, 2022. DOI:10.4018/IJCAC.295238

[18] Wang X., Wang C., Bai M., Ma Q., and Li G.,

“HTD: Heterogeneous Throughput-Driven Task

Scheduling Algorithm in MapReduce,”

Distributed and Parallel Databases, vol. 40, no.

1, pp. 135-163, 2022.

https://doi.org/10.1007/s10619-021-07375-6

[19] Yadav A., Tripathi K., and Sharma S., “An

Enhanced Multi-Objective Fireworks Algorithm

for Task Scheduling in Fog Computing

Environment,” Cluster Computing, vol. 25, no. 2,

pp. 983-998, 2022.

https://doi.org/10.1007/s10586-021-03481-3

[20] Yurek O. and Birant D., “Remaining Useful Life

Estimation for Predictive Maintenance Using

Feature Engineering,” in Proceedings of the

Innovations in Intelligent Systems and

Applications Conference, Izmir, pp. 1-5, 2019.
DOI:10.1109/ASYU48272.2019.8946397

Srinivasan Narayanasamy works as

Professor in CSE Department of

Rajalakshmi Engineering College,

Chennai, Tamilnadu, India. He has

more than 25 years of teaching

experience, and his areas of

specialization include Software

Engineeering, Machine Learning and Network

Engineering.

MohanKumar Palanichamy works

as Professor in CSE Department of

Hindustan Institute of Technology

and Science, Chennai, Tamilnadu,

India. He has more than 20 years of

teaching experience, and his areas of

specialization include Artificial

Intelligence, Data Analytics and Machine Learning.

Selvam Lakshmanan works as Associate Professor in

CSE Department of Karpagam Academy of Higher

Education, Coimbatore, Tamil Nadu, India. He has

more than 23 years of teaching experience, and his areas

of specialization include Cloud Computing,

Cryptography and Network Security.

Selvam Lakshmanan works as

Associate Professor in CSE

Department of Karpagam Academy

of Higher Education, Coimbatore,

Tamil Nadu, India. He has more than

23 years of teaching experience, and

his areas of specialization include

Cloud Computing, Cryptography and Network Security.

ArokiaRenjit Jerald works as

Professor in CSE Department of

Jeppiaar Engineering College,

Chennai, Tamilnadu, India. He has

more than 20 years of teaching

experience, and his areas of

specialization include Intrusion

Detection Systems, Network security and Machine

Learning.

https://ieeexplore.ieee.org/document/970872
https://link.springer.com/article/10.1007/s10115-021-01627-8
https://link.springer.com/article/10.1007/s10115-021-01627-8
https://doi.org/10.1016/j.jksuci.2018.10.009
https://doi.org/10.1007/s11227-022-04539-8
https://laas.hal.science/hal-03648574/document
https://www.iajit.org/portal/PDF/Vol%2017,%20No.%202/17514.pdf
https://www.iajit.org/portal/PDF/Vol%2017,%20No.%202/17514.pdf
https://doi.org/10.1007/s10115-021-01649-2
https://doi.org/10.1007/s10619-021-07375-6
https://doi.org/10.1007/s10586-021-03481-3
https://doi.org/10.1109/ASYU48272.2019.8946397

