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Abstract: Emerging as a highly promising technology, Flying Ad-hoc Networks represent self-organizing networks of Unmanned 

Aerial Vehicles (UAVs), garnering attention for their diverse applications spanning environmental monitoring, disaster 

management, precision agriculture, surveillance, and military operations. However, these networks face challenges to various 

security threats, including malicious node detection due to their deployment in dynamic environments. To address this issue, we 

present an improved novel security solution, Machine Learning-based Threat Identification for FANET using a Genetic Algorithm 

(ML-TIFGA) in this paper. The research includes the detection of abnormal behavior nodes using a basic genetic algorithm and 

dynamically adapting the changing network conditions by utilizing a reputation system. To enhance our security solution ML-

TIFGA, we evaluated two key factors: cooperation and trustworthiness, which act as genetic elements within the chromosome 

of the flying node in our genetic population. Further, a mechanism is incorporated to reconfigure the trust, addressing the 

challenge of dynamically extracting threats through the updated weighted reputation system while considering past behavior 

monitoring. Significant improvements were found in the experimental results using actual sample values from the NSL-KDD 

dataset, which produced a remarkable 99.829% classification accuracy. Additionally, threat identification rates reached 98.36% 

for training and 98.86% for testing samples, with a remarkable improvement of 99.3% in network reliability through ML-TIFGA. 

When benchmarked against state-of-the-art approaches, performance metrics such as delay, throughput, and data delivery rate 

exhibited notable enhancements of 24.65%, 29.16%, and 31.73%, respectively. 
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1. Introduction 

Flying Ad Hoc Networks (FANET) are characterized by 

their dynamic topology, mobility, and potential 

applications in various domains such as surveillance, 

search and rescue, environmental monitoring, and 

communication relays. These networks are often 

deployed where traditional communication 

infrastructure is unavailable, impractical, or costly to 

establish, ranging from disaster management and 

surveillance to precision agriculture and delivery 

services [26]. Figure 1 shows the basic FANET scenario 

where at least one flying node must directly contact the 

ground control unit. In contrast, others can communicate 

through ad hoc in their communication range to provide 

multiple services to end-users.  

FANETs present several challenges, including 

security concerns related to data confidentiality, 

integrity, and authentication [17]. Ensuring the security 

of these networks against malicious and selfish nodes is 

paramount due to several critical reasons [22, 28]. These 

attacks can severely compromise the integrity, 

availability, and confidentiality by packet dropping, data 

injection, and routing disruptions leads, to the potential 

data breaches or service disruptions, including aerial 

surveillance, disaster management, and military  

 

 

operations, where the accuracy and reliability of 

information exchange are of utmost importance [12]. 

Therefore, robust security mechanisms must be in place 

to detect, isolate, and mitigate the impact of malicious 

and selfish nodes, ensuring the reliability and efficiency 

of ad hoc networks, including vehicular communication 

[3, 20, 21]. 

 

Figure 1. Essential FANET communication and service scenarios. 

Application of Genetic Algorithms can excel in 

securing ad hoc networks by continuously optimizing 

security parameters and strategies in response to 

https://doi.org/10.34028/iajit/21/4/12
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changing network conditions and evolving threats [9, 

14]. 

Machine learning significantly improves ad hoc 

network security, which offers vital capabilities for 

anomaly detection, threat detection, and adaptive 

defense mechanisms [25]. Because of the constantly 

shifting network topology and potentially malicious 

nodes, traditional security measures frequently fail in the 

dynamic and decentralized environment of ad hoc 

networks [2]. Large volumes of network data can be 

analyzed in real-time by machine learning algorithms, 

which can then be used to spot anomalies that might be 

signs of security threats and to identify patterns of typical 

behavior [15].  

Integration of machine learning with a genetic 

approach to securing flying ad hoc networks enhances 

their resilience. It enables efficient and effective 

protection against evolving cyber threats in dynamic 

networking environments. 

To grasp the significance of our work, we have 

summarized the key findings and challenges in solving 

the Machine Learning-based Threat Identification for 

FANET using a Genetic Algorithm (ML-TIFGA) 

problem and conducted a comparative study of existing 

technologies. The novelty of our approach lies in its 

design and implementation, a combination of co-

evolutionary genetic algorithms and GA-based 

reputation systems, to enhance the security of FANETs. 

In this innovative strategy, Co-evolutionary GAs operate 

on two concurrent populations: one representing normal 

node behavior and the other capturing potentially 

malicious activity to adapt and evolve detection and 

mitigation strategies. Simultaneously, the GA-Based 

Reputation System evaluates node reputations based on 

observed behavior and interactions within the network. 

By integrating the outcomes of both approaches, nodes 

with suspicious behavior can be flagged. This combined 

approach with Machine Learning techniques enables 

FANETs to detect and mitigate threats posed by 

malicious nodes effectively. Further, we introduce a trust 

framework based on the updated reputation for 

classifying flying nodes into malicious, selfish, or 

normal nodes. Through comprehensive simulations, we 

demonstrate the significance of ML-TIFGA over the 

state-of-art, proving its effectiveness in improving the 

security of FANET. 

The immediate requirement to improve the security 

environment of flying ad hoc networks is the motivation 

behind the proposal of the innovative ML-TIFGA 

technique, as many real-time services and national 

security aspects rely on this communication system. It 

provides unparalleled communication and data exchange 

abilities, but its dynamic nature makes it more vulnerable 

to malicious attacks, which could result in numerous 

significant issues. 

The key contributions of the research article are:  

1. Design and Development of a Genetic Model: we 

created a novel genetic model to simulate the 

behavior and interactions of flying nodes, enabling 

the accurate emulation of network dynamics and node 

communication patterns. 

2. Development of a Genetic Algorithm: we developed 

and implemented adaptive genetic algorithms to 

detect and mitigate security threats in evolving 

network conditions. 

3. Design of a Trust Model: we developed a trust model 

using dynamic reputation scores to classify nodes as 

malicious, selfish, or normal based on their behavior 

and interactions. 

4. Development of the ML-TIFGA Interaction Model:. 

we developed a detailed mathematical model ML-

TIFGA, detailing the interactions between genetic 

algorithms and machine learning techniques. 

5. Implementation of ML-TIFGA: we used real-time 

datasets to implement the ML-TIFGA, combining 

machine learning for threat detection and mitigation. 

6. Performance Evaluation: we evaluated and compared 

the ML-TIFGA with state-of-the-art protocols, 

demonstrating significant improvements in security 

and efficiency validating the effectiveness of our 

approach. 

The rest of the paper is structured as follows: Section II 

reviews existing literature on security techniques in 

FANETs. Section III outlines the methodology used in 

our research. Section IV discusses our findings and 

experimental results, followed by a conclusion and 

future directions in Section V. 

2. Literature Review 

Methods proposed [10, 23, 30, 32] were based on trust 

models for security in UAV networks utilizing the 

genetic algorithms to optimize the weighting of 

parameters for assessing direct trust values, determining 

the overall trustworthiness of a node by combining direct 

trust with commendation and conducting risk analysis 

for uncertain nodes. A trust mechanism that integrates 

cluster and genetic approaches is also presented, with the 

Fish Swarm technique enhanced artificially, facilitating 

cluster leader selection. This mechanism uses a Bayesian 

network theory-based approach to compute direct and 

indirect trust and optimize secure route discovery, 

evaluated by metrics such as Packet Delivery Ratio 

(PDR), delay, throughput, and network overhead. 

Additionally, the architectural framework of FANETs 

focuses on machine learning-enhanced intrusion 

detection systems to distinguish between normal and 

abnormal data packets and improved network security 

with a novel cluster-based strategy and a fuzzy model 

that dynamically calculates node trust levels. Schemes 

utilizing optimization for FANET security through 

natured-inspired algorithms are proposed in [19], and the 

factors influencing FANET throughput are examined, 

resulting in a mathematical optimization model using 

genetic algorithms, fitness functions, and chromosome 
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replication to update UAV positions based on adjacency 

and correlation matrices. A hybrid approach combining 

genetic algorithms with the fruit fly optimization 

algorithm addresses energy consumption, employing a 

cluster-based and density-adaptive method to determine 

cluster membership and optimize routes. Threat 

identification and cryptanalysis in [6, 11, 18] through 

analyzing packet drop rates and message content, using 

a collective model to assess node trustworthiness and 

isolate malicious nodes. Efficient network paths and 

enhanced communication between flying nodes are 

achieved by integrating two-ray and shadow-fading 

models with the genetic firefly algorithm, improving 

security. Optimization results are compared for packet 

loss, end-to-end delay, and network performance. 

Additionally, a cryptanalysis of an existing scheme 

incorporates new algorithms to ensure message 

confidentiality and integrity. The importance of machine 

learning techniques [1, 31] in detecting irregularities 

within UAV groups suggests that the timely detection of 

anomalies should given priority. The development of 

IDS to secure FANET based on machine learning is 

explained in [7, 24] by creating a cognitive lightweight-

LR method utilizing the UNSW-NB 15 dataset. An 

Internet of Things-based UAV network was subjected to 

machine learning to detect possible security risks. 

Furthermore, a recommended method investigates 

deploying UAV systems in wireless networks for 

agricultural data security, utilizing the Double Deep Q-

Network (DDQN) algorithm based on geographic 

position data to identify intrusions and establish 

deployment locations. This technique simplifies the 

intricate calculations of channel state information, 

ensuring safe UAV deployment. A method using 

Reinforcement Learning to detect jamming attacks is 

outlined [8]. Minimizing gradient variance and ensuring 

safe training regions enhances accuracy and speeds up 

training. This approach effectively detects and mitigates 

jamming attacks. Moreover, Shitharth et al. [29] 

improves device-to-device applications by enhancing 

UAV transmission models between network nodes. This 

approach boosts device security during real-time data 

transmission, strengthening overall UAV network 

reliability and integrity. 

Therefore, with the unique aspects of a combination 

of Machine Learning, Trust Model, and Genetic 

Algorithms, we proposed the novel technique ML-

TIFGA in the next section to enhance FANET security.  

3. Proposed Methodology 

The Genetic Algorithms (GAs) apply evolutionary 

principles to optimize different aspects of network 

security, providing a potent method for addressing 

security concerns in FANET. The adaptive nature of 

GAs allows them to explore a wide range of potential 

solutions and adaptively converge towards optimal or 

near-optimal solutions, including applying multiple GA 

approaches parallel to solve the problem space. 

Considering these features of GAs, the combination of 

GA-Based Reputation Systems and Co-evolutionary 

Genetic Algorithms in the suggested approach offers a 

potent way to improve the security of FANET by early 

and effective identification and separation of malicious 

nodes from the network. In ML-TIFGA, we influence a 

refined combination of a Reputation System and a Co-

Evolutionary Genetic Algorithm to fortify the security 

in FANET. Additionally, we introduce a Trust-based 

framework meticulously designed to distinguish and 

isolate malicious nodes from their regular counterparts. 

Central to this framework is using genetic reputation 

and computed reputation metrics for every flying node. 

These metrics serve as crucial inputs for our trust model, 

facilitating the continuous real-time updating and 

refinement of node reputations. By seamlessly 

integrating genetic algorithms with reputation-based 

trust mechanisms, the ML-TIFGA ensures heightened 

security levels. In the proposed ML-TIFGA model, we 

consider each flying node's cooperation and 

trustworthiness factors to enable the reputation criteria. 

Figure 2 represents the workflow steps for ML-

TIFGA and explains as follows. 

 Step 1. Initializing all the FANET nodes based on the 

defined previous reputation system. Defining 

reputation (R) criteria for nodes in a FANET involves 

quantifying various aspects of node behavior and 

interactions within the network.  

 Step 2. Upon allocating reputation values using the 

Genetic approach, the Co-Evolutionary process is 

employed to evolve two populations simultaneously. 

 Step 3. The flying nodes are divided into groups based 

on a fitness function distinguishing malicious activity 

and normal node behavior.  

 Step 4. The Trust-based framework is applied to target 

nodes that do not meet the criteria for fitness 

qualification within the designated group. Reputation 

updating of such nodes based on current cooperation 

and trustworthiness is implemented. 

 Step 5. If the updated Reputation (R') of any node (N) 

from Step 4 is more than the previous value, such 

nodes are categorized within the group of nodes 

exhibiting normal behavior; otherwise, nodes are 

considered in the group of malicious behavior nodes. 
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Figure 2. Workflow of the proposed approach. 

3.1. GA-based Reputation Analysis 

Employing a reputation system where nodes maintain 

reputations for their past behavior and use GA to evolve 

the criteria for calculating these reputations. Nodes with 

suspicious or malicious behavior can be flagged based 

on deviations from the evolved reputation criteria. In the 

ML-TIFGA model, each flying node's cooperation (C) 

and trustworthiness (T) factors are initially defined to 

enable the reputation criteria. Cooperation CA for any 

node A is measured based on a node's willingness to 

participate in network tasks or share resources with other 

nodes as defined in (1). 

   𝐶𝐴 =
𝑋
𝑌⁄  𝑤ℎ𝑒𝑟𝑒 𝐴 ∈  [1 𝑡𝑜 𝑁]  

X is the number of times a node willingly cooperates 

with others, and Y is the number of opportunities for 

cooperation.  

Similarly, multiple aspects of node behavior measure 

a node's trustworthiness in the network. They are 

calculated as a weighted sum of reliability (Q), 

cooperation computed previously (C), and consistency 

(K). Trustworthiness (TA) of node A as given in (5) for 

each factor considered weight (w) for trust computation. 

Q is the measure of the trustworthiness of a flying node 

based on its past behavior and performance. It indicates 

how dependable a node is in consistently performing its 

tasks without failure or malicious intent. Its current 

measure includes Task Completion Rate (TCR), Error 

Rate (ER), and Resource utilization (RU). Reliability for 

any Node i is defined by (2) for respective weights w1, 

w2, and w3 that sum to 1 representing the importance of 

each factor. 

  𝑄𝑖 = 𝑤1 ∗ 𝑇𝐶𝑅𝑖 +𝑤2 ∗ (1 − 𝐸𝑅𝑖) + 𝑤3 ∗ 𝑅𝑈𝑖   

K is the uniformity and predictability of a flying node's 

behavior over time and reflects how consistently the 

node adheres to expected operation patterns and 

maintains its performance standards. It is calculated 

based on variance or standard deviation over time of key 

performance metrics. K for any flying node (i) is given 

by (3), where σij is the standard deviation of performance 

metric j for node i over a given period. 

𝐾𝑖 =
1
(1 + 𝜎𝑖𝑗)
⁄   

Initially, we assign equal weight to each factor, assuming 

a 50% probability of a node being malicious. Therefore, 

wR = 0.5, wC = 0.5, and wK = 0.5. Subsequently, after each 

stage, the weights are adjusted based on feedback 

regarding the performance of the initial weights, with 

adjustments made according to the learning rate (α) and 

the partial derivative of the factors for Trustworthiness 

(T). The learning rate is based on the system's accuracy 

in identifying malicious nodes. Below in (4) is the 

updated weight (wU) for the previous weight (wP). 

          𝑤𝑈 = 𝑤𝑃 + 𝛼. 𝛿𝑇/𝛿𝑤  

  𝑇𝐴 = {𝑤𝑅 ∗ 𝑄 + 𝑤𝐶 ∗ 𝐶 + 𝑤𝐾 ∗ 𝐾}  

Considering the computation of CA and TA, the reputation 

(RA) for A within the network for stages S is determined 

according to (6). 

    𝑅𝐴 =  [∑ [𝐶𝐴𝑆 + 𝑇𝐴𝑆] ∗  (∫
1
𝑅𝐴𝑆
⁄

𝑠𝑡𝑎𝑔𝑒−1

𝑆=1
)

𝑆𝑡𝑎𝑔𝑒𝑠
𝑆=1 ]      

Figure 3 represents the computation of the reputation of 

the Ath node in the FANET network at the S stage.  

(1) 

(3) 

(6) 

(4) 

(5) 

(2) 
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Figure 3. Reputation computation for a node. 

3.2. Genetic Chromosome Method for Nodes 

Encoding cooperation and trustworthiness as genes 

involves representing these attributes as binary within 

the chromosomes of individuals in the GA population. In 

binary encoding, C and T are defined as sequences of 

binary digits [0,1] within the chromosome. Each gene 

corresponds to a specific aspect of cooperation or 

trustworthiness, and its value indicates whether the node 

possesses that attribute. Further, the three aspects 

specifically for formulating Cooperation by a node in 

network activities are considered in ML-TIFGA. These 

include the willingness to share resources (W), the ability 

to forward messages (V), and participation in network 

tasks (U). Figure 4 shows the binary sequence of 

chromosomes for cooperation from genes {W, V, U}. 

Each gene of node A from the previous value {A1}[W, V, 

U] maps binary value and further these maps to following 

previous values {A2}[W, V, U] to generate the chromosome 

sequence through hidden layer 1 and 2 respectively 

which includes intermediate populations, genetic 

operators, or other forms of intermediate data structures 

that are not directly observable but play a crucial role in 

the evolutionary process of finding optimal solutions. 

Equations (7) to (9) represent the formation of 

chromosomes from cooperation genes. The role of gene 

function is to encode specific solution components, 

influence genetic variation through crossover and 

mutation, and guide the evaluation of fitness, ultimately 

shaping the evolutionary path toward optimal solutions 

in genetic algorithms. 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ; 𝐺𝑒𝑛𝑒𝑠 
[𝑊,𝑈,𝑉] 
←     𝐶𝐴   

𝑂𝑢𝑡𝑝𝑢𝑡𝐿𝑒𝑣𝑒𝑙1
𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟 1
←            𝐺𝑒𝑛𝑒𝑠 (𝑊𝐴1, 𝑈𝐴1, 𝑉𝐴1)  

𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 (𝐴)
𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟 2
←            𝑂𝑢𝑡𝑝𝑢𝑡𝐿𝑒𝑣𝑒𝑙1    

Algorithm 1: Chromosome Sequence Method  

Step 1: Initialize Population P, t=0; 

Step 2: I ← Individual (P); 

Step 3: Evaluate fitness value (F) for each I; 

Step 3: For all I ∈ P do 

  Parent Selection (I) [Highest F]; 

Reproduction (I)   

Conduct Crossover;  

   Conduct Mutation of I; 

  Modify P; 

  t = t + 1; 

Step 4: Return Chromosome sequence; 

The Co-evolutionary approach generates the two 

population groups for nodes concurrently. One 

represents normal, and the other represents malicious 

behavior. The fitness of each population is evaluated 

based on its ability to outperform the other population. 

The design choices for the fitness function and genetic 

operations in the ML-TIFGA are grounded in 

established genetic algorithm principles and supported 

by extensive literature demonstrating their efficacy in 

dynamic and complex problem environments. The 

fitness function was selected to accurately assess each 

solution's effectiveness in enhancing security by 

detecting malicious nodes and minimizing false 

positives. This function ensures that the most optimal 

solutions are preferentially selected for reproduction. 

The genetic operations, including crossover and 

mutation, were chosen to balance exploration and 

exploitation. Crossover combines parent traits to find 

high-quality solutions, while mutation adds random 

variations to maintain diversity and prevent premature 

convergence. These operations ensure the robustness 

and adaptability of the ML-TIFGA. 

  

Figure 4. Genes to chromosome through node cooperation. 

Upon allocating reputation values using the genetic 

approach, the co-evolutionary process is employed to 

simultaneously evolve the distinguishing groups based 

on a fitness function. Equation (10) defines the fitness 

function (F) based on reputation values (R) for w weight 

assigned to the reputation value. It can be adjusted based 

on the desired balance between reputation.  

𝐹𝐴(𝑡) =  [(∫ ∫ 𝑤.𝑅𝐴. (𝑡)
𝑤=1

𝑤=0

𝑡

𝑡𝑖𝑚𝑒=0
) ∗

1

𝑅𝐴(𝑡−1)
]    

Algorithm (1) represents the basic steps involved in 

chromosome generation for the network of population P 

(7) 

(8) 

(9) 

(10) 
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based on their fitness value for reproduction through 

mutation and crossover. Chromosomes are chosen 

during development from several different combinations 

that the population has. The individual with the greater 

fitness value will likely be opted for repeatedly during 

growth. Each chromosome integrates its genes during 

the crossover phase to create a new population with both 

characteristics. To keep a group of chromosomes from 

becoming remarkably similar, mutations protect genetic 

variation from one generation to another. FTH is defined 

as employing the group for flying nodes for the fitness 

threshold. Further, in ML-TIFGA, we consider the 

selection of nodes to respective groups through the rank-

based selection method as given in Algorithm (2). 

3.3. Node Trust Model 

This framework includes the computation of trust for 

each node from both the genetic population groups to 

enhance accuracy and efficiency. Before the calculation 

of trust, an updated model for a reputation system in a 

network involves determining how the reputations 

adjusted over time based on node interactions and 

observed behavior based on continuous monitoring of 

interactions between nodes in the network, such as 

message exchanges, resource sharing, or task 

participation even after group’s formation. Feedback is 

collected from interactions to evaluate node behavior. 

This feedback includes successful message delivery, 

completion of tasks, or cooperation in resource sharing. 

Hence, an updated reputation is proposed to overrule the 

chance of error in node identification. The previous 

reputation RA of node A is based on successful message 

exchanges and updates to R'A using a weighted average 

approach. Equation (11) shows the message counts after 

the formation of groups and the updated reputation R'A 

for weight p of feedback. FMessage is the feedback value 

based on successful message exchange (12).  

 

𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝐴) =
𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝐴)

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝐴)
 

        

𝑅𝐴
′ = [∫ [𝑝 ∗ 𝐹𝑀𝑒𝑠𝑠𝑎𝑔𝑒 + 𝑅𝐴(1 − 𝑝)]

𝑝=1

𝑝=0

] 

Table 1 represents the assignment of group and trust 

organization representing the node behaviour for node A 

before and after applying the proposed genetic approach. 

Algorithm )3( defined the trust framework to detect 

untrusted nodes and to separate them into malicious and 

selfish nodes. Malicious nodes are driven by harmful 

intent and engage in deliberate attacks. In contrast, 

selfish nodes prioritize their interests but may not 

necessarily aim to cause direct harm to the network. 

Algorithm 2: Genetic Method For Node Groups’  

Input : Nodes (N), FN, FTH 

Output : NodeNormal[ ], NodeAbnormal[ ] 

function Node Selection( ) 

Initialization  

NodeNormal[ ] = NULL 

NodeAbnormal[ ] = NULL 

Cumulative Probability (CmP) = 0 

Index = 0 

Total Fitness and Normalization 

TSum = ∑ 𝐹(𝑖)𝑁
𝑖=1  

forall k ϵ N do  

FN [k] = F(k)/TSum 

Sort FN [k] in Descending Ranks 

forall n ϵ range(N) do 

Random number generation [0, 1] 

NumRandom = Random([0, 1]) 

Node identification 

 while CmP <= NumRandom do 

  CmP = Cmp + FN[Index] 

    if (FN > FTH) then 

  NodeNormal[ ] = NodeNormal[ ] U FN[Index] 

   else 

  NodeAbnormal[ ] = NodeAbnormal[ ] U FN[Index] 

  Index = Index + 1  

Return(NodeNormal[ ], NodeAbnormal[ ]) 

Table 1. Trust evaluation for population assignment. 

Previous 

Reputation 

(RA) 

Classification 

(A)  
Group 

Genetic Assignment 

Updated 

Reputation 

(R’A) 

Updated 

Group 

RA < =0.4 Untrusted Abnormal R’A > RA Normal 

0.4<RA < 0.7 
Verification 

Required Normal R’A <= RA Abnormal 

RA >= 0.7 Trusted 

4. Performance Analysis 

The experimental and different simulation setups for 

FANET to implement the various proposed algorithms 

and methods are included in this section. Additionally, 

particular metrics and criteria have been developed to 

assess how well the suggested technique performs in a 

simulation setting designed to improve secure 

communication. 

4.1. Experiment Setup 

To evaluate the performance of the ML-TIFGA method, 

we conduct three experiments. Experiment 1 is carried 

out to measure the accuracy, precision, recall, and F1-

score with the variation in chromosome sequences on the 

NSL-KDD dataset that derived from the previous 

Knowledge Discovery and Data Mining (KDD) Cup 99 

dataset [33] by Network Security Laboratory (NSL), the 

NSL-KDD dataset addresses essential issues that 

previously affected intrusion detection accuracy due to 

many duplicate packets. The size of the NSL-KDD train 

dataset is manageable for full use without random 

(11) 

(12) 
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sampling, with 125,973 records, while the test dataset 

has 22,544 records. It has 41 attributes and 22 different 

training intrusion attack types, offering a solid 

foundation for consistent and comparable findings 

across numerous research projects [5]. We included the 

cleaned sample, size 133000, with a learning rate of 0.05 

for the sigmoid activation function. The classification of 

the sample is shown in Table 2 with 03 class labels. 

Google Colab tool is utilized to analyse the results of the 

proposed approach.  

Table 2. Working dataset and class labels. 

Labels Group 
Sample Filtering 

Training (80%) Testing (20%) 

Normal Nodes Normal 57951 14507 

Selfish Nodes 
Abnormal 

17534 4382 

Malicious Nodes 30901 7725 

Table 3. Class detection by ML-TIFGA for 80% of training data.  

Labels Accuracy Precision Recall F1-Score 

Normal Nodes 99.726 99.586 99.785 99.685 

Selfish Nodes 99.831 99.627 99.814 99.721 

Malicious Nodes 99.93 99.709 99.796 99.752 

Mean (%)  99.829 99.641 99.798 99.719 

 

Tables 3 and 4 represent the performance proposed 

for 80% of training and 20% of testing data, respectively, 

by improving accuracy, precision, recall, and F1-score in 

the mean by 99.829%, 99.641%, 99.798%, and 99.719% 

for training data. Similarly, 99.856%, 99.759%, 

99.835%, and 99.797% for testing data. Figure 5 shows 

the comparison analysis for the mean detection rate for 

class labels for training and testing data. 

Table 4. Class detection by ML-TIFGA for 20% testing data.  

Labels Accuracy Precision Recall F1-Score 

Normal Nodes 99.833 99.735 99.854 99.794 

Selfish Nodes 99.852 99.816 99.864 99.839 

Malicious Nodes 99.884 99.726 99.787 99.756 

Mean (%)  99.856 99.759 99.835 99.797 

 

 

Figure 5. Classification detection for sample dataset. 

Further, the comparison analysis of ML-TIFGA 

similar class labels with random forest [27], FA-ML 

[16], and Particle Swarm Optimization (PSO) with K-

Nearest Neighbour (KNN) [34] techniques for 

performance metrics is shown in Tables 5 and 6, and 

their respective comparative analysis is depicted in 

Figures 6 and 7. 

Table 5. Comparative analysis for 80% training data.  

Labels Accuracy Precision Recall F1-Score 

ML-TIFGA 98.36 98.01 97.86 97.934 

Random Forest 95.15 93.47 93.22 93.344 

FA-ML 97.08 95.86 94.37 95.109 

PSO with KNN  97.86 96.24 95.79 96.014 

 

Figure 6. Classification metrics comparative analysis for training 

sample. 

Table 6. Comparative analysis for 20% testing data.  

Labels Accuracy Precision Recall F1-Score 

ML-TIFGA 98.86 99.17 98.65 98.719 

Random Forest 95.85 94.73 95.36 96.106 

FA-ML 97.92 97.35 96.65 96.998 

PSO with KNN  98.44 97.83 97.13 97.478 

 

 

Figure 7. Classification metrics comparative analysis for testing 

sample. 

Through Experiment 2, we monitor the reliability of 

the existing network of flying units, considering the 

success rate of node classification, along with time and 

population. For this, we consider the 5% and 20% 

injection of selfish and malicious nodes of population 

size. A maximum of 1000 population sizes (flying nodes) 

are considered for analysis in this scenario. Table 7 

represents the various time and population instances 

considered to evaluate the network reliability by 

injecting the number of malicious and selfish units 

corresponding to total nodes. Based on the experiment, 

the improved network reliability by enhancing the 

identification of node types with the rise in time and 

node population through the ML-TIFGA is shown in 

Table 8. The same is depicted in Figure 8. 

 

 

 

 

 

Mean Classification Detection (%) 
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Table 7. Consider instances for network reliability.  

Time 

(Seconds) 
Total Nodes Normal Nodes 

Malicious 

Nodes 
Selfish Nodes 

20 50 38 10 2 

40 200 150 40 10 

60 400 300 80 20 

80 600 450 120 30 

100 800 600 160 40 

120 1000 750 200 50 

Table 8. Achieved Network reliability by ML-TIFGA. 

Time 

(Secs) 

Total 

Nodes 

Normal 

Nodes 

Malicious 

Nodes 

Selfish 

Nodes 

Achieved 

Network 

Reliability 

20 50 37 9 2 0.96 

40 200 146 39 9 0.97 

60 400 294 77 19 0.975 

80 600 448 119 28 0.991 

100 800 597 157 38 0.99 

120 1000 746 198 49 0.993 

 

Figure 8. Network reliability through ML-TIFGA. 

Further, the research is extended to analyze the 

performance of various network factors, including delay, 

throughput, and data delivery rate for assessment by 

proposed. a comparative study between the ml-tifga and 

two other state-of-the-art models, a Secure Energy 

Efficient Dynamic Routing Protocol (SEEDRP) [4], for 

energy efficient security and based on Fuzzy Trust Based 

Secure Routing (FTSR) [13] is performed through 

experiment 3 with the variation in both simulation time 

and abnormal nodes considering the simulation 

parameters and their respective values as shown in Table 

9. to evaluate metrics for efficiency, a range of malicious 

and selfish nodes between 10 and 20 and 5 and 10, 

respectively, are considered in the network having 250 

total nodes. results for the mentioned parameters through 

the conduction of the experiment are shown in Table 10, 

and the respective comparison graphs with state-of-art 

are shown in Figures 9 to 14. 

Table 9. Simulation parameters. 

Parameters Values 

Flying Nodes 250 

Flying Region [1000 X 1000] m2 

Time 300 seconds 

Simulations 10 

Node Speed [20-80] mph 

Transmission Range 250 meters 

Message Size 2 KB 

MAC Layer 802.11p 

 
Figure 9. Comparative analysis for data delivery rate with time. 

 
Figure 10. Comparative analysis for delay with time. 

  

Figure 11. Comparative analysis for throughput with time. 

 

Figure 12. Comparative analysis for data delivery rate with threats. 
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Table 10. Experiment 3, outcomes for network factors. 

Factors Data Delivery Rate Delay Throughput 

Time 

(Secs) 

30 83.146 75.554 78.532 106.246 100.181 109.345 27.006 23.627 25.554 

60 82.151 73.518 76.945 108.504 103.787 112.249 26.086 22.357 24.534 

90 80.916 71.281 75.006 111.812 111.038 118.283 25.076 20.937 23.354 

120 78.597 68.5 72.637 116.936 123.598 127.395 23.806 19.247 22.004 

150 76.115 65.486 70.021 124.441 139.038 138.636 22.386 17.187 20.394 

180 73.504 62.175 67.212 133.058 158.002 151.093 20.656 14.907 18.524 

210 70.631 58.403 64.157 144.625 180.744 167.211 18.626 12.537 16.384 

240 67.537 54.489 60.974 159.516 209.387 184.879 16.276 9.927 13.954 

270 64.302 50.437 57.627 177.553 244.068 207.03 13.736 7.067 11.354 

300 60.409 46.128 53.437 198.671 257.041 232.144 11.096 4.017 8.544 

Abnormal 

Nodes 

(Count) 

10 94.02 90.34 86.06 94.055 98.758 102.612 0.9847 0.9356 0.9117 

12 92.27 89.61 85.29 97.382 104.771 108.586 0.9631 0.8942 0.8769 

14 90.3 87.04 83.17 102.622 106.825 110.548 0.9411 0.8546 0.8407 

16 88.51 85.24 81.24 110.887 115.674 119.288 0.9157 0.8045 0.7764 

18 85.91 83.44 79.2 120.426 126.576 131.663 0.8927 0.7641 0.7529 

20 82.41 80.27 75.84 134.008 141.294 150.673 0.8207 0.7117 0.6704 

22 80.62 78.45 72.53 150.76 161.946 169.608 0.8004 0.6628 0.6318 

24 78.67 75.86 68.46 170.905 192.775 197.063 0.7629 0.614 0.5617 

26 76.7 72.37 66.06 192.717 215.741 221.894 0.7105 0.5818 0.5387 

28 72.62 69.81 62.13 219.509 244.367 256.866 0.6822 0.5416 0.4927 

 

 
Figure 13. Comparative analysis for delay with threats. 

 
Figure 14. Comparative analysis for throughput with threats. 

5. Conclusions and Future Work 

Presented ML-TIFGA concluded a promising approach 

enhancing FANET security. Compared to random forest, 

FA-ML, and PSO with KNN techniques, the high 

accuracy precision, recall, and F1-score from experiment 

1 demonstrate the robustness of ML-TIFGA in detecting 

various types of network intrusions. The ability to 

accurately classify different attacks and normal traffic 

implies that ML-TIFGA can effectively enhance the 

security of network environments by minimizing false 

positives and ensuring reliable intrusion detection. The 

approach is particularly significant for real-world 

applications where quick and accurate threat detection is 

crucial. Further, the results of experiment 2 showed that 

ML-TIFGA maintains a high success rate in classifying 

nodes even with significant injections of malicious and 

selfish nodes, indicating the method is resilient to 

adversarial conditions. For practical applications, this 

shows the deployment of ML-TIFGA is worthwhile in 

those environments where node behavior is 

unpredictable and potentially hostile for classification 

into normal, selfish, and malicious. With the outcomes 

from experiment 3, ML-TIFGA effectively minimizes 

network delay, optimizes throughput, and ensures a high 

data delivery rate even in the presence of abnormal nodes 

compared to SEEDRP and FTSR with the variation in 

both simulation time and abnormal nodes and is crucial 

for real-time data exchange applications, such as 

environmental monitoring or emergency response. Our 

extensive experimental analysis achieved an accuracy of 

99.829% in node classification, while 98.36% and 

98.86% in threat identification for 80% training and 20% 

testing samples. Further, the evaluation improves 

network reliability from 0.96 to 0.993 for a network size 

of 50 to 1000 nodes. Performance metrics delay, 

throughput, and data delivery rate are improved by 

24.65%, 29.16%, and 31.73%, respectively, with the 

increase of abnormal nodes. In the future, the work of 

ML-TIFGA can be enhanced to incorporate nature-
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inspired optimization algorithms with a large node 

density. 
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